In-Time Role-Specific Notification
as Formal Meansto Balance Agile Practices
in Global Softwar e Development Settings

Dindin Wahyudirl, Matthias Heindl, Benedikt Eckhary Alexander Schattén
and Stefan Bifft

Ynstitute of Software Technology
and Interactive Systems
Vienna University of Technology,
Vienna, Austria
{Dindin, Eckhard, Schatten, Biffl}@ifs.tuwien.ac.at

2Support Center Configuration Management Siemens &mgnd Systems Engineering,
Vienna, Austria
{matthias.a.heindl}@siemens.com

Abstract. In global software development (GSD) projectsiritiated teams
collaborate to deliver high-quality software. Pajenanagers need to control
these development projects, which increasingly tdgple practices. However,
in a distributed project a major challenge is tefkall team members aware of
recent changes of requirements and project stathswt providing too little or
too much information for each role. In this paper wtroduce a framework to
define notification for development team membeet tillows a) measurement
of notification effectiveness, efficiency, and codt) formalizing key
communication in an agile environment; and c) plong a method and a tool
to implement communication support. We illustratéh an example scenario
from an industry background, the concept and repsstilts from an initial
empirical evaluation. From the evaluation it follwhat the concept allows
determining and increasing the effectiveness anficieicy of key
communication in a global software development gubjin a sufficiently
formal way without compromising the use of agilagiices.

Keywords: Software project management, Software process wepnent,
Methods and tools of software development, Agilacfices in global software
development, Context-specific notification.

1 Introduction

Today business competition forces highly distributend global software
development (GSD) players to be more responsive adaptable to uncertainty
during development processes (e.g., changes of ireegents, technologies

Dindin Wahyudin, Matthias Heindl, Benedikt Eckhafdexander Schatten, Steffan Biffl

implementation; involvement of partners/subcontyeg)t especially in novel product
development [14].

The Agile Manifestd promised that higher customer satisfaction caadbgeved by
addressing such uncertainty aspects and delivevorging software frequently with
shorter timescale. However adoption of agile ficas such as daily planning, daily
synchronization and daily build [7], [16], requsreoverall more intensive
communication and information exchange among ptdiegm members regarding
project changes when compared with typical plamedriapproach. Especially, in the
context of GSD projects, effective communicatiomsimportant issue as one has to
take into account distant locations and differénetzones [9].

Usually, in order to communicate a change in regnénts and in other project
artifacts, a GSD team member who committed the gdanotifies other team
members in some informal way (e.g., by phone). Sarchapproach requires extra
effort and/or results in loss of information or @&gl Another common practice is
subscribing by team member to particular tools.{@g@roject manager may subscribe
to SVN/CVS to be notified about each check-in perfed by his/her developers).
Although this approach is a cheaper way of nofiifieg it is often that the target user
receives too much information and most of themaareof his current work context
or interest.

Hence, to effectively manage such an agile andiloiged project one has to
address issues specific to agility and distribytian (a) all team members should be
aware of relevant project status (b) informatioppy should meet the current work
context of each role, (now it is hard to measufermation supply due to informal
way of communication between team members in GaBY, (c) cost and effort of
key communications should be reduced. To addressetlissues, we propose a
concept of “in-time role-specific natification”. nitime and role-specific means
delivering the right information to the right penswithin his/her current work context
(context aware). We define natification in a wawttlallows measurement of its
effectiveness, completeness and correctness. Wgesuthat such an approach can
also be used in the agile context. To addresaehd for effort and cost reduction we
extend the functionality of GSD tools by introdugiplug-in integration of the tools
to support in-time role-specific notification in GSsettings. Moreover, we present
scenarios, based on industrial experience, whlaoktihte the need for in-time role-
specific notification.

The remaining part of the paper is organized abua: Section 2 describes
related work on agile methods adoption in GSD msgétiand issues important when
controlling agile GSD projects. Section 3 introdutke research questions and the
concept of “in-time role-specific notification”. S@on 4 presents scenarios from
industry background and later, in Section 5, wevijg® initial evaluation of the
concept. Section 6 discusses the initial evaluatesults and compares them with
related work. Section 7 concludes and outlinesréutasearch on in-time role-specific
notification that would be needed to better suppmliaboration in distributed
projects.

1 http://agilemanifesto.org/principles.htifgccessed on 15 August 2007)

In-Time Role-Specific Notification
as Formal M eans to Balance Agile Practices
in Global Software Development Settings

2. Related Work

Global software development (GSD) projects can fieflem agile practices to react
to changing requirements and project circumstantesyever to maintain the
overview and control of this project extra care tabe taken to maintain the timely
communication between distributed teams and teambees. Formalization of key
communication and supported by proper infrastrécttan take away the burden of
communication “work” from team members while maintag communication
effectiveness and efficiency. The key question ligtkind of communication can be
automated and how tools can support such automation

2.1 Agile M ethods Adoption in GSD Settings

Boehm and Turner [2] describes balancing agilitthvdiscipline such as introducing
agile practices in plan-driven GSD projects mayvjmte complementary values
derived from both approaches. As the usage of gtaren GSD methodologies
promise access to larger competence developerwitiollower development costs,
and work effectiveness due to time zone exploitatje]. While agile software
development offers several benefits for GSD suchadaptation to changing
requirements, higher customer satisfaction, rapidases, and lower defect rates [1].
However, Boehm and Turner also suggest that,

The key success is finding the right balance between agility and discipline within the
development process, which will vary from different project to project according to
circumstances and risk involved.

Several literatures in Distributed and Global Seftev Development report
experiences of agile methods practices in disteitbydroject settings. Schawber [16]
reports a case study in scaling Scrum for larggeptan an outsourcing company. He
created multiple small to medium size Scrum teampetrform shorter Sprint cycle
and shorter daily Scrum meeting in order to reddeéverable time of software
product. Other study by Martin Fowler [7] repodstreme programming (XP)
adoption in large distributed project in USA. Thejpcts successfully used practices
such as continuous integration to reduce probleitis wtegrating the work across
multi-site teams, short iteration, and multiple ¢oumications. To keep
communication between teams effective yet relagiiitiensive as required by XP, he
employs a “team ambassadors” as communication bofféeam representative to
interface with other distributed teams. Nisar et[aB] and Xiaohu [18] report their
experiences in adopting extreme programming (XP)fishore teams collaborating
with onshore consumers. The development work isedionoffshore teams with
tightly involvement of the onshore customer. Xiadtrther explainedhe main issue
for implementing XP practices was to reduce the conication delay and improve
communication quality between the customers anaffishore developmeneam.

All these experience reports conclude that appdigite methods (such as XP and
Scrum) can benefit distributed development; howeresearch is needed to address

Dindin Wahyudin, Matthias Heindl, Benedikt Eckhafdexander Schatten, Steffan Biffl

issues on communication between project team memidnich is limited and
expensive in GSD settings [14].

2.2 TheNeedsfor Formalization in GSD and Agile Contexts

To deliver high quality software, in GSD projecgpitally multiple distributed teams
work on the software development. During collaborgtthe team members spend
more than 50% development time for communicatidsl,[and about 70% of this
time accounted for cooperative activities [17]. @tlstudies in distributed software
development suggests that direct /face to face aamuation is very important in
uncertain software development such as to fill étivity details, fix mistakes and
inaccurate prediction, counter measures for thecefbf project changes [9], to
address coordination and interdependency issues. [bherefore, direct
communication limitation and breakdown regarding thcent changes in requirement
and project status make critical situation in saftsvdevelopment processes. From
GSD project management point of view it is very arpnt to provide information
that should meet the roles expectation in ordekeep the team member aware to
current requirement changes and status of develapantfacts, and help to support
the multi-sites collaboration activities. Howeves airect communication and
frequent formal reporting of performance statu§&®BD is luxury and somehow very
limited, hence depict the need for an approachdhatsignificantly reduce the effort
and cost of communication.

One approach is tool supported notification excleanbetween teams and team
members by a network of naotification server as pegg by deSouza et al. [5] which
benefit collaborative development such as in GSDnlaypaging interdependencies of
task and artifacts [4]. They suggested that thatedata flowing in the project system
network and work tools encapsulate critical infotima necessary to improve
coordination of activities, and communication. Avest and its attributes (such as
requirement changes, automatic build) can represtaiteholder interactions or
communication during a software project executidowever although notification
server propose automation of some key communicatid®SD, however deSouza et
al. did not mention how to formalize such notifioat (e.g. notification specification,
rules, and model) which is necessary to bring dis@ to the automated notification
generation processes. We need to formalize inrdodeeduce cost, effort, and risk
such as delay which is necessary in GSD context.th® other hand we should not
formalize everything because it reduces the fléigjbihich is necessary for certain
aspects in the project, too costly and not prakcti€aerefore, it is necessary to
balance formalization and flexibility using costAedit analysis.

3. The Concept of In-Time Role-Specific Notification to Balance
Agile Practicesin GSD settings

This section motivates the research issues an@rtbposed concept of in-time role-
specific notification to address our research qoestVe also envision the GSD tool

In-Time Role-Specific Notification
as Formal M eans to Balance Agile Practices
in Global Software Development Settings

support for collaboration of GSD team members, fityoducing the integration of
plug-in which allows the information exchanges ag pf team member work tools.

3.1 Current Reality of Agile-Global Softwar e Development

To examine the cause and effect logic behind ctrregyle adoption in GSD
settings, we employed Current Reality Tree sugge€&RT) in Goldratt's theory of
constraints [3] as problem analysis tool. CRT begiith identifying the undesirable
effects we see in today practices in GSD and thaak to a few root causes, or a
single core problem. Later we can select what torawe that will have the greatest
positive effect to agile-GSD development. Figurdldstrates the current reality of
typical Agile-GSD project, the lower level represdéime root cause, while the upper
level signify undesirable effects.

The rectangles represent entities such as corelgmg root cause, effect and
undesirable effect, while an ellipse represents Adjigrator and arrow signify the
impact direction.

We grouped the entities into 4 groups to avoid gsioin of reader due to number
of entity represented in this model. The first gro(box) represents typical
characteristics of global software development esscas suggested by many
literatures in distributed and global software @egring domain such as in [9] [10]
and [12]. The distributed participants with diffeteculture, different language may
have impact in the content of information being femged, as the result team
members sometimes have misinterpretation or misstateling of the conveyed
message, on the other hand the distant locatiord#fgdent time zone, make face-to
face communication such as daily synchronizatiomenexpensive, worth more effort
and hard to coordinate.

The second group (box II), express the need foreniorensive communication
among team members due to their work dependencidschanging in project
environment (e.g. requirement and artifact changekpwever as direct
communication is infrequent in GSD context, in gradi (box Ill) reveals that the
communication of changes are committed either fiormal way or by subscribing to
work tools as described in introduction.

The fourth group (box 1V) illustrates the undesleateffects due to current
communication methods in Agile-GSD project. As team member missed vital
information this will cause lack of awareness opartant project status concerning
his work context. This information deficiency mad team member to perform a
task with flaw direction, and increase the possipbibf versioning problem, rework
and delay. The tool subscribed method, often showeteam member with
information spam; consequently he needs more efifoselect which information is
relevant for his current work context, which somets can be a frustrating task. Both
of these undesirable effects (lack of awareness@me reading effort) will decrease
the developer motivation, and eventually will halerger impact to overall
development process.

Dindin Wahyudin, Matthias Heindl, Benedikt Eckhafdexander Schatten, Steffan Biffl

IV. Undesireable

Raducs tsam Effects of Agile-GSD

member's
mativation

Increase possibility
of rework and delay

ieemmemberiias More reading effort
lack awareness of e adid
project status
— J
T T
1. Typical —Iﬁ
Team member Communications of
often miss vital Changes Team member
information due to receives too much
lost or delay information

— T

Tool subscription

Informal
Communication

Team Members Less synchronous/
often have face to face

misunderstanding communication Il Dependency
Aspect and
Uncertain

. Environment
Requires Intensive
Communication
Different Culture ZO?ZF:;"S Eir:;nl
and Languages f
Location

I. GSD
Geographical |Characteristics Dependencies Constantly
e among activities Changing
Distributed 5 .
and artifacts Environment

Fig 1 Current Reality Tree of Agile-GSD Project, undesieableffects such as delay and
motivation degradation of developer can be derifvech (a) higher effort and higher cost to
retrieve information of project status and (b) ple®r quality of conveyed information

3.2 Resear ch | ssues

Based on Current Reality Tree in section 3.1, dioeenmunications between team
members are extensively required by agile methadisrissing in GSD due to cost
and effort allocation as the result of geographidsitribution. Hence, the agile

In-Time Role-Specific Notification
as Formal M eans to Balance Agile Practices
in Global Software Development Settings

practices adoption in GSD settings will face greateallenge to traditional GSD

project.

This hybrid Agile-GSD projects requires a novel hoat which promise cost and
effort reduction in information exchanges betweedD3Geam members. One solution
is to automate the communication supported by taslslescribed in related work,
however the challenge is how much formalizatiowaihmunication is enough, as in
agile context, we still need to maintain some aspécflexibility due to project
uncertainty. Therefore in this paper we proposemesearch questions which are:
(&) What kind of communication can be automateddulevelopment processes?
(b) How can tools support such automation?

To address these research issues, we introdu@emevirork to define notification
for development team member which allows:

o Measurement of notification effectiveness, and reéffoTo determine the
effectiveness and effort of key communication alnel value of notification in
global software development project in formal waigheut compromising the
use of agile practices.

o Formalizing key communication in an agile envirommeéNe provide example
scenarios from industry background to explain thacept of formalization of
key communication in form of notification exchangbstween GSD team
members

o To provide method and tool support to implement momication support. Tool
support to increase the effectiveness and effigiesfckey communication in
global software development project in formal waighaut compromising the
use of agile practices. We also perform initial @mopl evaluation from one of
the scenarios as the proof of concept

3.3 In-Time Role-Specific Notification: Definition and Concept

In global software development setting, collabamatbetween team members from
multiple sites is essential. Figure 2 illustrathe typical work and collaboration in
GSD, here a team member first assigned a role wigpecified work context, e.g.
project manager, developer, and tester, in ceftaiation. In agile practices, role
assignment may not be a static position, for exarapieam member can be assigned
as software architect at the beginning of the mipjater he can act as a developer
once the designs and specifications completed.

Based on current assigned role, a team memberdsipesform some activities or
task typically supported by a set of work toolsd&liver software artifacts. Every
change of software artifacts can be considerednasvant which is also typically
recorded in the work tool where the event happendgpically works in GSD
environment are not stand alone; a team memberhaay dependencies of artifact
developed by other team members. Based on thgsndencies, a team member
needs to be notified for certain events represbanges of the artifact. Hence he
should specify a notification and retrieve the eotrnotification in time. To receive
information which is delayed, partial or not relavavill reduce a team member work

Dindin Wahyudin, Matthias Heindl, Benedikt Eckhafdexander Schatten, Steffan Biffl

performance and also may affect other developnasist performed by other team
members who depend on his deliverables, as theeqaesces the project may face
some risky condition such as version conflict, aske delay, and quality reduction of
to-be delivered software.

Fig 2. GSD Team Member role, and the need for notificakiased on his current work
dependencies

3.3.1. In-Time Role-Specific Notification Definition

We define a notification as an object that collenfsrmation about status changes,
errors, early warnings and other time-relevant gmbjstatus information to be
presented to target roles. A notification can beggered by events, correlation of
events or measurement data passing pre-defineshtiiceduring project execution.
For example a tester needs to be notified whenveloeer closed a development
ticket (ticket closing events), which required ®tested before adding the new code-
set to current body of code of to-be deliveredvsare.

The meaning of in-time aims to localized notificatito meet the user expectation
of particular timely effective information awaresess he may only concern to be
notified for relevant project status changes intipalar time of deliverable
(immediately, or summarized) and within his currevdrk context (e.g. what I'm
doing now, with whom/what my work connected withjdaconsider other out of
context and delayed notification as information t@asr noise. Meanwhile the role-
specific term means to deliver the naotificatioritte right notification user.

3.3.2. Notification Specification: How Much Formalization is enough?

The intention to specify a notification is to prdgicorrect notification for target user
in formal way. In our context a notification deri&om selected key communication
between team members. We use three selection i&riter select which key

communications are worth enough for formalizatio automation by tool support,
such as: (a) the key communication is significantiportant to support collaboration
of GSD team members according to circumstanceseiweldpment processes; (b)

Notification
Practices

In-Time Role-Specific
as Formal M eans to
in Global Software Development Settings

Balance Agile

repetitive or frequently occurrences in larger pdrdevelopment life cycle(e.g. hours
and daily occurrence); and (c) data transmitted digsificant probability of risks,
such as to become lost, error, impartial or delayethanual way of transmission.
Table 1 provides some examples of key communicatiaction for formalization
and automation, these key communications passedfirdteselection criteria as
considered important to support collaboration irDGS

Based on our Industry background we assumed theesalf the selection criteria
for each key communication as described in tableopmunication of changes of
requirements and components are feasible for faratgdn and automation. After
selection of key communication, the next step isgecify what kind of notification
should be provided for target user. The specifioatlso needed to localize the scope
of formalization as we only need to formalize selerelevant aspect of key
communication, and leave the rest to stay flexible.

Table 1 Examples of Key Communication SelectiomAgile-GSD settings

Key Communications | RolesInvolved Frequency of | Risk Need for
Occurrence of loss and | Formalization
delay

Changes in Project manager, Medium High Yes

requirements developer, tester

Requirement traces Project manager, High High Yes
developer

Component changes Developer High High Yes

Fix defects in code Developer High Low No

Fill in plan Project manager, Low Low No
Technical leader, QA

There are several elements of key communicatioh gshauld be formalized to
specify a naotification such as: processes perfdrth@ing communication task (e.g.
impact analysis of requirement change, decisiomag for requirement change), all
roles involved in information exchange (e.g. projetanager as target user, and
developer as events provider in changing requirérseenario, see section 4), data
transmitted during communication (e.g. traceabilitfjormation of requirement),
distributed events to publish-subscribed the ru#tfon (e.g. source code element
changes published by the developer to trigger iocatibn consumed by the project
manager), and delay allowance of notification espnts the time between
artifact/requirement changes and capturing of iwatiion by target user.

The next step of formalization is to model the wéidw to trigger the notification
from abovementioned elements. We can use a preeessc model such as IDEFO
or extension of UML proposed by Penker and Eriksfgjn In this paper we use
Penker and Eriksson extension to illustrate natffan for proposed scenario in
section 4, as this extension offers more capalititgxpressing and formalization of
notification by mitigating the ambiguity often asgtted with narrative specifications
or scenarios.

Dindin Wahyudin, Matthias Heindl, Benedikt Eckhafdexander Schatten, Steffan Biffl

3.3.3. Rules Definition and Notification Escalation

In order to deliver and present notification in4irand within context of particular
roles, those we need to formulate the notificatiate. The syntax to formulate
notification rules consists of the following partdotify <whom> in <what way>
(e.g., e-mail, SMS, entry in change log) by <whdax., immediately; batch every
hour/day) concerning <in which context> (e.g. inmpémt particular task, managing
certain project) due to <change event> (e.g. reguént changes, component
changes).

Whom: list of persons, roles, or groups. Changebmany observable or derived
event or state change regarding an artifact oreptgjtate, e.g., some expected event
did not happen during the given time window. Whgkmntext can be any task that
assigned to the user, and selected as his curremdt focus or need to be notified
when certain changes occur. For example in req@nénthanges scenario as
described in section 4, a notification for Johneaealoper if particular requirement
changed, can be described &tify John in his Eclipse workspacaynmediately
concerning his task T1 to implement requirementdgd.to changes of Requirement
R1.

If a condition can not be handled by the systenetbams the rule set, and then the
issue should be escalate to a sufficiently competde that can provide a reasonable
decision. For example in continuous integrationld@icenario as applied in XP
adoption in distributed off-shore project by [18] this scenario typically a developer
will automatic build his code before send it to tiepository. For each build he will
get notification of build status either successbooken build, however in certain
situation such as in an approaching deadline, dieeeloper experiences too many
build failures which is risky situation as thereisssibility of he may not deliverer his
task on-time. This issue should be escalated tgtbgct manager, so then he can
take some appropriate counter measures to adduebsrisk. This example reveals
the benefit of notification as early warning sigratt may be used to complement
information from developer, and to reduce delayifiéormation dissemination.

3.3.4. Derived M easur ement

The value of in-time role-specific notification inénced by several factors that can

be measured such as:

o Effort (E) is an accumulation of work hours to prepafpr), to processT(pc)
and to create notification of changér). Integrated tools’ plug-ins supported
notification should be able to reduce significarittg overall effort allocated by
the GSD team members.

Here we can formulate effort & Tpr+Tpc+Tc (1)

o Correct Natification (CN) is number of notifications created and transmitie
target user within the scope of pre-defined spestifon.

o False Positives (FP) is number of notifications determined not in $eope of
correct specified natifications for a target user.

o False Negatives (FN) indicates number of notifications determinedtha scope
of correct specified notifications but do not reéatget users

In-Time Role-Specific Notification
as Formal M eans to Balance Agile Practices
in Global Software Development Settings

o Effectiveness (EF) is number of correct notification€K) in proportion to all
generated notifications5N) for a specified notification se8{). We expect that
tool support increase notification transmissioreetifeness as expected in agile
context.

Here we can formulateEF= CN/GN (2
GN=CN+ FP+ EF 3)

These factors are considered as general measurefealue of notification and
should be applicable to almost every scenario iD@8d Agile context. We can use
this measurement for balancing agility and fornmali® notification, by comparing
the results of several alternatives of deliveritg totification. For example in
scenario described in section 5 we can compareffoet needed by two traditional
alternatives of requirement tracing (with Excel &l.Pro) with our proposed plug-
in alternatives, if the results reveal that plugsffers significant effort reduction with
respect to cost to develop such plug-in, then GB@lect manager may need to
consider to apply such alternatives, on the ottwrd if the effort reduction is
considered not worth enough compare to plug-in ldgweent’s cost and other set-up
effort, then PM may just discard the idea of phey-in approach.

3.4 Toal Integration and Support

In this work we propose the presentation of ndaifiens in the user interface of a tool
routinely used by the target role in order to redteam member refusal due to
"another-tool-syndrome”. Tool support mostly cotsisf tool sets (requirements,
development, configuration, tracking and test tpdksat can interact in principle
providing the basis for redundancy-free, consisttatage of data and exchange of
data between tools (via tools interfaces). Tooklasotification also promise cost-
reduction which make information exchange can behrmore affordable in GSD
context, moreover a comprehensive tool supporééxad to enable consistent, error-
free, and up-to-date information exchange in a @8itext. The interfacing between
tools using plug-ins can support information exg®mf events recorded by tools
during project execution.

Tool support allows to implement notifications wgia rule engine, which can be
captured and processed into meaningful informatiomotification using complex
events processing techniques [11] e.g., a corcelatents processor (CEP). Figure 2
illustrates how GSD work tools can be connectednt@nterprise service BUS (ESB)
using plug-ins (plug-ins integration). These plag-taptured particular events occur
in the tools, and publish the events to the ESKNL format. These events later
captured and processed by the CEP, and if a memasntdhreshold or certain rules
apposite with an event or correlated events theatification (also in XML format) is
triggered and published to the ESB. Some subscribeld’ plug-ins consumes the
notification and presents it to the user as pathefr work tools. In summary these
plug-ins act as notification or event publisher aschotification subscriber/consumer,
and can be configured dynamically by the user (Baded configuration for a
general user and an event selection pattern laegiaagnore sophisticated user).

Dindin Wahyudin, Matthias Heindl, Benedikt Eckhafdexander Schatten, Steffan Biffl

In continuous integration practices, some actiiiggering automation (e.g.,
automatic build and automatic test) benefit agdéveare development by reducing
effort and time for certain tasks, these activitilso may trigger events that
considerable worth noting for roles involved in dmpment process such as build
status, build error. Correlating these events (egrelating build failures for
particular task in certain period of time) can dertime-relevant status information
such as quality degradation and quality predictibsoftware product.

GSD Work Tools Space

Eclipse Req. C;':ggn“’ Email Test SVN/ Trii;k’
IDE Pro MGT Client Tool Cvs System

= R———

Event Metrics :
Notifica-
Event Correla- || & Analy- Rules ti Automa- | | Automa-
Mining ti I Engine e tic Build | | tic Test
ion sis Database
CEP Automated Quality

Assurance

Fig 3. Integrated tool support for In-time Role-Specifictifloation in Agile-GSD settings

4 Example Scenario

The following scenario illustrates how in-time ro$pecific notification provides

support to current global software development eisfig when agile practices
introduced to the development processes. We prowiiial empirical evaluation

based on the result of implementation of the séenardn this scenario several
distributed team members such as a project marmagsite A who has responsibility
in requirement management which later implementedhle developer from site B.
The project manager manages the requirement inresgent management tool such
as Requisite Pro, while the developers use IDE waih as Eclipse as their
development platform. If a change of requirementaiXives from the customer,
accordingly the project leader performs impact ysial in order to decide whether
such change should be implemented or not (seeefigdir he needs to know the
current status from developer who assigned to imptg the requirement X, and
what kind of impact may derived by this change Bsls and cost.

Typically developers in GSD create sori®cel matrices to store traceability
information of implementation status which can begidered as ad-hoc approach or
systematically draw a license for the project’suisgments management tool (e.g.
Req.Pro). Project manager then manually assebgesnformation, performs the

In-Time Role-Specific Notification
as Formal M eans to Balance Agile Practices
in Global Software Development Settings

analysis and creates an impact report as the bagiecision approval whether a
change should be implemented or not. Based onstteésario, we can define the
impact analysis as the processesr,oject manager anddeveloper as roles involved in
this process, andraceability information transmitted by the developer as key
communication to be automated. Let's assume tlaextended the functionality of
tools used by developer (Eclipse) and project manggeq.Pro) with plug-ins to
provide interface between the two tools. In thideaded scenario whenever a
developer committed some changes in his codetset¢lipse plug-in will store this
event and correlate these changes to relevantresgent (Reg.X), and automatically
publish a requirement traces notification (N) cetssiof developer ID, source code
elements that have been changed, date of changefsanorrelation with Req.X.
The Req.Pro plug-in which subscribed for this tygfenotification then captures
notification N from the integrated work tools BUSeé€ figure 3), and present this
notification in the project manager’s Req.Pro ifaee.

Despite of cost and effort reduction, as resulaofomation, this approach can
benefit distributed project controling as a préjemanagers can decide if a
requirement should be changed although develophetlready been started. They
can also easily get in contact with the developat is working on it to ask him about
the current progress or potential implications.ths consequences notification may
enhance the impact analysis processes in ordervedd gootentially dangerous
situation such as to put barrier to the develoeirest risky or unnecessary changes
(as in Scrum before a Sprint release).

apeoples ztools wgoals
Project Manager Req Pra knowing impact of
change
T
‘ i A
woontrols «woantrols S
. | .
archive:
aphysicals \\\\. 1.;/ " i *
Reg X
e impact analysis P icale
-——-Z% impact report
«physicala ,,-'-—-’?
CrY
T. :ﬁ' h\
’ l'\
s s
«sUaplys “5”3‘}\“”
K
speoples Req. X in
Developer work

Fig 4. Impact Analysis is performed by project manageetasn requirement traceability
information from the developer

Dindin Wahyudin, Matthias Heindl, Benedikt Eckhafdexander Schatten, Steffan Biffl

5 Initial Empirical Evaluations

We performed an initial feasibility study of thedgrated tool plug-in support for
scenario of requirement traces to support impaetyais as described. In order to
compare the plug-in-based approach with other ratares, we observed a set of
projects at Siemens PSE to evaluate the tracimgteffcorrectness and completeness
of each alternative. The projects were differentdomain (transportation systems,
telecommunication, etc.), but similar in size: medisize projects, with 2 to 4 sites
(e.g., Austria, Romania, Slovakia), and betweearid 60 team members.

The number of requirements of each project is betw&50 and 300; number of
source code methods to be traced range from 60@Ba60, while number or traces
per requirements is between 150 and 300. Baseties® tproject setting factors we
compared the effort to trace requirements to soootke methods, the completeness
and correctness of traces for the tracing altereatdescribed in section 4. For more
detail information and scenario of evaluation carfdund in Heindl et. al [8].

Comparison of the 3 alternatives of requiremerttiig reveal that using plug-in
alternatives for tracing requirement may signifitgmeduce the effort of developer
teams and increasing completeness and correctiigsacmg. Heindl et al, also
reported such improvement lead to higher developetivation, as developer will
have more awareness of changes in requirementr leffeat to trace the requirement
and more confidence of correctness of trace inftioma which also reduce
possibility of delay or rework.

Table 2 Comparison of Tracing Effort and Tracing Qualitissyrce Heindl et al.

(8]

Effort for tracing (in working hours) | Tracing Quidis
For 150 For 300 Correctness False Positives
requirements requirements (%) (%)
Ad-hoc 450 to 1350 900 to 2700 5% to 30% 5-10%
Systematic | 50 to 167 99 to 334 20% to 40% 10%
Continuous/| 8 to 26 16 to 53 60% to 75% 5%
Plug in

In this paper we compare three alternatives of irement tracing, and to
investigate the continuous tracing approach usmgne role-specific notification
concept on the effort and quality of traces. Howeagreported by Heindl et. al, this
approach will have greater benefit for medium togéa projects, as for smaller
projects, the tracing effort might be too high camgpto traditional ad-hoc tracing.
Automation of notification in this scenario alsosh#& consider the amount of
investment needed especially in project with a loumber of requirements and
requirement changes.

We use requirement tracing scenario for ourahévaluation because we believe
that changing of requirements is the most promirfactor in current software
development which need more attentions from theldgwment teams.

In-Time Role-Specific Notification
as Formal M eans to Balance Agile Practices
in Global Software Development Settings

6 Discussion

From related work, we can conclude that agile prastadoption in GSD settings
may provide several benefits needed by currentsingu However one challenge is
to provide a means of communication and informatéxthanges between team
members concerning occurrence of changes. Referion our initial research
guestions, distributed project needs to define sé&me communications which is
feasible for automation in order to reduce cost afidrt. In our initial feasibility
study we selected traceability of requirement clearas the key communication that
can be automated. The integration of plug-in fewedoper’'s tool (Eclipse) and
project manager’s tool (Req.Pro), provide an imtegf between the tools, which
allows automating this key communication.

The framework also allows measurement of the valueotification, as in our
initial empirical study we found that integratiohtool support significantly reduces
the effort for requirement tracing compared to mesgensive time consuming
alternatives (e.g. using Excel and Requisite Piuglvare commonly used in current
GSD projects. However the evaluation of the cphdem other context of agile-
distributed development such as different develagmprocess scenarios and
measuring it's the impact to overall developnyaatformance will be further work.

7 Conclusions

In the paper we proposed a concept of role-speaifid context-aware notification
supported by integrated tools and oriented towdrstsibuted projects. The goal was
to complement current distributed project contngllimechanisms and to address
communication issues associated with applicaticsgile practices in GSD settings.

Formalization and automation of some key commuiunat between team
members in a form of notification may provide bétsesuch as cost and effort
reduction but seems limited to GSD settings. Muoeep we believe that such
notification will provide GSD team members with ractimely and context-aware
information on project status changes. Our inigahpirical evaluation provided
promising results. However, we would like to penfosimilar evaluation in the
industrial setting with larger size of developmtzam.

Acknowledgments. We would like to thank Franz Reinisch from SiesdPSE
Austria and Prof. A Min Tjoa from IFS TU Wien fdndir contributions to the paper.
The paper has been partly supported by The Techpd@tvant-South-East-Asia No.
1242/BAMO/2005 Financed by ASIA-Uninet. More d&tain In-time Role-Specific
Notification can be found in our technical reportavailable at
http://gse.ifs.tuwien.ac.at/publications.htm

Dindin Wahyudin, Matthias Heindl, Benedikt Eckhafdexander Schatten, Steffan Biffl

References

1. Boehm, B.: Get ready for agile methods, with c&@mputer 35(1) (2002) 64-69

2. Boehm, B., Turner, R.: Balancing Agility and Disaigt A Guide for the Perplexed.
Addison-Wesley Longman Publishing Co., Inc., BostdA, USA (2003)

3. Dettmer, H,: Goldratt's Theory of Constraints: 3ystem Approach to Continuous
Improvement. Quality Press (1997)

4. de Souza, C., Redmiles, D., Mark, G., Penix, Jerh8is, M.. Management of
interdependencies in collaborative software devalq. In: International Symposium on
Empirical Software Engineering, 2003. ISESE 2008cPedings. 2003. (2003) 294-303

5. de Souza, C., Basaveswara, S., Redmiles, D.: &impglobal software development with
event notification servers. In: the ICSE 2002 Ina¢ional Workshop on Global Software
Development. (2002)

6. Eriksson, H.E., Penker, M.: Business ModelinghMitML: Business Patterns at Work.
John Wiley & Sons, Inc., New York, NY, USA (1998)

7. Fowler, M.: Using agile process with offshore velepment.
http://www.martinfowler.com/articles/agileOffshanéml| (June 2007)

8. Heindl, M. Reisnich F., Biffl, S. : Integrated Beeper Tool Support for More Efficient
Requirements Tracing and Change Impact Analysighfiieal Report. Institute f. Software
Technology and Interactive System, Vienna UniversitTechnology (2007)

9. Herbsleb, J., Moitra, D.: Global software depei@nt. Software, IEEE 18(2) (2001) 16-20

10. Herbsleb, J.D., Paulish, D.J., Bass, M.: Globaftware development at Siemens:
experience from nine projects. In: ICSE '05: Prodegsl of the 27th international
conference on Software engineering. (2005) 524>&33

11. Luckham, D.: The Power of Events: An Introdotiio Complex Event Processing in
Distributed Enterprise Systems. Addison Wesley 2200

12. Mockus, A., Herbsleb, J.: Challenges of globaftvgare development. In: Seventh
International Software Metrics Symposium, 2001. NRETS 2001. Proceedings.. (2001)
182-184

13. Nisar, M., Hameed, T.: Agile methods handlfoftghore software development issues. In:
8th International Multitopic Conference, 2004. Pextiags of INMIC 2004.. (2004) 417—
422

14. Paasivaara, M., Lassenius, C.: Could global soféwdevelopment benefit from agile
methods? International Conference on Global SoftiRaeelopment (2006) 109-113

15. Perry, D.E., Staudenmayer, N., Votta, L.G.: pkeo organizations, and process
improvement. IEEE Softw. 11(4) (1994) 36-45

16. Schwaber, K., Beedle, M.: Agile Software Devetenmt with Scrum. Prentice Hall PTR,
Upper Saddle River, NJ, USA (2001)

17. Vessey, l., Sravanapudi, A.P.. Case tools adakmhtive support technologies.
Communication of ACM 38(1) (1995) 8395

18. Xiaohu, Y., Bin, X., Zhijun, H., Maddineni, SExtreme programming in global software
development. In: Canadian Conference on Electricdl Gomputer Engineering, 2004..
Volume 4. (2004) 1845-1848 Vol.4

