
 

Does Test-Driven Development Improve 
the Program Code? 

Alarming Results from a Comparative Case Study 

Maria Siniaalto1 and Pekka Abrahamsson2  

 
1F-Secure Oyj, 

Elektroniikkatie 3, FIN-90570 Oulu, Finland 
Maria.Siniaalto@f-secure.com 

2 VTT Technical Research Centre of Finland,  
P.O.Box 1100, FIN-90571 Oulu, Finland 

Pekka.Abrahamsson@vtt.fi 

Abstract. It is suggested that test-driven development (TDD) is one of the most 
fundamental practices in agile software development, which produces loosely 
coupled and highly cohesive code. However, how the TDD impacts on the 
structure of the program code have not been widely studied. This paper presents 
the results from a comparative case study of five small scale software 
development projects where the effect of TDD on program design was studied 
using both traditional and package level metrics. The empirical results reveal 
that an unwanted side effect can be that some parts of the code may deteriorate. 
In addition, the differences in the program code, between TDD and the iterative 
test-last development, were not as clear as expected. This raises the question as 
to whether the possible benefits of TDD are greater than the possible 
downsides. Moreover, it additionally questions whether the same benefits could 
be achieved just by emphasizing unit-level testing activities.  

Keywords: Test-Driven Development, Test-first Programming; Test-first 
Development, Agile Software Development, Software Quality. 

1   Introduction 

Test-driven development (TDD) is one of the core elements of Extreme Programming 
(XP) method [1]. The use of the TDD is said to yield several benefits. It is claimed to 
improve test coverage [2] and to produce loosely coupled and highly cohesive 
systems [3]. It is also believed to encourage the implementation scope to be more 
explicit [3] and to enable more frequent integration [4]. On the other hand, it is 
claimed that rapid changes may cause expensive breakage in tests and that the lack of 
application or testing skills may produce inadequate test coverage [5]. TDD has also 
received criticism over not being very suitable for systems such as multithreaded 
applications or security software, since it cannot mechanically demonstrate that their 
goals have been met [6]. However, the scientific empirical evidence behind all of 



      Maria Siniaalto, Pekka Abrahamsson 

these claims is currently sparse, and thus it is difficult to draw meaningful 
conclusions. The studies dealing with TDD have mainly focused on developer 
productivity and external code quality, whereas the TDD’s impacts on program code 
have received less attention. The existing empirical evidence supports the claim that 
TDD yields improved external quality (see a recent summary of the TDD studies in 
[7]). However, it is not clear what has been the baseline for the comparison in those 
studies, e.g. did any unit level tests exist previously? The results of the studies, which 
address TDD’s design impact, are presented in Section 2 in more detail.  

Despite the lack of solid empirical evidence, both the industry and academia are 
keenly adopting test-driven development approaches. The purpose of this study is to 
investigate whether and how the structure of the program code changes or improves 
with the use of TDD. Five semi-industrial software development projects, containing 
both students and professionals as research subjects, were involved in the comparison 
of TDD and iterative test-last (ITL) approaches. Two of the projects used iterative 
test-last (ITL) development technique and three utilized TDD. The metrics used for 
evaluating the code are the traditional and widely-used suite of Chidamber and 
Kemerer (CK-metrics) [8] strengthened with McCabe’s cyclomatic complexity metric 
[9]. To obtain a balance, the dependency management metrics proposed by Martin 
[10] for studying the code’s package structure, were chosen as well. 

The results of this study partially contradict the current literature. In particular, the 
case empirical evidence shows that TDD does not improve all the areas of the 
program design as expected. The results imply that TDD may produce less complex 
code, but on the other hand, the package structure may become more difficult to 
change and maintain.  

The remainder of the paper is organized as follows. In the following section, the 
related work will be introduced. This is followed by an introduction to the metrics 
used to study the impact of TDD on program structure. Section 4 presents the 
empirical results, outlines the research design used to complete the study in a 
scientifically valid manner as well as detailing the threats to the validity of the 
empirical results. Section 5 discusses the novelty of the results in the light of existing 
studies and identifies the implications of the presented results. The conclusion section 
summarizes the principal results and proposes the potential future research avenues. 

2   Related Work 

In this section, the existing empirical evidence on the TDD’s impact on the program 
design is presented. A total of five studies is included.  

Janzen and Saiedian [11] compared the TDD and the ITL approaches using 
students as research subjects. They calculated several structural and object-oriented 
metrics in order to evaluate the differences in the internal quality of the software. As 
most of these results were within acceptable limits, there were some concerns 
regarding the complexity and coupling in the TDD code. 

Kaufmann and Janzen [12] conducted a controlled experiment with students as 
research subjects comparing the design quality attributes of the TDD and the test-last 
approaches (whether the test-last was used iteratively is not known). The design 



Does Test-Driven Development Improve the Program Code?       

quality was assessed with several structural and object-oriented metrics. They did not 
find any differences in the code complexities, but they report that there were 
indications that the design quality of the TDD code was superior. However, they also 
admit that this finding may be due to the better programming skills of the subjects 
applying the TDD. 

Steinberg [13] reports on the findings of the use of unit testing in the TDD style in 
an XP study group. Although, Steinberg concentrates on discussing the results from 
an educational point of view, his study also provides concrete experiences about the 
effects of the novel use of TDD and is thereby included in this study. He notices that 
the students tended to write more cohesive code when using TDD and the coupling 
was looser, since the objects had more clearly defined responsibilities. Evidence to 
support these last two claims was not provided, however. 

In our initial study [7], we explored the effect of TDD on program design in semi-
industrial setting comparing two ITL and one TDD projects. The design impact was 
evaluated using traditional object-oriented metrics. The initial results indicated that 
TDD does not always produce highly cohesive code. However, we concluded that the 
cohesion results might have been affected by the fact that all the developers in the 
TDD project were less experienced when compared to the subjects in the ITL 
projects. 

Müller [14] studied the effect of test-driven development on program code. He 
included five TDD software systems of which three were student projects and 
compared them with three open source-based conventional software systems. He 
assessed the impact of TDD on the resulting code with Chidamber and Kemerer’s [8] 
object-oriented metric suite and his own newly developed metric called assignment 
controllability. Müller reports that CK-metrics did not show any impact on the use of 
TDD but that the new assignment controllability metric showed a difference i.e. the 
number of methods where all assignments are completely controllable is higher for 
systems developed by TDD.  

3   Metrics to Study Changes in Program Structure 

The demand for quality software has resulted in a large set of different metrics some 
of which have been validated and some have not. Many of these metrics have been a 
subject of criticism and their empirical validity has been questioned. There is an on-
going debate on which metrics are the best indicators of the software quality and 
whether some particular metric even maps to the quality attribute it is supposed to 
represent. However, in many cases the authors presenting the criticism have not been 
able to propose a metric that would have solved the problem and would thereby have 
been widely adopted. Due to these reasons, we wish to emphasize that the aim of this 
study is not to validate or comment on the validity of any particular metric. The aim is 
to study whether and how TDD affects the code and its structure, and therefore both 
traditional and novel metrics were chosen for this study.  



      Maria Siniaalto, Pekka Abrahamsson 

3.1   Traditional Metrics 

The object-oriented metric suite, proposed by Chidamber and Kemerer [8], and 
McCabe’s Cyclomatic complexity [9], were chosen as traditional representatives 
since they have been and still are widely used. CK-metrics, validated in [15], measure 
the different aspects of object-oriented construct. The suite contains six individual 
metrics: weighted methods per class (WMC), depth of inheritance tree (DIT), number 
of children (NOC), coupling between objects (CBO), response for a class (RFC) and 
lack of cohesion in methods (LCOM). The suite was strengthened with Henderson-
Sellers’s lack of cohesion (LCOM*) [16. McCabe’s’ cyclomatic complexity measures 
the number of independent paths through a program module, and it is proposed to 
profile system’s testability and maintainability. Although it is one of the most used 
and accepted of the static software metrics, it has also received criticism e.g. [17]. 

WMC measures the number of methods in a class and it is proposed to predict how 
much time and effort is required to maintain the class. DIT measures the depth of 
each class within its hierarchy, and its result shows how many ancestor classes can 
potentially affect this class. NOC presents the number of subclasses for each class. 
CBO presents the number of classes to which the class is coupled and it can be used 
as an indicator of whether the class hierarchy is losing its integrity. RFC presents the 
number of methods that can be executed in response to a message to the class. It is 
proposed as an indicator of the complexity and testing effort. LCOM assesses the 
similarity of the class methods by comparing their instance variable use pairwise. It is 
proposed to identify classes that are likely to behave in a less predictable way, 
because they are trying to achieve many different objectives. The biggest flaws of 
LCOM are that it indicates a lack of cohesion only when fewer than half of the paired 
methods use the same instance variables and the fact that a zero value does not 
necessarily indicate good cohesion, though a large value suggests poor cohesion [15, 
16]. LCOM* measures the correlation between the methods and the local instance 
variables of a class. A low value of LCOM* indicates high cohesion and a well-
designed class. A cohesive class tends to provide a high degree of encapsulation. 

3.2   Dependency Management Metrics 

The dependency management metrics proposed by Martin [10] measure and 
characterize the dependency structure of the packages. The suite includes: afferent 
coupling (Ca), efferent coupling (Ce), instability (I), abstractness (A) and normalized 
distance from the main sequence (D’). Ca counts the number of classes outside the 
package that depend on the classes inside the package whiles Ce counts the number of 
classes inside the package that depend on the classes outside the package. These two 
values are used when the instability (I) of the package is assessed. It has a specific 
range [0,1] with value 0 indicating a maximal stability and value 1 indicating 
maximal instability, i.e. no other package depends on this package. A package with 
lots of incoming dependencies is regarded as stable, because it requires a lot of work 
to reconcile the possible changes with all the dependent packages. The abstractness is 



Does Test-Driven Development Improve the Program Code?       

simply measured by the ratio of abstract classes in a package to the total number of 
classes in a package. 

Martin proposes that the package should be as abstract as it is stable so that the 
stability does not prevent the class from being extended. The main sequence presents 
this ideal ratio of stability and abstractness. Fig. 1 presents the main sequence and the 
zones of exclusion around (0,0) and (1,1). Packages that fall into the zone of pain are 
very difficult to change because they are extremely stable and cannot be extended 
since they are not abstract. The zone of uselessness contains packages that are abstract 
enough but useless since they have no dependents. The packages that remain near the 
main sequence are considered to balance their abstractness and instability well. D’ has 
the range [0,1] and it indicates how far a package is from this main sequence. Value 0 
indicates that the package is directly on the main sequence whereas value 1 indicates 
that it is as far away as possible. 

Fig. 1. Distance from the main sequence. [10] 

4   Empirical Results from a Comparative Case Study 

The comparative empirical evaluation of TDD in five small scale software 
development case studies aims at exploring the effects of TDD on program codes. 
The layout of the research design for the study is presented first and is followed by 
the empirical results. The threats to validity are then identified and subsequently 
addressed. 

4.1   Research Design 

The research method for the three case projects is the controlled case study approach 
[18], which combines aspects of experiments, case studies and action research. It is 
especially designed for studying agile methodologies, and it involves conducting a 
project with a business priority of delivering a functioning end product to a customer, 
in close-to-industry settings. At the same time, the measurement data is collected for 

(1,1)

(1,0)(0,0)

(0,1)

The m
ain sequence

A

I

Useless

Pain



      Maria Siniaalto, Pekka Abrahamsson 

rapid feedback, process improvement and research purposes. The development is 
performed in controlled settings and may involve both students and professionals as 
developers. 

All the case projects had the aim of delivery of a concrete software product to a 
real customer. Two of the projects used ITL development and three utilized TDD: 
Every project team worked in a shared co-located development environment during 
the project. The projects were not simultaneous. All the projects continued for nine 
weeks and followed an agile software development method, Mobile-D™ [19], which 
provided a coherent framework for this study to compare ITL and TDD. Mobile-D™ 
is an agile method, which is empirically composed over a series of software 
development projects in 2003-2006. The method is based on two-month production 
rhythm, which is divided in five sub phases. Each of the sub phases takes from one to 
two weeks in calendar time. These phases are called set-up, core functionality one, 
core functionality two, stabilize and wrap-up & release.  Mobile-D™ adopts most of 
the Extreme Programming practices, Scrum management practices and RUP phases 
for life-cycle coverage. The method is described in pattern-format and can be 
downloaded from http://agile.vtt.fi. The code development took place in controlled 
settings using the same Mobile-D™ practices in all the projects. The only difference 
was that projects 1 and 2 used ITL and projects 3, 4 and 5 used TDD. The 
implementations were realized with Java programming language. The difficulty of 
implementation was at the same level in all the projects, as they all were quite simple 
systems whose main functionalities were to enable data storing and retrieving.  

Table 1 provides a summary of the parts of the projects of which they are not 
convergent to each other.  

Table 1. Summary of the case projects. 

 Case 1 Case 2 Case 3 Case 4 Case 5 
# of developers 4  5  4 2 2 
Developer type1 S S S P S 
Dev. technique ITL ITL  TDD TDD TDD 
Iterations 6 6 6 4 4 
Product type Intranet Mobile Intranet Internet Intranet 
Total Product size 
(LOC) 

7700 7000 5800 5000 8900 (3100 
new) 

 
The development teams of the projects 1, 2, 3 and 5 consisted of 5-6th year 

Master’s students. All the team members in projects 1 and 2, which used ITL, had 
some industrial coding experience, while only one of the developers in project 3 and 
none of the developers in project 5, which both used TDD, had previously worked in 
industrial settings. However, all the subjects in project 3 and 5 were either Software 
Engineering graduates or had a personal interest in programming. The team members 
in case project 4, which also used TDD, were professional, experienced developers 
whose normal daily work includes teaching and development assignments in 
academic settings. The developers were told and encouraged to write tests in all the 
projects regardless of the development technique used. In addition, in projects 3, 4 

                                                           
1 S= Student, P= Professional 



Does Test-Driven Development Improve the Program Code?       

and 5 the use of TDD was stated as mandatory. Intranet applications were 
implemented in projects 1, 3 and 5: in project 1 for managing research data and in 
projects 3 and 5 for project management purposes. Case project 5 was a follow-up of  
case project 3. All the systems consisted of server side and graphical user interface. A 
stock market browsing system to be used via mobile device was implemented in 
project 2. The biggest part concentrated on the server side and the mobile part mainly 
handled connecting to the server and presenting the retrieved data. Internet 
application for information storing was realized in project 4. The implementation 
contained a server side and a graphical user interface. However, to make the 
comparison of TDD and ITL even, graphical user interfaces and the mobile client 
application part in project 2 were excluded from the evaluation. 

4.2   Results 

The results of the traditional and dependency management metrics are presented in 
the following subsections. These results are discussed in more detail in section 5. 

4.2.1   Traditional Metrics 

The results of the traditional metrics are presented in Appendix 1a and 1b. The 
significance of the differences between TDD and ITL were evaluated using the Mann-
Whitney U-test (Table 2). WMC, RFC and McCabe’s cyclomatic complexity were 
used to assess the complexity of the code in this study. The WMC values do not differ 
significantly between the development approaches while the RFC values seem to be 
lower with TDD. The U-test confirms this distinction as statistically significant 
(p<0.05). The McCabe’s cyclomatic complexity results are also lower with TDD and 
are supported by statistical analysis as well. 

The inheritance was studied using DIT and NOC. The DIT values are higher in 
cases in which TDD was used. This difference is statistically significant. The results 
of NOC cannot make any difference between the development methods and they are 
quite surprising, as there are only a few outliners for each case. 

The coupling was measured using CBO metric. The results do not differ 
significantly between the development methods used, and the values are fairly low in 
all the cases. 

The LCOM of CK-suite and LCOM* by Henderson-Sellers were used to find out 
the cohesion characteristics of the code. The original LCOM does not reveal any 
differences whereas the new LCOM* seem to be higher in TDD cases, though the 
difference is not statistically significant. 

 

Table 2. Mann-Whitney p-values for the results of the traditional metrics2. 

 
WMC DIT NOC RFC CBO LCOM 

Cyclomatic 
Complexity LCOM* 

p 0,389 0,001 0,396 0,018 0,678 0,535 0.000 0,061 

                                                           
2 The values where the difference is statistically significant are presented in bold. 



      Maria Siniaalto, Pekka Abrahamsson 

4.2.2   Dependency Management Metrics 

The measures of the dependency management metrics are presented in Appendix 2. 
The AC value is much higher in the TDD cases 3 and 5 meaning that there are more 
classes outside the package that depend on the classes inside the package. Case 4 
presents an exception to that, and therefore it cannot be concluded that TDD would 
produce code with high afferent coupling. The EC values of all TDD cases are 
significantly lower than the corresponding ITL cases, meaning that in TDD cases 
there are fewer classes inside the package that depend on the classes outside the 
package. The instability results show that the package structure of TDD code is  more 
stable than the ITL code. This means that the ITL packages are less dependent on 
other packages. The measure of abstractness gives only slight indications that TDD 
may produce packages with a higher level of abstraction. The results of the 
normalized distance from the main sequence clearly differ between the ITL and TDD 
cases. Fig. 2 presents the scatter plot of the packages case-wise. The packages in the 
TDD code seem to come closer to the zone of pain meaning that they are more stable 
but yet not abstract. However, it should be noticed that the number of packages is 
much smaller in the ITL cases and that can obviously bias these results. 

 

 
Fig. 2. The distance from the main sequence. 



Does Test-Driven Development Improve the Program Code?       

4.3   Threats to Validity 

The interpretation of results is always more complex when students are used as study 
subjects. However, the development environment was explicitly designed to relate 
closely to that of an industrial development setting with strict time-to-market 
pressures, regular working hours and, significantly, the developers were 
implementing a real product to be delivered to a real customer. Höst [20] and 
Runeson [21] suggest that students may provide an adequate model of professionals 
as similar improvement trends may be identified between both groups. In addition, in 
industry, teams usually have a mixed set of experiences and skills. The teams in the 
case projects included in this study represented a similar mix. In addition one TDD 
team consisted of professional developers only in this study. 

The differences between product types and concepts place a threat to internal 
validity of this study. We excluded graphical user interfaces and the mobile client 
application part in case 2 to keep the comparison of the projects even. We also 
proceed in the belief that all product implementations present a similar level of 
difficulty, as the basic functionality in all the systems was simple data storage and 
retrieval, which was realized using a model-view-controller structure. The fact, that 
project 5 is a follow-up of project 3, can somewhat bias the results. However, in 
project 5, the implementation concentrated on totally new functionalities and the 
amount of new code is significant in proportion to the total size of the code. 

To control the subjects’ conformance to implement the tests and to use TDD 
correctly a person responsible for testing was appointed in all the projects. That 
person’s responsibilities included monitoring the testing implementation. The 
developers were not aware that the program design was to be compared as the 
measurements were compiled after the project endings, which reduces possible 
observation effects. Another limitation relates to the size of the software product as 
well as the distribution of the project work. All the case projects had less than 10 000 
lines of code, their development took around 1000 person hours and a single team in 
one location developed the products. The impact of TDD on program design, 
however, should be visible from the very start and thereby present in all of the studied 
projects. 

5   Discussion 

The traditional metrics indicated statistically significant differences in DIT, RFC and 
cyclomatic complexity. These findings partly contradict the findings of Müller [14] 
and Janzen and Saiedian [11]: Müller reports that in his study, none of the CK-metrics 
showed differences between the development approaches used, whereas Janzen and 
Saiedian noticed that the cyclomatic complexity was worse with TDD. Even though 
DIT was increased with TDD and the difference statistically significant, it should be 
noted that the level of inheritance was very low in all the cases included in this study 
regardless of the development approach used. Therefore, it is too early to draw 
conclusions that TDD encourages to greater use of inheritance. In addition, the target 



      Maria Siniaalto, Pekka Abrahamsson 

programs were quite small in all the cases resulting in a limited code base, which may 
be one reason for the low inheritance. 

Both, the RFC and cyclomatic complexity, were lower with TDD which may 
indicate that TDD helps produce less complex code. In this context, it should be noted 
that the corresponding values for ITL cases were not poor- TDD values just were 
slightly better. Other traditional metrics did not reveal statistically significant 
differences. Although the medians of LCOM* results were higher, the statistical 
significance of this difference is not high according to the U-test.  

The results of the dependency management metrics indicate that TDD may cause 
the software packages to become more stable. The results imply that TDD produces 
fewer classes inside the package that depend on the classes outside the package. This 
affects the instability result meaning that TDD produces more packages that are not 
dependent on other packages but have many dependents. It can be argued that this 
makes them more difficult to alter a posteriori. On the other hand, the high 
dependency on other packages and the lack of dependents is not desirable either, 
because it could cause the packages to change more easily. The measure of 
abstractness gives only slight indications that TDD may produce packages with a 
higher level of abstraction, although the difference is not significant. The normalized 
distance from the main sequence, which measures the ratio of instability and 
abstractness, differed clearly from the proposed ideal ratio, as it indicated that the 
TDD packages are too stable in proportion to their abstractness. Both these findings 
lead us to conclude that the package structure of the code produced with TDD may be 
difficult to change and maintain, because it is likely to be concrete and have many 
dependents. This finding contradicts the claims in the literature. On the other hand,  
the number of packages was clearly higher in the cases in which TDD was used, and 
is likely to affect the results. i.e. in the ITL cases, there were only two packages in 
both, while in the TDD cases the corresponding values were 4, 8 and 4. Case 5 is 
based on the “legacy” code of the case 3, and this is probably one reason for the 
similarity between the results of these two cases. However, these findings indicate 
that TDD may result in a greater number of packages that are very concrete in relation 
to their stability. The fact that the results were similar in all the TDD cases regardless 
of the professionalism and developers’ experience is also significant. 

6   Conclusion 

Test-driven development is claimed to be one of the most important practices of agile 
development, and to address many problems at once. The current empirical research 
has mainly focused on exploring the external quality effects of TDD. Despite the fact 
that very little is known about its internal quality effects, academia and industry are 
eagerly adopting the practice. This study aims at contributing to the empirical body of 
knowledge by examining the effect of TDD on program design. 

We studied the effect of TDD in five different software projects with students and 
professionals as research subjects.  The results provide some warning that the benefits 
of TDD are not automatic and as self-evident as expected. Some of the findings imply 
that TDD may produce a less complex code while other findings indicate the opposite 



Does Test-Driven Development Improve the Program Code?       

as there are indications that TDD may produce package structures that are more 
difficult to change. The existing empirical evidence supports the claim that TDD 
yields improve external quality, especially when employed in an industrial context. 
This finding clearly conflicts with the case study which identifies certain risks in the 
adoption of TDD. Therefore, the present authors query whether the reported external 
quality benefits can be achieved with a more traditional approach to unit-level testing 
or whether they are really due to TDD itself. We intend to use the results of this study 
as a baseline for further empirical studies, with experienced developers employing 
TDD in industrial settings. Our aim is to increase the understanding of test-driven 
development in different real-life development settings and thereby contribute to the 
growing body of evidence in the area of agile software development in general and 
test-driven development in particular. We maintain that whether TDD ultimately 
improves program design, remains to be answered. 

References 

1. Beck, K.: Extreme Programming Explained, Second Edition: Embrace Change. Addison-
Wesley, Boston (2004) 

2. Astels, D.: Test-Driven Development: A Practical Guide. Prentice Hall, Upper Saddle 
River (2003) 

3.  Beck, K.: Aim, fire. IEEE Software 18(5), 87--89 (2001) 
4.  Beck, K.: Test-Driven Development By Example. Addison-Wesley, Boston (2003) 
5.  Boehm, B., Turner, R.: Balancing Agility and Discipline - A Guide for the Perplexed. 

Addison-Wesley (2004) 
6.  Stephens, M., Rosenberg, D.: Extreme Programming Refactored: The Case Against XP. 

Apress, Berkeley (2003) 
7.  Siniaalto, M., Abrahamsson, P.; A Comparative Case Study on the Impact of Test-Driven 

Development on Program Design and Test Coverage. In: First International Symposium on 
Empirical Software Engineering and Measurement (ESEM 2007), pp. 275--284, IEEE 
Press, New York (2007)  

8.  Chidamber, S. R., Kemerer C. F.: A metrics Suite for Object Oriented Design, IEEE 
Trans.Software Eng. 20(6), 476--493 (1994) 

9.  McCabe, T.J.: A Complexity Measure. IEEE Trans.Software Eng. 2(4), 308--320 (1976) 
10. Martin, R.C.: Agile Software Development: Principles, Patterns, and Practices. Pearson 

Education, Upper Saddle River (2003) 
11. Janzen, D.S. and Saiedian, H: On the Influence of Test-Driven Development on Software 

Design. In: 19th Conference on Software Engineering Education and Training (CSEET'06), 
pp. 141--148. IEEE Press, New York (2006) 

12. Kaufmann, R., Janzen, D: Implications of Test-Driven Development A Pilot Study. In: 18th 
Annual ACM Conference on Object-Oriented Programming, Systems, Languages and 
Applications (OOPSLA'03), pp. 298-299. ACM, New York (2003)  

13. Steinberg, D.H.: The effect of unit tests on entry points, coupling and cohesion in an 
introductory Java programming course. XP Universe (2001)  

14. Müller, M.M.: The Effect of Test-Driven Development on Program Code. In: 
Abrahamsson, P., Marchesi, M., Succi, G. (eds.) XP 2006. LNCS, vol. 4044, pp. 94--103. 
Springer Berlin, Heidelberg (2006) 

15. Basili, V.R., Melo, W.L.: A validation of Object-Oriented Design Metrics as Quality 
Indicators. IEEE Trans.Software Eng. 22(10), 751-761 (1996) 



      Maria Siniaalto, Pekka Abrahamsson 

16. Henderson-Sellers, B.: Object-Oriented Metrics: Measures of Complexity. Prentice Hall, 
Upper Saddle River (1996) 

17. Shepperd, M.: A critique of cyclomatic complexity as a softwaremetric. Software 
Engineering Journal (1988)  

18. Salo, O., Abrahamsson, P.: Empirical Evaluation of Agile Software Development: The 
Controlled Case Study Approach. In: Bomarius, F. Iida, H. (Eds.) PROFES 2004. LNCS, 
vol. 3009, pp. 408--423. Springer Berlin, Heidelberg (2004) 

19. Ihme, T., Abrahamsson, P.: Agile Architecting: The Use of Architectural Patterns in Mobile 
Java Applications. International Journal of Agile Manufacturing 8(2), 97--112 (2005) 

20. Höst, M., Regnell, B., Wohlin, C.: Using Students as Subjects—A Comparative Study of 
Students and Professionals in Lead-Time Impact Assessment. Empirical Software 
Engineering 5(3), 201--214 (2000) 

21. Runeson, P.: Using students as Experiment Subjects - An Analysis of Graduate and 
Freshmen Student Data. Empirical Assessment in Software Engineering (EASE'03), (2003).  



Does Test-Driven Development Improve the Program Code?       

Appendix 1a: The Results of Traditional Metrics 



      Maria Siniaalto, Pekka Abrahamsson 

Appendix 1b: The Results of Traditional Metrics



Does Test-Driven Development Improve the Program Code?       

Appendix 2: The Results of Dependency Management Metrics 

 

 

 


