Does Test-Driven Development Improve
the Program Code?
Alarming Results from a Compar ative Case Study

Maria Siniaaltoand Pekka Abrahamsson

F-Secure Oyj,
Elektroniikkatie 3FIN-90570 Oulu, Finland
Maria.Siniaalto@f-secure.com

2VTT Technical Research Centre of Finland,
P.0O.Box 1100, FIN-90571 Oulu, Finland
Pekka.Abrahamsson@vitt.fi

Abstract. It is suggested that test-driven development (TBB@ne of the most
fundamental practices in agile software developmehich produces loosely
coupled and highly cohesive code. However, how TB¥® impacts on the
structure of the program code have not been wistelgtied. This paper presents
the results from a comparative case study of fimeals scale software
development projects where the effect of TDD ongpan design was studied
using both traditional and package level metridse Empirical results reveal
that an unwanted side effect can be that some phtte code may deteriorate.
In addition, the differences in the program codsween TDD and the iterative
test-last development, were not as clear as exghetles raises the question as
to whether the possible benefits of TDD are greatean the possible
downsides. Moreover, it additionally questions \ileetthe same benefits could
be achieved just by emphasizing unit-level tessatiyities.

Keywords: Test-Driven Development, Test-first Programming; stfrst
Development, Agile Software Development, SoftwatalQy.

1 Introduction

Test-driven development (TDD) is one of the coerrents of Extreme Programming
(XP) method [1]. The use of the TDD is said to gfiskveral benefits. It is claimed to
improve test coverage [2] and to produce looselypted and highly cohesive

systems [3]. It is also believed to encourage thpléementation scope to be more
explicit [3] and to enable more frequent integmatigl]. On the other hand, it is

claimed that rapid changes may cause expensivé&dgean tests and that the lack of
application or testing skills may produce inadequast coverage [5]. TDD has also
received criticism over not being very suitable fystems such as multithreaded
applications or security software, since it canmeichanically demonstrate that their
goals have been met [6]. However, the scientifigpigical evidence behind all of

Maria Siniaalto, Pekka Abrahamsson

these claims is currently sparse, and thus it iicdit to draw meaningful
conclusions. The studies dealing with TDD have tyaifocused on developer
productivity and external code quality, whereas TR¥D'’s impacts on program code
have received less attention. The existing empiggaence supports the claim that
TDD vyields improved external quality (see a recamnmary of the TDD studies in
[7]). However, it is not clear what has been thedtiae for the comparison in those
studies, e.g. did any unit level tests exist presig? The results of the studies, which
address TDD's design impact, are presented in@&e2tin more detail.

Despite the lack of solid empirical evidence, btith industry and academia are
keenly adopting test-driven development approachis.purpose of this study is to
investigate whether and how the structure of tleg@am code changes or improves
with the use of TDD. Five semi-industrial softwatevelopment projects, containing
both students and professionals as research ssibjeste involved in the comparison
of TDD and iterative test-last (ITL) approaches.olef the projects used iterative
test-last (ITL) development technique and threézetli TDD. The metrics used for
evaluating the code are the traditional and widelgd suite of Chidamber and
Kemerer (CK-metrics) [8] strengthened with McCabgyslomatic complexity metric
[9]. To obtain a balance, the dependency managemeirics proposed by Martin
[10] for studying the code’s package structure,ererosen as well.

The results of this study partially contradict therent literature. In particular, the
case empirical evidence shows that TDD does notdwep all the areas of the
program design as expected. The results imply TRdd may produce less complex
code, but on the other hand, the package struchag become more difficult to
change and maintain.

The remainder of the paper is organized as folldwgshe following section, the
related work will be introduced. This is followed lan introduction to the metrics
used to study the impact of TDD on program stretuBection 4 presents the
empirical results, outlines the research designd use complete the study in a
scientifically valid manner as well as detailingetithreats to the validity of the
empirical results. Section 5 discusses the nowdlthe results in the light of existing
studies and identifies the implications of the pre#ed results. The conclusion section
summarizes the principal results and proposesdtenpal future research avenues.

2 Related Work

In this section, the existing empirical evidencetioa TDD’s impact on the program
design is presented. A total of five studies iduded.

Janzen and Saiedian [11] compared the TDD and The approaches using
students as research subjects. They calculatedasestauctural and object-oriented
metrics in order to evaluate the differences inithiernal quality of the software. As
most of these results were within acceptable limiteere were some concerns
regarding the complexity and coupling in the TDRieo

Kaufmann and Janzen [12] conducted a controlleceex@nt with students as
research subjects comparing the design qualitijpatés of the TDD and the test-last
approaches (whether the test-last was used itehatig not known). The design

Does Test-Driven Development Improve the Programeo

quality was assessed with several structural ajectbriented metrics. They did not
find any differences in the code complexities, by report that there were
indications that the design quality of the TDD cadss superior. However, they also
admit that this finding may be due to the bettergoamming skills of the subjects
applying the TDD.

Steinberg [13] reports on the findings of the ukarot testing in the TDD style in
an XP study group. Although, Steinberg concentratesliscussing the results from
an educational point of view, his study also pregid¢doncrete experiences about the
effects of the novel use of TDD and is therebyudeld in this study. He notices that
the students tended to write more cohesive codenwseng TDD and the coupling
was looser, since the objects had more clearlynddfresponsibilities. Evidence to
support these last two claims was not provided,ehvan

In our initial study [7], we explored the effect ®DD on program design in semi-
industrial setting comparing two ITL and one TDbjects. The design impact was
evaluated using traditional object-oriented metriEke initial results indicated that
TDD does not always produce highly cohesive codmvéVer, we concluded that the
cohesion results might have been affected by thetfat all the developers in the
TDD project were less experienced when comparedh#o subjects in the ITL
projects.

Mdller [14] studied the effect of test-driven demgient on program code. He
included five TDD software systems of which threerev student projects and
compared them with three open source-based cowvahtisoftware systems. He
assessed the impact of TDD on the resulting cotte @lhidamber and Kemerer's [8]
object-oriented metric suite and his own newly deped metric called assignment
controllability. Miller reports that CK-metrics ditbt show any impact on the use of
TDD but that the new assignment controllability neeshowed a difference i.e. the
number of methods where all assignments are coetplebntrollable is higher for
systems developed by TDD.

3 Metricsto Study Changesin Program Structure

The demand for quality software has resulted iargd set of different metrics some
of which have been validated and some have notyMé&these metrics have been a
subject of criticism and their empirical validity$ been questioned. There is an on-
going debate on which metrics are the best indisatd the software quality and
whether some particular metric even maps to thditguattribute it is supposed to
represent. However, in many cases the authorsngiegehe criticism have not been
able to propose a metric that would have solvedptbblem and would thereby have
been widely adopted. Due to these reasons, wetwismphasize that the aim of this
study is not to validate or comment on the validifyany particular metric. The aim is
to study whether and how TDD affects the code &hdtructure, and therefore both
traditional and novel metrics were chosen for #higly.

Maria Siniaalto, Pekka Abrahamsson

3.1 Traditional Metrics

The object-oriented metric suite, proposed by Qhider and Kemerer [8], and
McCabe’s Cyclomatic complexity [9], were chosen teaditional representatives
since they have been and still are widely used.n@rics, validated in [15], measure
the different aspects of object-oriented constriitte suite contains six individual
metrics: weighted methods per class (WMC), deptimioéritance tree (DIT), number
of children (NOC), coupling between objects (CB@)sponse for a class (RFC) and
lack of cohesion in methods (LCOM). The suite waergthened with Henderson-
Sellers’s lack of cohesion (LCOM?*) [16. McCabe’gatomatic complexity measures
the number of independent paths through a programiuta, and it is proposed to
profile system’s testability and maintainabilitylthough it is one of the most used
and accepted of the static software metrics, itdhes received criticism e.g. [17].
WMC measures the number of methods in a classtasgioposed to predict how
much time and effort is required to maintain thassl DIT measures the depth of
each class within its hierarchy, and its resultvghdiow many ancestor classes can
potentially affect this class. NOC presents the emof subclasses for each class.
CBO presents the number of classes to which thes ¢gtacoupled and it can be used
as an indicator of whether the class hierarchpsgp its integrity. RFC presents the
number of methods that can be executed in responaemessage to the class. It is
proposed as an indicator of the complexity andirngseffort. LCOM assesses the
similarity of the class methods by comparing tlhestance variable use pairwise. It is
proposed to identify classes that are likely todwehin a less predictable way,
because they are trying to achieve many differdajéatives. The biggest flaws of
LCOM are that it indicates a lack of cohesion ontyen fewer than half of the paired
methods use the same instance variables and thehfsica zero value does not
necessarily indicate good cohesion, though a laayige suggests poor cohesion [15,
16]. LCOM* measures the correlation between thehow$ and the local instance
variables of a class. A low value of LCOM* indicatlbigh cohesion and a well-
designed class. A cohesive class tends to providghadegree of encapsulation.

3.2 Dependency Management Metrics

The dependency management metrics proposed by rM@tl] measure and
characterize the dependency structure of the paskathe suite includes: afferent
coupling (G), efferent coupling (g, instability (1), abstractness (A) and normalized
distance from the main sequence (D’).cBunts the number of classes outside the
package that depend on the classes inside the gamelales ¢ counts the number of
classes inside the package that depend on theeslassside the package. These two
values are used when the instability (1) of theka@e is assessed. It has a specific
range [0,1] with value O indicating a maximal sh#ypiand value 1 indicating
maximal instability, i.e. no other package depeodghis package. A package with
lots of incoming dependencies is regarded as sthblause it requires a lot of work
to reconcile the possible changes with all the ddpat packages. The abstractness is

Does Test-Driven Development Improve the Programeo

simply measured by the ratio of abstract classes lackage to the total number of
classes in a package.

Martin proposes that the package should be asa@bsis it is stable so that the
stability does not prevent the class from beingrdéd. The main sequence presents
this ideal ratio of stability and abstractness. Bigresents the main sequence and the
zones of exclusion around (0,0) and (1,1). Packdgedfall into the zone of pain are
very difficult to change because they are extrenséble and cannot be extended
since they are not abstract. The zone of uselessoegains packages that are abstract
enough but useless since they have no dependémakckages that remain near the
main sequence are considered to balance theimabstss and instability well. D’ has
the range [0,1] and it indicates how far a packageom this main sequence. Value 0
indicates that the package is directly on the nsaiquence whereas value 1 indicates
that it is as far away as possible.

0,1) (1,1)

(0,0) (1,0)

Fig. 1. Distance from the main sequence. [10]

4 Empirical Resultsfrom a Comparative Case Study

The comparative empirical evaluation of TDD in fivmall scale software
development case studies aims at exploring thectsffief TDD on program codes.
The layout of the research design for the studygrésented first and is followed by
the empirical results. The threats to validity @inen identified and subsequently
addressed.

4.1 Research Design

The research method for the three case projetk®isontrolled case study approach
[18], which combines aspects of experiments, casties and action research. It is
especially designed for studying agile methodolegend it involves conducting a

project with a business priority of delivering anftioning end product to a customer,
in close-to-industry settings. At the same time, theasurement data is collected for

Maria Siniaalto, Pekka Abrahamsson

rapid feedback, process improvement and researghopes. The development is
performed in controlled settings and may involvehbstudents and professionals as
developers.

All the case projects had the aim of delivery afaamcrete software product to a
real customer. Two of the projects used ITL develept and three utilized TDD:
Every project team worked in a shared co-locateceldpment environment during
the project. The projects were not simultaneous.thfd projects continued for nine
weeks and followed an agile software developmerthate Mobile-D™ [19], which
provided a coherent framework for this study to pame ITL and TDD. Mobile-D™
is an agile method, which is empirically compose¢eroa series of software
development projects in 2003-2006. The method sethaon two-month production
rhythm, which is divided in five sub phases. Eatthe sub phases takes from one to
two weeks in calendar time. These phases are cafiedp, core functionality one,
core functionality two, stabilize and wrap-up &aate. Mobile-D™ adopts most of
the Extreme Programming practices, Scrum manageprastices and RUP phases
for life-cycle coverage. The method is described pattern-format and can be
downloaded fromhttp://aqgile.vtt.fi The code development took place in controlled
settings using the same Mobile-D™ practices irthadl projects. The only difference
was that projects 1 and 2 used ITL and projectd 3and 5 used TDD. The
implementations were realized with Java programniamguage. The difficulty of
implementation was at the same level in all thgquts, as they all were quite simple
systems whose main functionalities were to enahta storing and retrieving.

Table 1 provides a summary of the parts of theeutsj of which they are not
convergent to each other.

Table 1. Summary of the case projects.

Case 1 Case 2 Case 3 Case 1 Case §
of developers 4 5 4 2 2
Developer type S S S P S
Dev. technique ITL ITL TDD TDD TDD
Iterations 6 6 6 4 4
Product type Intranet Mobile Intranet Internet | Intranet
Total Product size | 7700 7000 5800 5000 8900 (3100
(LOC) new)

The development teams of the projects 1, 2, 3 armzbrisisted of 58 year
Master’s students. All the team members in projécend 2, which used ITL, had
some industrial coding experience, while only oh¢he developers in project 3 and
none of the developers in project 5, which bothduEBD, had previously worked in
industrial settings. However, all the subjects injgct 3 and 5 were either Software
Engineering graduates or had a personal intergstoigramming. The team members
in case project 4, which also used TDD, were psifesl, experienced developers
whose normal daily work includes teaching and dmwalent assignments in
academic settings. The developers were told andueaged to write tests in all the
projects regardless of the development techniqeel.us addition, in projects 3, 4

1 8= Student, P= Professional

Does Test-Driven Development Improve the Programeo

and 5 the use of TDD was stated as mandatory. nettrapplications were

implemented in projects 1, 3 and 5: in project d ftanaging research data and in
projects 3 and 5 for project management purposase @roject 5 was a follow-up of
case project 3. All the systems consisted of sesider and graphical user interface. A
stock market browsing system to be used via matéeice was implemented in

project 2. The biggest part concentrated on theeseside and the mobile part mainly
handled connecting to the server and presenting rdtdeved data. Internet

application for information storing was realized pnoject 4. The implementation

contained a server side and a graphical user a&uerfHowever, to make the
comparison of TDD and ITL even, graphical userriiatges and the mobile client
application part in project 2 were excluded froma @valuation.

4.2 Results

The results of the traditional and dependency mamagt metrics are presented in
the following subsections. These results are dgailisn more detail in section 5.

4.2.1 Traditional Metrics

The results of the traditional metrics are preserite Appendix 1a and 1b. The
significance of the differences between TDD and \ildre evaluated using the Mann-
Whitney U-test (Table 2). WMC, RFC and McCabe’s logtatic complexity were
used to assess the complexity of the code in thi/sThe WMC values do not differ
significantly between the development approacheigevthe RFC values seem to be
lower with TDD. The U-test confirms this distinatioas statistically significant
(p<0.05). The McCabe’s cyclomatic complexity reswte also lower with TDD and
are supported by statistical analysis as well.

The inheritance was studied using DIT and NOC. DhE values are higher in
cases in which TDD was used. This difference iistieally significant. The results
of NOC cannot make any difference between the deweént methods and they are
quite surprising, as there are only a few outliierseach case.

The coupling was measured using CBO metric. Thalteesdo not differ
significantly between the development methods uaed,the values are fairly low in
all the cases.

The LCOM of CK-suite and LCOM* by Henderson-Sellarere used to find out
the cohesion characteristics of the code. The malg.COM does not reveal any
differences whereas the new LCOM* seem to be higherDD cases, though the
difference is not statistically significant.

Table 2. Mann-Whitney p-values for the results of the ttiadial metrics.

Cyclomatic
WMC | DIT NOC RFC CBO LCOM | Complexity | LCOM*
p 0,389 | 0,001 | 0,396 | 0,018 | 0,678 | 0,535 0.000 0,061

2 The values where the difference is statisticatipificant are presented in bold.

Maria Siniaalto, Pekka Abrahamsson

4.2.2 Dependency Management Metrics

The measures of the dependency management mateigresented in Appendix 2.
The AC value is much higher in the TDD cases 3 mmdeaning that there are more
classes outside the package that depend on thseslasside the package. Case 4
presents an exception to that, and therefore ih@abe concluded that TDD would
produce code with high afferent coupling. The EQuea of all TDD cases are
significantly lower than the corresponding ITL caseneaning that in TDD cases
there are fewer classes inside the package thandepn the classes outside the
package. The instability results show that the pgekstructure of TDD code is more
stable than the ITL code. This means that the I'actkages are less dependent on
other packages. The measure of abstractness gweslaht indications that TDD
may produce packages with a higher level of abtrac The results of the
normalized distance from the main sequence clehiffigr between the ITL and TDD
cases. Fig. 2 presents the scatter plot of thegumskcase-wise. The packages in the
TDD code seem to come closer to the zone of pasning that they are more stable
but yet not abstract. However, it should be notiteat the number of packages is
much smaller in the ITL cases and that can obwjobisis these results.

Distance from the Main

Sequence
1,0 O Casel
0 Case2
4 Case3
» Cased
0,87 & CaseS
0,6—
A 0,47
»
0,2 -«
AN
&
0,0 Z3«q »> > O

| | | I I |
00 02 04 06 08 1,0

I

Fig. 2. The distance from the main sequence.

Does Test-Driven Development Improve the Programeo

4.3 Threatsto Validity

The interpretation of results is always more compliien students are used as study
subjects. However, the development environment exgdicitly designed to relate
closely to that of an industrial development settiwith strict time-to-market
pressures, regular working hours and, significantthe developers were
implementing a real product to be delivered to al rustomer. Host [20] and
Runeson [21] suggest that students may providedaguate model of professionals
as similar improvement trends may be identifiedMeetn both groups. In addition, in
industry, teams usually have a mixed set of expede and skills. The teams in the
case projects included in this study representsandar mix. In addition one TDD
team consisted of professional developers onlhimgtudy.

The differences between product types and congglpite a threat to internal
validity of this study. We excluded graphical useterfaces and the mobile client
application part in case 2 to keep the comparisbithe projects even. We also
proceed in the belief that all product implememwtasi present a similar level of
difficulty, as the basic functionality in all thegsgems was simple data storage and
retrieval, which was realized using a model-viewtcoller structure. The fact, that
project 5 is a follow-up of project 3, can somewbés the results. However, in
project 5, the implementation concentrated on Mptakw functionalities and the
amount of new code is significant in proportiorttie total size of the code.

To control the subjects’ conformance to implemdre tests and to use TDD
correctly a person responsible for testing was eped in all the projects. That
person’s responsibilities included monitoring thesting implementation. The
developers were not aware that the program desigs @ be compared as the
measurements were compiled after the project endimghich reduces possible
observation effects. Another limitation relatesthe size of the software product as
well as the distribution of the project work. Afie case projects had less than 10 000
lines of code, their development took around 108&@n hours and a single team in
one location developed the products. The impactTBD on program design,
however, should be visible from the very start #reteby present in all of the studied
projects.

5 Discussion

The traditional metrics indicated statistically réfgcant differences in DIT, RFC and
cyclomatic complexity. These findings partly coulicd the findings of Miller [14]
and Janzen and Saiedian [11]: Mdller reports thais study, none of the CK-metrics
showed differences between the development appesagked, whereas Janzen and
Saiedian noticed that the cyclomatic complexity wasse with TDD. Even though
DIT was increased with TDD and the difference statally significant, it should be
noted that the level of inheritance was very lovalinthe cases included in this study
regardless of the development approach used. Tdrereft is too early to draw
conclusions that TDD encourages to greater usehafritance. In addition, the target

Maria Siniaalto, Pekka Abrahamsson

programs were quite small in all the cases regultira limited code base, which may
be one reason for the low inheritance.

Both, the RFC and cyclomatic complexity, were lowegth TDD which may
indicate that TDD helps produce less complex ctd#his context, it should be noted
that the corresponding values for ITL cases werepomr- TDD values just were
slightly better. Other traditional metrics did notveal statistically significant
differences. Although the medians of LCOM* resultere higher, the statistical
significance of this difference is not high accoglto the U-test.

The results of the dependency management metrilisate that TDD may cause
the software packages to become more stable. Hudtgémply that TDD produces
fewer classes inside the package that depend otlabses outside the package. This
affects the instability result meaning that TDD q¢woes more packages that are not
dependent on other packages but have many depsendenan be argued that this
makes them more difficult to altea posteriori. On the other hand, the high
dependency on other packages and the lack of deptnds not desirable either,
because it could cause the packages to change eusiy. The measure of
abstractness gives only slight indications that TBRy produce packages with a
higher level of abstraction, although the differene not significant. The normalized
distance from the main sequence, which measuresrdtie of instability and
abstractness, differed clearly from the proposeshlidatio, as it indicated that the
TDD packages are too stable in proportion to thbstractness. Both these findings
lead us to conclude that the package structurbeotdde produced with TDD may be
difficult to change and maintain, because it i®ljkto be concrete and have many
dependents. This finding contradicts the claimshim literature. On the other hand,
the number of packages was clearly higher in tlse<én which TDD was used, and
is likely to affect the results. i.e. in the ITLses, there were only two packages in
both, while in the TDD cases the corresponding esilwere 4, 8 and 4. Case 5 is
based on the “legacy” code of the case 3, andishfmobably one reason for the
similarity between the results of these two castmwever, these findings indicate
that TDD may result in a greater number of packalyasare very concrete in relation
to their stability. The fact that the results wemmilar in all the TDD cases regardless
of the professionalism and developers’ experiea@dso significant.

6 Conclusion

Test-driven development is claimed to be one ofmlost important practices of agile
development, and to address many problems at difeecurrent empirical research
has mainly focused on exploring the external guaftects of TDD. Despite the fact
that very little is known about its internal qugl#ffects, academia and industry are
eagerly adopting the practice. This study aimsatrébuting to the empirical body of
knowledge by examining the effect of TDD on progrdesign.

We studied the effect of TDD in five different seétre projects with students and
professionals as research subjects. The resalgdersome warning that the benefits
of TDD are not automatic and as self-evident azetqd. Some of the findings imply
that TDD may produce a less complex code whilerdihdings indicate the opposite

Does Test-Driven Development Improve the Programeo

as there are indications that TDD may produce mpekstructures that are more
difficult to change. The existing empirical evidensupports the claim that TDD
yields improve external quality, especially whenpéoyed in an industrial context.
This finding clearly conflicts with the case studtich identifies certain risks in the
adoption of TDD. Therefore, the present authorgywhether the reported external
quality benefits can be achieved with a more tiawiél approach to unit-level testing
or whether they are really due to TDD itself. Weeird to use the results of this study
as a baseline for further empirical studies, witipexienced developers employing
TDD in industrial settings. Our aim is to incregdbe understanding of test-driven
development in different real-life development isgs and thereby contribute to the
growing body of evidence in the area of agile safevdevelopment in general and
test-driven development in particular. We maintiat whether TDD ultimately
improves program design, remains to be answered.

References

1. Beck, K.: Extreme Programming Explained, Secoddidh: Embrace Change. Addison-
Wesley, Boston (2004)

2. Astels, D.: Test-Driven Development: A Practi@lide. Prentice Hall, Upper Saddle
River (2003)

3. Beck, K.: Aim, fire. IEEE Software 18(5), 87--88001)

4. Beck, K.: Test-Driven Development By Example. &da-Wesley, Boston (2003)

5. Boehm, B., Turner, R.: Balancing Agility and Diditip - A Guide for the Perplexed.
Addison-Wesley (2004)

6. Stephens, M., Rosenberg, D.: Extreme ProgramimRiefactored: The Case Against XP.
Apress, Berkeley (2003)

7. Siniaalto, M., Abrahamsson, P.; A ComparativeeCasidy on the Impact of Test-Driven
Development on Program Design and Test Coverag€.irst: International Symposium on
Empirical Software Engineering and Measurement (8SED07), pp. 275--284, |IEEE
Press, New York (2007)

8. Chidamber, S. R., Kemerer C. F.: A metrics Suite @bject Oriented Design, IEEE
Trans.Software Eng. 20(6), 476--493 (1994)

9. McCabe, T.J.: A Complexity Measure. IEEE Tranfivgre Eng. 2(4), 308--320 (1976)

10. Martin, R.C.: Agile Software Development: Prsies, Patterns, and Practices. Pearson
Education, Upper Saddle River (2003)

11. Janzen, D.S. and Saiedian, H: On the InfluaficBest-Driven Development on Software
Design. In: 19th Conference on Software Engineefidgcation and Training (CSEET'06),
pp. 141--148. IEEE Press, New York (2006)

12. Kaufmann, R., Janzen, D: Implications of Test«&r Development A Pilot Study. In: 18th
Annual ACM Conference on Object-Oriented ProgrammiSgstems, Languages and
Applications (OOPSLA'03), pp. 298-299. ACM, New Ydg2003)

13. Steinberg, D.H.: The effect of unit tests orremoints, coupling and cohesion in an
introductory Java programming course. XP UniveBg9()

14. Miller, M.M.: The Effect of Test-Driven Develognt on Program Code. In:
Abrahamsson, P., Marchesi, M., Succi, G. (eds.)2886. LNCS, vol. 4044, pp. 94--103.
Springer Berlin, Heidelberg (2006)

15. Basili, V.R., Melo, W.L.: A validation of Obje@iented Design Metrics as Quality
Indicators. IEEE Trans.Software Eng. 22(10), 751-{96)

Maria Siniaalto, Pekka Abrahamsson

16. Henderson-Sellers, B.: Object-Oriented MetrMgasures of Complexity. Prentice Hall,
Upper Saddle River (1996)

17. Shepperd, M.: A critique of cyclomatic comptgxias a softwaremetric. Software
Engineering Journal (1988)

18. Salo, O., Abrahamsson, P.: Empirical Evaluattbrigile Software Development: The
Controlled Case Study Approach. In: Bomarius, F.,lida(Eds.) PROFES 2004. LNCS,
vol. 3009, pp. 408--423. Springer Berlin, Heidelbg04)

19. Ihme, T., Abrahamsson, P.: Agile Architectiige Use of Architectural Patterns in Mobile
Java Applications. International Journal of Agilehifacturing 8(2), 97--112 (2005)

20. Host, M., Regnell, B., Wohlin, C.: Using StudeassSubjects—A Comparative Study of
Students and Professionals in Lead-Time Impact gsssent. Empirical Software
Engineering 5(3), 201--214 (2000)

21. Runeson, P.: Using students as Experiment Ssbje@n Analysis of Graduate and
Freshmen Student Data. Empirical Assessment im@odtEngineering (EASE'03), (2003).

Does Test-Driven Development Improve the Programeo

Appendix la: The Results of Traditional Metrics

Weighted Methods per Class

Depth of Inheritance Tree

3.0
=]
40—
2.5
2.0 * *
207
B
é é 1.5
0 1.04 - —
I I I I I I I T I I
Casel Case2 Cased Cased CaseS Casel Case? Cased Cased Casel
Number of Children Response for a Class
107 * 200
8
150
&6
* 100
o0
41— «
* o
50 é g
2 * é
0 - - - - - 0
I I I I I I I T T I
Casel Case2 Cased Cased CaseS Casel Case2 Case3 Cased Cased

Maria Siniaalto, Pekka Abrahamsson

Appendix 1b: The Results of Traditional Metrics

Coupling between Object Classes

20
15—

10—

J D

I I I I T
Casel Case2 Casel Cased CaseS

McCabe's Cyclomatic Complexity

25 *

15

10

o

*

Séﬁégé

Lack of Cohesion in Methods

*

10007
800 *
600

400

200
o é SO

Eo ¥

[k o=

I I T T I
Casel Case? Cased Cased Cased

Lack of Cohesion in Methods *
1.0 J J
0.8 l l
0.6

047

00 &= 0 ==

T T I I T
Casel Case2 Cased Cased CaseS

I I T I I
Casel Case? Cased Cased Casel

Does Test-Driven Development Improve the Programeo

Appendix 2: The Results of Dependency Management Metrics

Afferent Coupling Abstractness
0,30
40— 0,25
X 0,20
0,15
20—
0,10
il g 5 ﬁ
0 0,00 -
T I I T I I I I I T
Casel Case2 Case3 Cased Cased Casel Case2 Case3 Cased Cased
Efferent Coupling Instability
1,0
14—
12 0,87
a
10—
0,6
8
6 0,4—
4
0,27
2—
0 0.0
T I I T I T I I T T
Casel Case2 Case3 Cased CaseS Casel Case2 Case3 Cased CaseS

Normalized Distance from the Main Sequence

1,0
0,87
0,67
0,47

0,27

0,0 o
[I I I [
Casel Case2 Case3 Cased CaseS

