
Formalisms in Software Engineering -
Myths versus Empirical Facts

Dieter Rombach and Frank Seelisch
[dieter.rombach, frank.seelisch]@iese.fraunhofer.de

Fraunhofer Institute for Experimental Software Engineering

Abstract. The importance of software grows in all sectors of industry
and all aspects of life. Given this high dependability on software, the
status of software engineering is less than satisfactory. Accidents, recall
actions, and late projects still make the news every day. Many of the
software engineering research results do not make it into practice, and
thereby the gap between research and practice widens constantly. The
reasons for not making it into practice range from isufficient commit-
ment for professionalization of software development on the industrial
side, to insufficient consideration for practical scale-up issues on the re-
search side, and a tremendous lack of empirical evidence regarding the
benefits and limitations of new software engineering methods and tools
on both sides. The major focus of this paper is to motivate the creation
of credible evidence which in turn will allow for less risky introduction of
new software engineering approaches into practice. In order to overcome
this progress hindering lack of evidence, both research and practice have
to change their paradigms. Research needs to complement each promis-
ing new software engineering approach with credible empirical evidence
from in vitro controlled experiments and case studies; industry needs to
baseline its current state of the practice quantitatively, and needs to con-
duct in vitro studies of new approaches in order to identify their benefits
and limitations in certain industrial contexts.

Keywords: computer science, [empirical] software engineering, software
development, empiricism, empirical evidence

1 Introduction

Software plays an ever increasing role in all aspects of our lives. The mere
amount of code embedded in modern, highly integrated products should
mandate that the development of software follow widely agreed principles.
Furthermore, these principles ought to ensure quality goals that have been
specified in advance. The function of software in life supporting systems
as well as in numerous standard applications which allow to perform busi-
ness processes more efficiently, proves that software has become vital in
all respects.



However, we witness serious system failures resulting from faulty soft-
ware, sometimes with tremendous consequences: People die, assets are
being lost, and products need to be recalled by renowned OEMs. Soft-
ware engineering today, seen as a practically highly relevant engineering
discipline, is not mature enough considering the role it plays.
Likewise, the relationship between computer science and software engi-
neering needs to be stated more precisely and lived, so that theoretical
research in computer science can be translated into practical methods
and procedures that can be utilized by software engineers in software de-
velopment projects.

The major claim of this work is that typical shortcomings in the practical
work of software engineers as we witness them today, result from missing
or unacknowledged empirical facts. Discovering facts by empirical studies
is the only way to gain insights in how software development projects
should be run best, i.e., insights in the discipline of software engineering.
Empirical facts will in turn motivate computer science research.

This paper is organized as follows. The following Chap. 2 discusses the
role of software in industry and society, and adds an economic standpoint.
How do companies estimate the importance of software for their business?
What are proven economic guidelines for realizing software development
projects?
Chapter 3 summarizes the typical practical problems resulting from im-
mature software engineering, and identifies the shortcomings of software
engineering in practice. It comes up with general explanations for the
problems we are currently confronted with when developing software in
critical settings, e.g., within tight schedules. Moreover, we argue that the
current situation is likely to become even more critical, as software sys-
tems become more and more complex.
Having detailed practical problems of software engineering, Chap. 4 ad-
dresses the possible solutions to these problems offered by research. Start-
ing with general principles of computer science we go top-down towards
software engineering as its practical toolbox for developing software, and
finally to the most important ingredient of software engineering: empiri-
cal facts.
Chapter 5 illustrates the need for more empirical software engineering,
both generally and by means of the concrete example of the special in-
spection technique reading.
We close with an outlook on next steps.



2 The Role of Software in Industry

In the previous section, the spectrum of common problems due to software
failures has been detailed. From an economic standpoint, these problems
imply direct costs as well as great efforts for repairing, fitting, bug-fixing
and necessary changes in software versions, products, and processes. In
order to save precious resources, companies need to enforce the usage of
best practice methods and procedures of software engineering.

On the other hand, software engineering has been offering and still offers
completely new ways for developing products.

2.1 Software as Driver for Innovation

Due to its enabling role, software has become a major factor in today’s
industry. Industrial leaders in the automotive business, in the field of
medical devices, and logistics estimate that 80% of all innovation is di-
rectly triggered by software.
However, most non-IT companies do not reflect these estimates in their
organizational structure: Software is important but IT sub-organizations
currently do not seem to be. It is a common model to have these sub-
organizations raise their funds within the company instead of being given
basic funding.
We expect that this organizational setup adds to the current problems
in ongoing software projects, as strategic planning cannot be sufficiently
considered.

2.2 Economic Aspects of Software Development

In the context of globalization, industrial companies focus more than ever
on the goal parameters quality, cost, and time to market. Especially qual-
ity promises to offer better chances to establish unique selling propositions
in the lucrative upper market segments. For most Western economies, this
may offer a way to legitimate the much higher level of salaries compared
to Asian economies.
In terms of software engineering, this means that development projects
will also primarily be managed and steered by these parameters. And es-
pecially concerning the parameter time to market companies face a clas-
sical trade-off: Is it more important to deliver a new software version fast,
while taking into account that more effort will have to be spent on bug-
fixing? Or, is it the goal of the company to minimize costs over the entire



software life cylce?

According to a model for business development by Stalk, Evans and Shul-
man [1] companies need to adher to the following, very roughly sketched
strategic roadmap:

1. They need to be clear about their overall strategic goals.
2. They need to identify supporting business processes that guarantee

the given strategic goals.
3. They need to prioritize the most important sub-processes and contin-

ually invest into them.

In the context of software development, the business processes are soft-
ware development processes. The highest priority processes to be invested
into in the case of safety goals, could be design and verification processes.
Investment into a software engineering subprocess P means to invest into
the creation of empirical evidence regarding its effectiveness f with re-
spect to some goal G in the context of the given environment C. G could
be any one of the afore mentioned goals quality, cost, or time.

Thus, the challenge could be phrased as identifying the following function:

G == f(P,C), (1)

where ”==” stands for an empirically based relationship.

As a consequence of the processes defined under 2. and the selection made
under 3., a number of software development projects with management
attention will normally be started. Note that the above question whether
a software version should be delivered quickly or whether the company
should aim at minimizing total cost along the product life cycle, is not
answered by the above generic roadmap. From an IT perspective, this
decision has implications for software attributes such as adaptability and
sustainability: The former strategy will in general lead to a higher adapt-
ability, whereas the latter naturally leads to more sustainable software
solutions.

3 Practice of Software Engineering

3.1 Problems

Today’s software engineering practice is mainly characterized by the fol-
lowing two phenomena. Schedule and Budget Overrun: Taking a



closer look at software development projects in industrial settings re-
veals that schedule and budget overrun is not at all uncommon. In some
projects, rates of schedule overrun of up to 150% have been witnessed.

Safety Criticality: Besides these mere management obstacles, accidents
with sometimes dramatic consequences are a much more serious problem.
Generally speaking, here, software failures imply safety-critical situations
while handling products with embedded software, e.g., cars, trains, or
airplanes. Whenever serious safety problems had been detected, OEMs
had to recall their products, which typically results in a great loss of as-
sets both economically and in terms of company reputation and product
image.

3.2 Reasons for Current Problems

Non-Compliance with Best-Practice Principles of Software De-
velopment such as:

– encapsulation,
– information hiding,
– proven architectural patterns,
– traceability, e.g., diversion of documentation versus code over time.

The year 2000 problem (2YK) is a prominent example of poor encapsula-
tion and information hiding. Generally speaking, information hiding will
lead to small interfaces between program modules. This does not only
increase readability and manageability of code but also enables a poten-
tially higher reuse of these modules, most likely at a lower cost.

Non-Compliance with Best Practice Principles of Process De-
sign such as:

– review and inspection techniques for an earlier defect detection; see
[2] and Sect. 5.2,

– best practice process patterns,
– best practice process design tools, e.g., Waterfall or V-Model.

Non-Existence of Credible Evidence Regarding the Effects of
Methods and Tools, i.e.,

– missing empirical facts,
– missing context information,



Fig. 1. Relationship between Context Understanding and Predictive Capability

– missing certainty information.

In most problematic software development projects, teams will have to
deal with a combination of both kinds of non-compliance, and will addi-
tionally suffer from missing context information, or empirical facts.

Figure 1 refines formula (1) given in Sect. 2.2. It illustrates how the preci-
sion of the prediction of project development time T for a process model
P may depend on context C: Without any context knowledge, prediction
across projects may be off by as much as 150%; see [3]. By taking into
consideration parameters such as size of the system to be developed and
experience of the developers, one can reduce the variance significantly; in
many cases to a single-digit variance.

3.3 Future Trends & Challenges

The outlined current situation is not likely to improve by itself. Actually,
there are some trends which will most probably aggravate the setting.

Embedded Systems and Increasing Complexity: More and more
software is being embedded in life-supporting systems, e.g., medical de-
vices used in operation theatres. Software is key to realizing new functions
without including too many additional hardware components. Thereby,
systems are becoming more and more complex. We have begun to build
highly integrated systems of systems in which the same piece of software
implements more than just one system function.



Cross-Disciplinary Systems: Software systems find their way into do-
mains that have previously been dominated by classically engineered so-
lutions. Here, classical disciplines and software engineering already begin
to form new hybrid disciplines for which only few skilled engineers are
available.

Ubiquitious Computing and Ambient Intelligence: With ubiqui-
tious computing and ambient technologies we witness a miniaturization
combined with a remarkable multiplication of new, spontaneously con-
necting components. These concepts drive the development of highly flex-
ible, service oriented software architectures which ensure high degrees of
robustness.

Loss of Direct Control: Ubiquitious Computing and Ambient Intel-
ligence will also push the development of globally interconnected infor-
mation systems, and systems with autonomous control that are able to
spontaneously establish networks and reorganize themselves. The human
user will thus no longer be able to directly control these systems.

It is hard to forecast what in detail these trends are going to imply with
respect to the development of software.
Most likely, development standards will need to become more definite and
resilient, in order to ensure that software operate as specified and be safe,
secure, and trustworthy.

4 Research in Software Engineering

4.1 Computer Science & Software Engineering

Computer science is the well-established science of computers, algorithms,
programs, and data structures. Just like physics, its body of knowledge,
can be characterized by facts, laws, and theories. But, whereas physics
deals with natural laws of our physical world, computer science is a body
of cognitive laws; cf. [4]
Additionally, when software engineering deals with the creation of large
software artifacts, then its role is more similar to mechanical and electri-
cal engineering where the goal is to create large mechanical or electronic
artifacts.
Figure 2 shows the positioning of computer science and software engi-
neering in the landscape of sciences.

Each science provides a kernel set of principles that gives rise to a set of
practical methods for manipulating the world in one or the other useful



Fig. 2. Positioning Software Engineering in the Landscape of Sciences

way. For example, civil engineering methods including statics calculations
can be applied to build a bridge; here the kernel set of laws to do so cor-
rectly stems from mathematics and physics.
In this sense, software engineering can be seen as the analog set of meth-
ods for developing software, based on fundamental results from computer
science. For instance, research in computer science gave rise to functional
semantics. From that formal foundation, software engineering derived in-
spection techniques such as stepwise abstraction and cleanroom devel-
opment, and proved furthermore the practicability of these methods by
means of empirical studies.
Software engineering needs to be based upon formal foundations, but on
the other hand, pure computer science concepts are generally not applica-
ble in practice, e.g., due to algorithmic complexity.

4.2 Software Engineering Principles

Let’s take a look at a very general and powerful principle of computer
science:
If we need to solve a hard problem, we may try to partition it into smaller
subproblems for which we know how to solve them. The basic recursive
algorithm for this general pattern of divide and conquer is shown in Fig. 3.
(Problem partition and combination of partial solutions will of course
depend on the particular problem at hand.)

Divide and Conquer in Software Development Projects We also
use this divide and conquer principle when working in software devel-



solve problem(Problem p)
if algorithm available for(p) then

a ←− algorithm for(p)
s ←− apply algorithm(a, p)

else

{pi : i ∈ I} ←− partition of(p)
for each i ∈ I

si ←− solve problem(pi)

s ←− combine solutions({si i ∈ I})
end if

return s

Fig. 3. Divide and Conquer - Solving a Difficult Problem by Partitioning

opment projects: If the software development process is large, software
engineers typically try to partition it into subprocesses with well-defined
milestones.
If the task is to create a software product for performing a variety of
related business tasks, they attempt to partition the set of requirements
into subsets with small mutual overlap.

The following insights have been extracted from a series of experiments:

– In large projects with comparably low risk, e.g., due to available do-
main knowledge and an experienced project team (see Fig. 1), it is
best to use process-oriented development models, like e.g. the Water-
fall or V-Model.

– Is the project small but characterized by a high risk, e.g., due to
missing domain knowledge and thus the necessity to apply a general
approach, software engineers should apply product-oriented models,
e.g., agile development methods.

– Large projects with high risk resulting from tight deadlines and poor
domain knowledge are best run using product-oriented models, e.g.,
incremental development techniques.

(The fourth remaining case - small projects with low risk - are the ones
that normally pose few problems. Moreover, they are irrelevant for most
real-world settings.)

Only when the above software engineering principles will be adhered to,
software development teams will have a chance to manage software de-
velopment projects according to pre-defined budget and schedule.



4.3 Empirical Evidence

The key to success in software development projects is to define measure-
ments and consequently use them in order to be able to measure work
progress and detect failure or accomplishment in a rational and transpar-
ent manner.
That means that milestones in a development project need to be clearly
marked so that responsible and further involved people can determine at
any time whether they have been reached or not.
Note that having definitions and measures at one’s disposal does not au-
tomatically guarantee that they be used. Inforcing their usage must be
part of the project and can often only be accomplished by organizational
changes or even changes in the working culture. This, in turn, requires
top management commitment.

4.4 Evidence is Context-Dependent

The challenge in software engineering, as a practical standard method
and tool box for the development of complex software, is that most tasks
will typically have to deal with organizations and will have to address
human requirements of some kind. This has two concequences:

1. The methods will vary from organization to organization. Thus, soft-
ware engineering will depend on the environment in which it is being
applied; that is, it is context-sensitive; see again Fig. 1.

2. State of the art software engineering will change over time, as technical
progress takes place, and working culture evolves.

An important consequence of both items is that we need to clearly doc-
ument in what context C a software engineering method can be applied
with what result, that is, we need to document the nature of f in formula
(1) of Sect. 2.2. Furthermore, a mechanism for periodically revising our
knowledge is required, in order to have a valid set in place at any time.

Laying the foundations of software engineering thus means to

– state working hypotheses that specify software engineering meth-
ods and their outcome together with the context of their application,

– make experiments, i.e., studies to gain empirical evidence, given a
concrete scenario,

– formulate facts resulting from these studies, together with their re-
spective context,



– abstract facts to laws by combining numerous facts with similar, if
not equal, contexts,

– verify working hypotheses, and thereby build up and continously mod-
ify a concise theory of software engineering as a theoretical building
block of computer science.

Current problems of software engineering in pratice can be directly related
to these goals:

– Clear working hypotheses are often missing.
– There is no time for, or immediate benefit from empirical studies for

the team who undertakes it.
– Facts are often ignored, or applied in differing contexts. Moreover,

facts are often replaced by myths, that is, by unproven assumptions.
– Laws are rarely abstracted from facts. The respective contexts are

sometimes equated which will lead to false laws; cf. examples in Sect. 5.1.
– Up to now, a concise, practicable theory of software engineering does

not exist.

5 Empirical Software Engineering

Let us come back to empirical evidence as the most important means to
fill gaps in the body of knowledge of software engineering, cf. Sect. 4.3. and
[5]. Methods and tools for performing empirical studies exist. Neverthe-
less, we still do have a lot of myths which impact our discipline in a
negative way. Section 5.2 elaborates the example of reading-based inspec-
tions vs. testing, to demonstrate how proper use of empirical methods
can turn the myth that ”testing is more effective than reading” into a law
that ”in general, reading is more effective”.

Figure 4 illustrates that there is no software engineering other than em-
pirical software engineering: Its technical building blocks - formalism,
systems, and processes - need to be based on empiricism which rests, in
turn, on computer science and mathematical foundations.

Prominent representatives of the existing empirical tool box are:

– GQM: Goal Question Metrics support decision making in order to
guide the software development team towards the relevant measure-
ments.

– QIP: Quality Improvement Paradigm have a strong empirical focus.
– EF: Experience Management deals with experience and hence exper-

tise in project teams, preferably across different domains.



Fig. 4. Categories of Software Engineering

The Software Engineering Lab (SEL) of NASA’s Goddard Space Flight
Center has been the first organization establishing a sound experience
management along-side a practical software development unit. They have
achieved significant and sustained improvements over the years; cf. [6]. For
these accomlishments, the SEL had been the first recipient of Carnegie
Mellon’s Software Engineering Institute’s (SEI) Software Process Achieve-
ment Award.
According to [7], today, the top institutes on empirical software engineer-
ing research are:

– Fraunhofer IESE + CESE, Germany and USA, respectively,
– Simula Research Lab, Norway, and
– NICTA Empirical Group, Australia.

5.1 Facts versus Myths

Today, empirical software engineering is best characterized by the follow-
ing three statements:

1. If facts are missing then this gives rise to myths.
2. Concerning software development projects, there are more facts avail-

able than being used. Often, software engineers ignore available facts.
(This, in turn, often happens under the pressure of unrealistic project
schedules.)

3. Besides ignored empirical facts, there exist indeed many gaps of em-
pirical knowledge.



Here are some examples for unproven hypotheses which give rise to myths
in empirical software engineering:

– ”Changes are easier when made earlier in the software development
process.”

– ”Pair reviews are effective and efficient.”
– ”Re-factoring replaces design for modifiability.”
– ”As the cost of defect reduction increases with lag time, does this mean

that we need to focus more on inspections and reviews?”

Likewise, the following trade-offs are still unresolved and support the
insistence on related myths:

– global distribution of software development versus local concentration
– subcontracting versus in-house projects
– construction for reuse versus one-time construction
– large teams versus small teams (resulting in a longer development

time)

We add some open research questions resulting from established laws; in
the sense of the defintion given in Sect. 4.4. We will only be able to answer
those based on new empirical evidence. (The cited laws result from the
work of Boehm, Endres, Basili, Selby, and Rombach, et. al.)

– Law: The cost of defect reduction increases with lag time. Question:
Does this mean that we need to focus more on inspections and reviews,
or rather on the design of easily modifiable systems?

– Law: Formal reviews reduce cost of rework and thus total development
effort. Questions: Under what conditions do object-oriented techniques
reduce development effort? Under what conditions does commercial-
off-the-shelf (COTS) software reduce development effort?

– Question: What is the relationship between good designs and domain
knowledge?

– Question: Under what conditions can changes be implemented at less
cost by means of agile methods?

– Law: For software components, inspections and reviews are more ef-
fective and efficient than testing. (As the law states, this has been
proven for software components; initially by Basili and Selby, see [8],
and sustained by many other studies.) Question: Is this also true for
entire systems?

We close this paragraph by giving a concise example of an empirical study.
This example is to serve as a guideline for setting up a typical software
engineering experiment. It dealt with the special inspection technique
reading.



5.2 Example: Reading

Reading has become a key engineering technique in the toolbox of in-
spection procedures. It supports the individual analysis of any textual
software document that may be dealing with requirements, design, code,
test plans, etc. Generally speaking, reading enables local improvements
in the software development process, implying global effects.

The experiment [9] provided insight into the effect of different variables,
such as experience of readers and type of defects, on the reading tech-
nique. It included

– the investigation of early code reading versus testing experiments,
– the introduction of reading into NASA’s cleanroom process,
– the replication of experiments and results in other groups, and
– the transfer of the results in other industries.

The results showed that reading

– can reduce failure rates by 25%,
– finds 90% of faults before testing,
– increases productivity by 30%,
– helps to better structure code in future projects, based on learning

from reading,
– increases the predictability of project performance parameters such

as cost, and compliance with schedules.

6 Conclusions & Outlook

In the previous chapter, we argued that empirical studies are the key
to filling gaps in our knowledge of the field of software engineering. Only
empirical evidence can give rise to facts and new laws. Consequently, there
can be no software engineering other than empirical software engineering.

In order to address the most relevant research questions, a revision of
agendas is necessary; especially

– the research agenda,
– the practical empirical agenda, i.e., we need to plan what experiments

need to be performed in what contexts; ideally coordinated by a re-
search network such as the International Software Engineering Re-
search Network (ISERN), see [10], and

– the educational agenda.



The last item addresses the need to educate researchers for whom soft-
ware engineering is naturally build upon an empirical foundation, and
for whom experiments are the standard means to do research in software
engineering.

Industrial organizations need to adopt long-established, well-founded en-
gineering methods for the development of safe, secure, and trustworthy
software. Concerning the project management side, they need to accept
planning and working schemes, including schedules, that have been de-
fined by experienced computer scientists and software engineers. Experi-
ence guarantees a bounded variance of software development time.

Last but not least, IT sub-organizations inside non-IT companies need to
be granted a better standing, in order to function as a natural anchor for
software development projects.

References

1. Stalk, G., Evans, P., Shulman, L.: Competing on Capabilities: the New Rules of
Corporate Strategy. Harvard Business Review (March-April 1992) 57–69

2. Boehm, B., Basili, V.: Software Defect Reduction Top 10 List. Computer 34(1)
(2001) 135–137

3. The Standish Group: The Chaos Report 1994. World Wide Web (1994)
http://www.standishgroup.com/sample research/PDFpages/chaos1994.pdf.

4. Broy, M., Rombach, D.: Software Engineering. Wurzeln, Stand und Perspectiven.
Informatik Spektrum 25(6) (December 2002) 438 – 451

5. Endres, A., Rombach, D.: A Handbook of Software and Systems Engineering.
Addison-Wesley Longman, Amsterdam (May 2003) ISBN-10: 0321154207, ISBN-
13: 978-0321154200.

6. Basili, V., Zelkowitz, M., McGarry, F., Page, J., Waligora, S., Pajerski, R.: Spe-
cial Report: SELs Software Process-Improvement Program. IEEE Software 12(6)
(November 1995) 83–87

7. Ren, J., Taylor, R.: Automatic and Versatile Publications Ranking for Research
Institutions and Scholars. Communications of the ACM 50(6) (2007) 81–85

8. Basili, V., Selby, R.: Comparing the Effectiveness of Software Testing Strategies.
IEEE Transactions on Software Engineering 13(12) (December 1987) 1278–1296

9. Basili, V., Green, S.: Software Process Evolution at the SEL. IEEE Software 11(4)
(1994) 58–66

10. ISERN: International Software Engineering Research Network. World Wide Web
http://isern.iese.de/network/ISERN/pub/.


