A Collaborative Method for Reuse Potential
Assessment in Reengineering-Based Product Line
Adoption

Muhammad Asim Nodr Paul Griinbach&rChristopher Hoyér

Yinstitute for Systems Engineering & Automation, diohes Kepler University
4040 Linz, Austria
2Christian Doppler Laboratory for Automated Softwairggineering
Johannes Kepler University
4040 Linz, Austria
man, hoc@sea.uni-Iinz.ac.&bauI.gruenbacher@jku.at

Abstract. Software product lines are rarely developed femmatch. Instead the
development of a product line by reengineering texgssystems is a more
common scenario, which relies on the collaborabbuliverse stakeholders to
lay its foundations. The paper describes a colkba@ scoping approach for
organizations migrating existing products to a picidine. The approach uses
established practices from the field of reengimaedand architectural recovery
and synthesizes them in a collaborative process. prbposed approach em-
ploys best practices and tools from the area ofalbotation engineering to
achieve effective collaboration. The paper presantase study as initial vali-
dation of the proposed approach.

Keywords: Reuse potential assessment, collaboration, prodhetadoption,
product line planning.

1. Introduction

Organizations usually do not start software prodires from scratch. It is more
common that organizations with successful prodircts particular domain find the
need to adopt a product line (PL) approach to alipét on systematic reuse of the
common functionality among existing products [1, EXisting systems are the result
of large investment and can not be easily discaatethey embody substantial do-
main knowledge and expertise. The reuse of exisiBygts is critical in PL adoption
as developing existing systems anew for a PL iscéfy expensive and risky [3].
Careful planning is thus needed for the succegsarfuct line adoption. It is essential
to assess the suitability of existing assets faseein a product line and to estimate
the effort required to tailor those assets. Sofewaoducts are planned, designed, and
developed collaboratively by diverse people. Thewdedge essential to assess the
reuse potential of existing products is distribué@aong architects, product managers,
developers, or maintainers and spread in docunsmdsapplication source code [4].
Numerous formal approaches for reuse potentialsassent exist in areas such as

Muhammad Asim Noor, Paul Grinbacher, Christopherefio

software maintenance [5, 6] or software reengimgefv-10]. These methods focus
on formally captured information in documentationgdels, and source code. The
collaborative aspects of reuse potential assessthamt so far received only little
attention. Although existing approaches relatedettse potential assessment [8, 11-
13] are collaborative in nature they are ratherugagith respect to how effective
collaboration can be achieved.

In the paper we present a collaborative and stdéehaentricapproach to reuse
potential assessment. It uses stakeholders’ kngeleghd experience of existing
systems as primary sources of information to idgnkie existing components and to
prioritize them according to their potential fouse. The approach also enables the
team to produce working estimates of the effordeeleto modify those components.
Such an approach is invaluable at PL scoping aadnghg stage. It is conducted at a
high level of granularity (i.e., logical componenssibsystem or packages) to avoid
getting lost in technical details.

Boehm has argued that collaborative methods areslaayents of future software
engineering methods [14]. We thus believe that dbkaborative approach nicely
complements more formal approaches. It uses prtagmiques and guideline from
the discipline of collaboration engineering (CEptthieve effective collaboration. CE
is an approach to designing work practices for higlue collaborative tasks [15, 16].
In CE proven patterns of group collaboration, chlibinkLets, are used to describe
collaborative processes [15] and to foster theramtton of individuals and teams.
ThinkLets describe collaborative techniques in engact form and can be flexibly
combined to achieve the desired results. For iestathere are thinkLets that con-
cisely describe different brainstorming and prigétion techniques. It has been
shown that different software engineering tasks lmarsupported by composing col-
laborative activities from thinkLets [17, 18]. WaithinkLets might appear process-
centric and tool-centric at first sight they shouddher be seen as facilitation tech-
nigues that are optimized to structure high-valiaup tasks.

The remainder of the paper is structured as followSection 2 we discuss re-
lated work in the field of product line adoptiomftsvare assessment for reengineer-
ing, and collaboration engineering. Section 3 prestayers 1 and 2 of our approach
and explains how the approach is supported by tleitsk In Section 4 we present a
case study and discuss its results. A conclusiahamoutlook to further research
round out the paper.

2. Related Work

Many methods and techniques are reported in litszaf5-7, 9, 10] for assessing
existing software for maintenance and evolutioneSehmethods aim at evaluating
existing software with respect to business valu technical value to identify prom-
ising candidates for reengineering (e.g. [5]). Tlehnical value is determined by
variables such as maintainability, decomposabiligterioration, or obsolescence.
The Product Line Practice Framework by Clemental. [1] represents a comprehen-
sive framework dealing with all aspects of prodirots from development to evolu-
tion. It provides high level guidance for miningiging assets. The approach makes

A Collaborative Method for Reuse Potential AssessrimteRieengineering-Based Product Line
Adoption

use of the options analysis for reengineering (OAR}hod [8] and the mining archi-
tecture for product line (MAP) method [12] for idi#ying existing assets to be reused
in product line development. However, the framewddes not shed light on the
collaborative aspects of this process [8, 12].

Bergeyet al.[8] define software reengineering as “transformamgexisting design
of a software system (or element of that systems)riew design while preserving the
system’s intrinsic functionality”. Traditional regimeering approaches start with the
analysis of legacy assets, the extraction of deaigh architectural information fol-
lowed by an exploration of the options and possiéd, and the implementation of
the best option (e.g. [13]). Théorse shoenodel presented as part@ARin [8] is an
example of such an approach. SRAH [7] is a profmsassessing legacy software to
select the best options for legacy software evotutind to ease maintenance. The
output of the process is a succinct report on wikihior management can make in-
formed decisions. Kollet al. report on a case study [19] about the use of rafing
techniques to evolve and adapt existing comporfentguse in a product line.

Several authors have addressed product line scapidgplanning. For instance,
Schmid [20] proposes a three staged approach csatpof product mapping, domain
potential analysis and reuse infrastructure scopitlg presented a collaborative
product mapping approach in the context of prodinetadoption in earlier work [4,
21, 22] based on Schmid’s framework. In [23] Schexglores the economic impact
of product line adoption and evolution and idegsfthe four adoption strategies: big
bang, project integration, reengineering-based,lemeraged (deriving a product line
from another product line). In reengineering-bapeatiuct line adoption the scoping
activities gain a different focus as the producprgaides the extraction of features
from legacy systems as suggested in [4, 21, 22jelOxork on product line adoption
can be found in a case study by Bagtrl.[24] who report on a migration process
guided by the RE-PLACE approach. In [25] Ebetral. identify a clear business fo-
cus, strong release planning, and requirements geamant as success criteria for
product line adoption. Kirchegt al. in [26] discuss challenges in product line adop-
tion and report a set of best practices.

The discipline of collaboration engineering prowidewide range of practices, pat-
terns and tools to achieve effective collaborati®ollaboration engineering aims at
designing work practices for practitioners to supigh-value recurring collabora-
tive tasks [15]. There are six general patternsofiboration: generate, reduce, clar-
ify, organize, evaluate, and build consensus [ZHE approach tries to provide the
efficiency and effectiveness of professional faaitirs to the practitioners who are
not experts in team interaction. ThinkLets [16] ad® patterns for collaborative
activities and have become widely accepted builditogks for designing collabora-
tive processes. A thinkLet is a named, scripted, well-tested activity that produces
a known pattern of collaboration among people wagkiogether on a common goal
[28]. There are currently about 70 well-documeritgdkLets [29] some of which are
used in our approach to reuse potential assessiutamy collaborative processes
have been successfully designed using thinkLets.eRammple is the requirements
negotiation method EasyWinWin which incorporatesnamber of agile princi-
ples [30]. Our earlier work [4, 21, 22] also sudgisit collaborative techniques are
valuable and useful in product line planning.

Muhammad Asim Noor, Paul Grinbacher, Christopherefio

3. A Collaborative Process for Reuse Potential Assessment

Fig. 1 shows the involved participants, inputs antputs of the Reuse Potential As-
sessment (RPA) process. The process relies onnihwlédge and experience of the
participants, available documentation and analypdebe systems to be reused, and
the proposed product map of the future product line

Product map of ® Domain Expert
future product line 'g Software Architect
S Product Manager (Technical)
g - 5 Developers of existing products
— o Maintainer
Inputs

For each existing product to be
assessed:
o Listof subsystems of) Output Prioritized list of

existing products Reuse Potential Assessment logical components
o Brief summary of Process

subsystems
o Reusability metrics of —

subsystems

- ~

Fig. 1. Participants, inputs and output of the Reuse Palleitisessment Process

The selection of the right participants is a kegtda for the success of the col-
laborative RPA process [31]. The selection musbased upon the knowledge, ex-
perience and expertise of people with the prodtatse assessed. The inclusion of
domain experts and software architects in the tisaassential. The number of techni-
cal experts needed for the RPA process for a piatiproduct depends on the size
and complexity of the products to be assessed.

A product map as defined in [4, 21, 22] is an int@ot input to the RPA process. It
is used to ensure a shared understanding abogbtheion functionality among the
products of the PL and helps the team to identifyidal components from the exist-
ing systems. A further input to the RPA procesa list of subsystem for each of the
products to be assessed. A brief summary explaitiiagunctionality of the subsys-
tems is also provided. Furthermore, reusability ricetfor the subsystems are ex-
tracted beforehand and are provided as part oktisystem summary. Similar to
existing models for reuse potential assessmer8,[20] our RPA process makes use
of static analyses of the existing systems. Theiosetised to evaluate the reusability
are size (e.g., file size method size), complefetyg., cyclomatic complexity, boolean
expression complexity, nesting levels), decompdisabie.g., n tier architecture),
dependencies (e.g., data abstraction couplingoe)y-or understandability (e.g., ratio
of non commented line of code, naming) [5]. Theistanalysis can be facilitated by
tools, e.g., CheckstyleCommercial IDEs (e.g. IntelliJIDEA) support stadinalysis
on the desired levels of abstraction (e.g., methlagds, or package).

1 http://eclipse-cs.sourceforge.net/index.shtml

A Collaborative Method for Reuse Potential AssessrimteRieengineering-Based Product Line

Adoption
Initial 1: Review Process Objectives Feature map | 5: Map Features to the Logical
process and Reuse Focus Components
template CP: Evaluate >
’ CP: Organize, Evaluate
Agreed upon
Common
; process and Feature to logical
understandin: o g
9 Y activities component to source sﬁzﬂ:sm
2: Review Product Line Feature code packages mapyy
Map 6: Review Reusability Metrics
CP: Evaluate of Logical Components
“ ¢ CP: Converge, Evaluate
3: Identify Logical Components Issues regarding reuse
of logical components
identified and discussed v
CP: Generate, Evaluate 7: Evaluate Reuse Potential of
Task Initial list of logical | ... Logical Components
"feopre:;iﬁ \ 4 components CP: Evaluate, Build Consensus*
product 4: Map Technical Solution
| Packages to Logical Components Estimate of reuse
i g) potential
| CP: Organize, Evaluate \ 4
8: Prioritize Logical
Components for Reuse
3 Logical components and CP: Evaluate, Build Consensus*
! source code packages map
Tasks 4 to 7: repeated for logical component Prioritized list of possible

logical components
CP: Collaboration Pattern

* . Applied Twice Through Different ThinkLets
Fig. 2. Task View of the RPA Process (Layer 1).

We describe the collaborative RPA process on thagers of abstraction: Fig. 2
shows the highest layer 1, i.e., the tasks of thhegss, input and output of the tasks,
the collaboration patterns used in the executiotheftask, and the sequence of the
execution of the task#t layer 2, we show how the tasks and collaborapatterns
are supported by thinkLets (cf. Fig. 3). Layer 8 ¢ase study section 4) describes a
concrete enactment of the process during a pils¢ study demonstrating the actual
use of collaborative tools.

Fig. 2 shows the process tasks and their assodiaitdd ets. There are seven thin-
kLets used in the process: The thinkReviewRefledacilitates a group to review an
outline or a document. Team members collaboratigglythrough the outline and
record their thoughts and suggestion by adding centsn Right after, these ideas are
discussed in a moderated fashion. Consolidatednme@mdations are prepared or
changes to the documents are made. The thinBueketWalkaims at achieving a
shared vision amongst groups of people by a calihe walkthrough of all the
items in different categories while encouraging dieeussion for issues and demand-
ing explanation. The group does not move forwarfibieeopen issues are resolved.
The thinkLetLeafHopperaims at eliciting ideas from participants regagdanset of
topics. The thinkLePopcornSorthelps structuring collected raw ideas into appgropr
ate categories.

Muhammad Asim Noor, Paul Grinbacher, Christopherefio

1. Review Process Objectives Ve
and Reuse Focus

™~

StrawPoll /" BucketWalk MoodRing

RN
Go th h the list ‘
. o through the Tis
Vi 4| . . i
s ~] °;i;‘::'?3:ecigz'm ° again. Check if % Dlgcuss the reason for
(ReviewReflect \ S whether to keep the S packages are 25 disagreement till the
| | © . P © assigned correctly. 5 7] time consensus is
a logical component or > < reached
© Go through agenda \ not) | w Make necessary | 8 |
g items one by one and N e - changes ,/ - ,/
E suggest modifications I v
if needed
\ ©) 4. Map Technical Solution 6. Review Reusability Metrics - "
— L 7 F to Logical C of Logical Components 8. Prioritize Logical
Components for Reuse
2. Review Product Line ¢ A4
Feature Ma - ~ e . ™
i 4 PopcornSort N “ ReviewReflect \‘ e v)

- — / N
Ve N\ Drag and drop the o | Go through packages (StrawPoll \
(BucketWalk | & | source code packages o | summary of the logical ‘ —

Go through product g to the most 2 ~components and ° Use criteria: ease of
@ | map features one by o appropriate logical 5 identfiy issues and ® reuse and business
S one to gain common o component | © | costdrivers for reuse) % value a_nd vote on a
E understanding of the B — a 4-point scale to
i1}

features, domains and | determine priority)

roducts

e

A4
7. Evaluate Reuse Potential of
Logical Components

*
H

BucketWalk

i

i ical C.
‘ 3. Identify Logical Go through the list v
o again. Check if Ve ™~ (CrowBar
Y S packages are (StrawPoll \
LeafHopper E a::;ir;e:ezzrsr::'yv ﬁ Elicit the reason
\ = ind di
R L%ok at lrk1e saurced N changes % Vote on the amount of = s behmd‘dlsagreeme‘m
] code 'ﬁc agegblan 2 | effort required to tailor @ ¢ | regarding the priority
5 identify possible [the logical component | 8 of logical components)
c logical components | w) A\ /
3 based on your 5. Map Features to the \ /
experience / Logical Components ‘
v v v 4] ;R'
/ \ / (oodRing
BucketWalk \ (PopcornSort \ CrowBar
Go through the T @ Elicit reason behind § D|§cuss the reason for

% proposed logical] Drag and drop the o2 disagreements ze disagreement till the
E components one by s features _to the most R regarding efforts c=n 2 time consensus is
] one and add your % appropriate logical @2 needed to tailor a H reached
w concerns and o component \ 8 o

comments) component)

Fig. 3. ThinkLets View of the Process (Layer II).

The thinkLetStrawPoll enables decision-making through measuring opinmins
the participants in quantitative terms. A wide edyiof voting methods can be used
with this thinkLet. The thinkLetCrowBar helps to elicit reasons for discord. It is
usually used after the thinkL&trawPoll which highlights the agreements and dis-
agreements resulting from certain issues. The tinkoodRingaims at building
consensus. It is usually used together with thekttet CrowBar, which highlights
reasons for disagreement. These reasons are diddusa moderated fashion. During
the discussion persons originally disagreeing d¢emnge their mind and change their
vote anonymously

More specifically the purpose of each task in tb#aborative process is as fol-
lows:

Task 1: Review Process Objectives and Reuse Fodie facilitator
(i) communicates to the participants the objectieéshe overall process and the
agenda and (i) fine-tunes the process in lighthef participants’ input. The involved
stakeholders include product managers, architeletgelopers, maintainers and do-
main experts. The participants collaboratively egwvieach task of the agenda. The
team agrees on the focus of reuse at this stagethie principal elements of interest
for a team meeting (e.g., particular areas of theece code, algorithms, GUI compo-
nents, documentation, test cases or test data, Ekis task is supported by the thin-
kLet ReviewReflect

Task 2: Review Product Line Feature Mdje RPA process relies on a product

A Collaborative Method for Reuse Potential AssessrimteRieengineering-Based Product Line
Adoption

map as input, which can be defined collaboratiagyoutlined in [4, 21, 22]. It is
important for the team to develop a shared visegarding the scope and vision of
the product line before mining for potential assétse participants familiarize them-
selves with t he product map of the product lin@lamdevelopment, which is
described in terms of features, domains and predddiey use the thinkL&ucket-
Walk to collaboratively navigate through the product naap to suggest changes.
This helps to create a shared vision among paatitfpregarding the scope and struc-
ture of the product line. This knowledge is essgiiti identify correct logical compo-
nents, which may be suitable to be reused as Rt a&ssets. Schmid [20] suggests to
use domains to ease the task of identifying cosetagor a PL. Domains are defined
as relatively independent coherent clusters of tfanality that contain one or more
features. Features represent externally visibleacheristics of systems (e.g., software
project tracking in a product line for project mgaaent).

Task 3: Identify Logical Components this task participants identify logical
components from existing products, which are thethér investigated for their suit-
ability to be included in the product line. A loglacomponent can be seen as an ab-
stract core asset of the envisaged PL. A logicatpmment can be realized by either
adapting existing implementation or by developingm anew. However, the focus of
our approach is on reuse of existing assets. Bhahy we discuss only the case of
adaptation. The challenge of this task is to idgrgblution elements (e.g., classes,
modules, subsystems, libraries) from existing systas candidate core assets. It is
essential to balance the desire for high qualitie @ssets and the effort required to
adapt the existing technical implementation. Thgpouof the task is a list of logical
components for every existing product. The taskdsed on a collaborative walk-
through of the modules of a product. For instaricesase of a Java-based system,
modules are packages with a brief summary andishefl constituent classes. As-
suming that the participants are well familiar witte products, they identify candi-
date logical components based on the informati@semted to them. The collection
of the logical components is accomplished by exeguthe thinkLetLeafHopper
which uses directed brainstorming. The participénégnstorm candidate components
to a shared list. People see what other logicalpmomants have been suggested by
other participants and they can add comments. Hhimkltet BucketWalkfacilitates
common understanding and refinement of the lisiogical components through
moderated discussion. The thinkl&ttrawPoll (electronic voting) may be conducted
to reach consensus within the team whether a pegblogjical component should be
kept for further investigation or not. This taskrépeated for every existing product
and results into a list of logical components feery investigated system.

Task 4: Map Technical Solution Packages to Log{eamponentsParticipants
identify links between the logical components amel technical solution packages of
the existing product. For instance, dependenciesesatablished between existing
modules or subsystems which implement the funclitynaf a logical component.
The scope and definition of logical components rafned where necessary. The
thinkLet PopcornSortfacilitates the assignment of implementation u(és., mod-
ules or classes or packages) to the appropriatealocpmponents and helps bounding
the scope of the logical component. The thinkBetcketWalkensures consensus
among participants about the appropriateness o$dbpe of the logical components.

Muhammad Asim Noor, Paul Grinbacher, Christopherefio

This task is repeated for each prospective prododtresults in improved definitions
of the logical components. The results can be edfim task 6 when performing a
more detailed analysis of the existing system. Taik can be supported by feature
location approaches (e.g., [32]) or scenario-basaded analysis techniques [33]
depending on the complexity of the system and tiewkedge of the stakeholders.

Task 5: Map Features to the Logical ComponeRtaticipants identify links be-
tween logical components and the features fromptieeluct map. This task is per-
formed in a similar manner as the previous taskgustie thinkLet®PopcornSortand
BucketWalk Each feature is assessed and assigned to thepaiape logical compo-
nent. The task is repeated for every product. Tdad gf tasks 4 and 5 is to establish
initial coarse-grain traceability between featutegjcal components and source code.
This traceability allows the visualization of thegical components and eases later
design activities. Even if traceability links ex{gt.g., between requirements, design
artefacts and source code) the above two taskshmaerformed to take into account
the new abstraction layer of logical components.

Task 6: Review Reusability Metrics of Logical Conmgras.Participants review
the logical components using the thinkRetviewReflect-or each package thought to
be reusable in the logical component, they go tifindhe information provided in the
subsystem summary. Mainly, the different implicaiofor the efforts required for
reusing the package are reviewed. First, partitgpanllaboratively go through the
information (functional summary and metrics of eaelckage) and add their opinion.
Questions they try to answer include ‘What are ¢hallenges in reusing this pack-
age?’ or ‘What reengineering techniques are sutéd this package?’. Later, the
collected comments are discussed in a moderatéibfasnd a consolidated list of
issues and possible solution is created for eagibhdbcomponent.

Task 7: Evaluate the Reuse Potential of Logical gamments.Participants esti-
mate the costs and effort required to adapt thedbgomponent as a core asset of the
product line. The reuse effort estimation of thetipgants can be elicited through the
thinkLet StrawPoll, where participant have to assess the level ofrtefémuired to
tailor a particular logical component. In case stakders cannot agree about the
efforts required to tailor a certain logical compats the thinkLeCrowBaris used
followed by the thinkLeMoodRingto reveal the reasons for disagreement. This proc-
ess is repeated for each logical component. Thétrefsthis task is an initial estimate
of cost/effort for adapting the logical componerfibese estimates are intended for
selecting the most promising components for adeptaturing planning while more
formal cost estimation approaches can be useds@rdéme. The task is repeated for
each product.

Task8: Prioritize Logical Components for Reuse this task the logical compo-
nents are prioritized for further investigationdaisign time and later adaptation. It is
accomplished through the thinkL8trawPoll, which is conducted by electronic vot-
ing. Participants assign values on a scale of daith logical component. Two pa-
rameters are used: (i) the value of reuse anthéigffort required to reuse the logical
component. Logical components which require leigriag effort and have the high-
est business value will be assigned a top prioklitycase of significant differences of
opinion the thinkLet<CrowBar and MoodRingare executed as in the previous task.
This task concludes the RPA process and produtisisad the most promising candi-
date logical components for further adaptation i@fitiement as core assets.

A Collaborative Method for Reuse Potential AssessrimteRieengineering-Based Product Line
Adoption

4. Initial Evaluation

We conducted a pilot case study to assess thelnes$uof the proposed collaborative
process and the usability of the supporting toble study was a fictitious organisa-
tion developing a product line for project managetrieols based on open source
code assets. In order to define the desired prdiheta group of three domain ex-
perts developed a product map containing 120 fesfur4 domains and three prod-
ucts for the project management domain. The fdagilstudy was based on the open

source systems Gantt Proj%tand Project Facto?y The size of Gantt Project is 51

packages, 492 classes and is 63 KLOC. The sizeap¢d® Factory is 16 packages,
140 classes and 29 KLOC.

+* GroupSystems - RPAJ - [3. Review Gantiproject physical components (Categorizer!

‘%lee Folders Edit Categorizer Group Options Window Hslp -

|-
agenda | €, Peaple | @wmtehoaml 72X Handouts ‘ & opirion | ghReports ‘ @ o
B X Q@R 0vG %0 bl

1/t 1. ganttproject.src.net.sourceforge.ganttproject

* [FUNCATIONAL SUMMARY This master package containing |
interface components and renders gantt chart. It is contralle

* | MUMBER OF CLASSES: 48

2 72. ganttproject.src.net. sourceforge. ganttproject.act

* | PACKAGE SIZE: 16941 lines of code

LSS 3. ganttproject.src.net.sourceforge. ganttproject.act|

* | Non-commented line of code viclation: 13 methods

i . ganttproject.sre.net.sourceforge. ganttproject.acti Average value of violation: 110
Threshold value of 50

. ganttproject.src.net. sourceforge. ganttproject.act

* | Class data abstraction coupling # of violation: 13

B ganttprojer:t.src.net.sourcefnrge.ganttproject.ap Average value of violation: 31
Threshold valus: 7

. ganttproject.src.net. sourceforge. ganttproject.cal

* | Cyclomatic complexity violations: 15 methods

i . ganttproject.src. net. sourcefo anttproject.cha Average value of violation: 25
Threshold vale: 12

. ganttproject.sre.net.sourceforge. ganttproject.cha

* | Fan-out violations: 15 classes

i . ganttproject.src.net.sourceforge. ganttproject.dd Average value of violation: 47
Threshold valus 20

. ganttproject.src.net.sourceforge. ganttproject.dd

* | File size viclations. 2 classes

1500 ttproject. src.net.sourcef nttproject.ex] Average value of violation: 2563 lines of code
Threshold value: 2000

(il . ganttproject.src.net.sourceforge. ganttproject.fil

* | Method size violations: &

0 ETH ganttproject.src.net.sourceforge.ganttproject.fol Average value of violation: 236
Threshold value: 150

. ganttproject.src.net.sourceforge.ganttproject.g

* | CLASS NAMES:

GanttGranhicSras imis

__nanttoroiect src.net.sourceforoe.oanttoroiect.al

Fig. 4. Package summary containing Reusability metrics.

Three engineers participated in this case studg.prbcess was conducted in three
workshops with duration of approximately 4 hoursteaAs preparation for the work-
shop the moderator (i) defined the agenda accorttintpe tasks identified in this
paper, (i) uploaded the feature map of the produngt to the collaboration tool
GroupSystems, and (iii) uploaded the package tidt@ackage summaries containing
the reusability metrics to the collaborative tos¢é Figure 4). The feature map was
developed prior to the workshop following the methit@scribed in [4, 21, 22].

2 http://sourceforge.net/projects/ganttproject
3 http://sourceforge.net/projects/projectfactory/

Muhammad Asim Noor, Paul Grinbacher, Christopherefio

In order to extract the reusability metrics a statnalysis was conducted by one
software engineer for both products. Source codgicaesuch as cyclomatic com-
plexity, data abstraction coupling, fan-out, nomeaaeented line of code, size of the
class and size of the methods, are reported irafitee to be useful indicators of the
reusability of the code [19, 34]. Generally, itassumed that the lower the value of
above mentioned metrics the more reusable is thats code [34]. These combined
metrics were used to complement the overall picame help to identify the reusable
software elements.

Cyclomatic complexity, non-commented line of coded size of method were
measured at method level. The remainder at clast M/e used the open source tool
CheckStyle (available as an Eclipse plug-in) tcculalte these metrics. The default
threshold values of CheckStyle (for above mentiomedrics) were used. These val-
ues concur with existing literature in the fieldsafftware maintenance and evolution
[19, 35]. Table 1 shows a brief description of thetrics, along with the default
threshold values of CheckStyle.

Table 1. Metrics Applied in the static analysis.

Metric Level Description Value

Cyclomatic Method A measure for the minimum number of possibaltns

Complexity through the source and therefore the number ofinedju 10
tests.

Coupling Class A measure for the number of instiotis of other classes 7
within the given class.

Fan-out Class A measure for the number of othesela given class
relies on. 20

NCSS Method A measure for the number of non-cometesburce state- 50
ment within a method.

BEC Line A measure for the number of &&, || anah’ah expression. 3
(BEC = Boolean expression complexity).

File Size Class A measure of the file size in linksode. 2000

Method Size ~ Method A measure for the method sizimé@s of code. 150

Table 2 shows the consolidated summary of theseiandor one of the products
assessed, i.e., Gantt project. For example, am@2gctasses of Gantt Project 51
classes have a class data abstraction couplingd than 7. Among these 51 classes
the average class data abstraction coupling ifd@her analysis shows that these are
mainly those classes which primarily deal with @#l (in the case of Gantt Project
they use Java Swing components). This indicateplicmuis not a big hindrance
when reusing the Gantt Project source code.

Table 2. Gantt Project metrics.

Metric # of violations Average violations value
Cyclomatic complexity 45 15
Coupling: 51 18
Fan-out 36 38
NCSS (Non-commented lines of code) 35 97
BEC (Boolean expression complexity) 3 9
File Size 2 2539

Method Size 12 230

A Collaborative Method for Reuse Potential AssessrimteRieengineering-Based Product Line
Adoption

Overall, these metrics indicate that the Gantt &tojmplementation is not overly
complex as only 45 methods exceed the thresholdplexity value. Mostly, these
methods handle XML tags as data is stored in XNksfiMost classes are within an
acceptable range of coupling and fan-out. Thereoahg two classes and 12 methods
which violate the modest limit (2000, 150 LOC). Tdwle is mostly well commented.
The extracted metrics indicate that componentsheaextracted from Gantt Project
implementation without excessive difficulty. Sinmilanetrics were extracted from
Project Factory but are not reported in this paper to space limitations. These met-
rics were added in the package summary for easyspkof the participants. The
package level summary serves as a quick referehtigegpackage implementation
and is used to define the logical components (8s&nd to review the reusability
metrics of the logical component (task 6).

In the following, we describe the enactment of etadk in the pilot case study:
The first two tasks were performed once in the igigig whereas task 3 was repeated
for the two analyzed products. Tasks 4 to 7 wepeaitedor each logical component.
The first tasks Review process objective and reuse foand Review product line
feature map were accomplished by conducting the thinkLBsviewRefleceind
BucketWalkrespectively. The small number of participants viaa already jointly
developed the process and product map earlier i§ieapthese tasks. However, in
more realistic settings a presentation about tlem@g would be needed to explain the
purpose and objectives of the exercise. The fo€tkeoreuse was on GUI elements,
algorithms and cohesive functionality (e.g., fogt®y, Gantt chart) in the source
code.

The third task was to identify logical componentst the source code. In Fig. 5
coloured entries represent the identified logicainponents. Participants used the
thinkLet LeafHopperto identify the logical components. This task wasformed for
both products simultaneously. In total the teammiified 23 logical components from
Gantt Project. Many logical components were lapemfl to be of too limited size or
use but no new components were added. Different teambers had identified logi-
cal components at different level of granularitfieth did not raise problems as logi-
cal components were refined in subsequent stepgicélocomponents were also fil-
tered out if considered as inappropriate basedetatted criteria (e.g. the minimum
size of the implementation encompassed by the dbgmmponent).

Due to the tight schedule of the team memberseatihe of the case study task 4
(Map Technical Solution Packages to Logical Compts)emd task 5Nlap Features
to the Logical Componentsvere performed asynchronously. This allowed éngad
better visualization of the logical components, athivas also necessary to support
the detailed analysis in task 6 as detailed traligateports where unavailable for the
selected open source applications.

Task 6 Review reusability metrics of logical comporewas accomplished by
conducting the thinkLeReviewReflectThe participants created a consolidated list of
issues and opinions for each logical componenhaws in Fig. 5. This task aimed at
collecting information about the reusability of gages (in order to realize the logical
component) from the calculated metrics and thertieah knowledge and experience
of the people with these packages.

Muhammad Asim Noor, Paul Grinbacher, Christopherefio

< agenda | B, People | < whiehoard | {ZHanootks | &R Ede corment

X RGO A E

1310 GanttChart

1 Actor (Resource)

Calendar

GUI Wizard (e.g.. New Project)

* |Number of Packages 3

MNumber of Class in consituent packages 51

[Total Size of all three packages 7000 Line of Code)

3 methods cross limit of 50 non-commented source code lines
A R * |4 classes violate coupling limit of 7
140 HTML Export * |3 Classes cross limit of 20 fan-out
o/

* | 5 methods cross cyclomatic complexity limit of 12

PDF Export Calculates and renders the Gantt char for Given tasks of the project.
[T H Print when ever a change is made Gantt chart is automatically updated
00

Time Mgmt

Util Library

Relies on "Task" related packages to get the data to render as gantt chart

[Concermed with creating graphics to render as ganit.chart data which ig

|drawn as gantt chart comes from other part of the application

* | Meeded in all the products

* | Risk to reuse = Low

XML Handling

* | Good candidate for a component

* | Changes required = minimal

Nacnmentatinon nesde tn he croated

Fig. 5. Consolidate list of issues of a logical componentgut of task 6).

Task 7 Evaluate the Reuse Potential of Logical Componestsupposed to be
performed directly after task 6 so that particigastill have the findings of the previ-
ous step in their minds. However, in our case sthdyteam did not perform this task.
Estimates of effort and cost can only be made erbtsis of above mentioned infor-
mation if the team has in depth knowledge of threesy. Such knowledge is available
only for people that have been involved in the giesdevelopment or maintenance of
the product. The teams in our case did not havk andntimate knowledge. Instead,
the prioritization of the logical components wasfpemed directly after task 7.

Lastly, the prioritization (task 8) was done usmgollaborative voting tool. First,
the team members assessed the business valueeardsth of reuse of each compo-
nent on a scale of 4. The average of these twcesadietermined the priority of the

component. Table 3 shows the list of prioritizeghhievel logical components begin-
ning with the components having highest priority.

Table 3. Prioritized high level logical components.

Logical Component

of Packages # of Classes Biral
GUI Components 11 103 13 KLOC
Task Management 6 67 7 KLOC
Gantt Chart 3 51 7 KLOC
10 Handling 4 51 6 KLOC
Calendar and Time Mgmt 3 31 3 KLOC
Actor (resource) Mgmt 2 19 2 KLOC
Test Suite 1 22 2 KLOC
Project Forecast (Factory) NA 2 1 KLOC
Project Management 46

17 KLOC

A Collaborative Method for Reuse Potential AssessrimteRieengineering-Based Product Line
Adoption

These components have a similar business valulk @® amportant in a project man-
agement application. Their priority is mainly denémed on the basis of ease of reuse.
We started the case study with two products offednite similar functionality.
We aimed at identifying reusable components froes¢htwo products which can be
modified and used as core assets of a productirlitiee project management domain.
Out of 9 components identified for reuse, 8 conmmfrGantt Project and only the

component “Project Forecast” comes from Projectdsic

It is essential that people with intimate technikabwledge of the products par-
ticipate in the reuse potential assessment. Witsaah knowledge identifying rele-
vant logical components and creating traceabilitgd between features, logical com-
ponent and physical component of the technicaltswlus difficult. The case study
team also suffered to some extent from these pmobldue to a lack of in-depth
knowledge of the products. It identified 9 compasehat can be reused as core as-
sets in the product line (as shown in table 3) thasean initial list of 24 and 13 can-
didate components from Gantt Project and Fact@paetively.

5. Conclusions and Future Work

We presented a collaborative approach for reusenpiat analysis that is intended to
complement more formal approaches for reengineddaggcy assets in the area of
product line planning. The process aims at suppgii team to collaboratively iden-
tify components with a high reuse potential frorfiedtent legacy products. The proc-
ess also increases the understanding of tracgahifitt the dependencies between
features and technical solution components andigesvnitial estimates for the effort
of reuse. The presented process relies on theutaelection of stakeholders to en-
sure the knowledge and experience required. Absehsech knowledge and experi-
ence will undermine the collaborative aspects effocess and force the team to rely
on more formal approaches, i.e., reverse engingerin

Due to our experience with collaboration enginegnmethods and thinkLets in
other areas of software engineering such as ragaines negotiation, risk manage-
ment, or software inspection we expect this coltabee process to scale well in a
real-world product line setting. The experiencengdi in the feasibility study con-
firms these findings. We will use the process iarrfeiture with an industrial partner
specialized in ERP solutions who is currently $hiftto a product line approach. The
experiences also confirm that thinkLets can becéffely supported by collaborative

tools, in our case a Group Support System (B $®! was used to support the stake-
hoder collaboration.

4 http://www.groupsystems.com

Muhammad Asim Noor, Paul Grinbacher, Christopherefio

References

10.

11.

12.

13.

14.

15.

16.

17.

Clements, P. and L. Northrdpoftware product lines: practices and patterd802: Addi-
son-Wesley Boston.

Boeckle, G., P. Clements, J.D. McGregor, D. MutKigSchmid, A.G. Siemens, and G.
Munich, Calculating ROI for software product linekeEESoftware,, 200421(3): p. 23-
31.

Aversano, L. and M. Tortorelldhn assessment strategy for identifying legacy syste
evolution requirements in eBusiness contéxBoftw. Maint. Evol.: Res. Pract, 2004:

p. 255-276.

Noor, M.A., P. Grinbacher, and R.O. Brigg®fining a Collaborative Approach for
Product Line Scoping: A Case Study in CollaboratiowiBeering.IASTED Conference
on Software Engineering (SE 2007) Innsbruck, Aasgebruary 13, 2007

De Lucia, A., A.R. Fasolino, and E. PompeRedecisional framework for legacy system
managementProceedings of IEEE International Conference ortv&sé Maintenance,
2001, 2001: p. 642-651.

Ransom, J., I. Sommerville, and I. Warré&nMethod for Assessing Legacy Systems for
Evolution.Proceedings of Reengineering Forum, 1988.

Software Engineering Assessment HandBook Versipnin3Available at URL:
http://www.swen.uwaterloo.ca/~kostas/[ECE750-3/srah @87 last checked: 9-08-07,
DoD US.

Bergey, J.K., L. O'Brien, and D. Smit®ptions Analysis for Reengineering (OAR): A
Method for Mining Legacy Asse®001: Carnegie Mellon University, Software Engimee
ing Institute.

Caldiera, G. and V.R. Basilidentifying and qualifying reusable software compuse
IEEE Computer, 19924(2): p. 61-70.

Sneed, H.M.Planning the reengineering of legacy systefBEE Software 199512(1):

p. 24-34.

DeBaud, J.M., O. Flege, and P. Knauber,SE-DSSA—a method for the development of
software reference architectureProceedings of the third international workshop on
Software architecture, 1998: p. 25-28.

O'Brien, L. and D. SmithJAP and OAR Methods: Techniques for Developing Core
Assets for Software Product Lines from Existingefss2002: Carnegie Mellon Univer-
sity, Software Engineering Institute.

Stoermer, C. and L. O'BrieMAP-Mining Architectures for Product Line Evaluai®
Proceedings of the IEEE/IFIP Working Conference offtv@are Architectures, Amster-
dam, The Netherlands, Aug, 2001: p. 35-44.

Boehm, B.A view of 20th and 21st century software engineeffigceeding of the 28th
international conference on Software engineeri@$# '06) 2006: p. 12-29.

Briggs, R.O., d.V. G.J., and J.J.F. NunamaRetlaboration Engineering with ThinkLets
to Pursue Sustained Success with Group Supportr&ysteurnal of Management Infor-
mation Systems, 20039(4): p. 31-64.

Briggs, R.O., G.J. De Vreede, J.F. Nunamakeanl, D. Tobey ThinkLets: achieving
predictable, repeatable patterns of group interantiwith group support systems (GSS).
Proceedings of the 34th Annual Hawaii InternatioBainference on System Sciences,
2001: p. 9.

Griinbacher, P., M. Halling, and S. Biffin empirical study on groupware support for
software inspection meetingdutomated Software Engineering, 2003. Proceedihgth
IEEE International Conference on, 2003: p. 4-11.

A Collaborative Method for Reuse Potential AssessrimteRieengineering-Based Product Line

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

Adoption

Grunbacher, P., N. Seyff, R.O. Briggs, H.P. In,Kitapci, and D. PortMaking every
student a winner: The WinWin approach in softwargimeering educationJournal of
Systems and Software, 20@0(8): p. 1191-1200.

Kolb, R., D. Muthig, T. Patzke, and K. YamaudRéfactoring a legacy component for
reuse in a software product line: a case stubburnal of Software Maintenance and Evo-
lution: Research and Practice, 2008. p. 109-132.

Schmid, K.A comprehensive product line scoping approach #sdalidation.Proceed-
ings of the 24th International Conference on Sofenamgineering, 2002: p. 593-603.
Noor, M.A,, R. Rabiser, and P. Griinbacke€ollaborative Approach for Reengineering-
based Product Line Scopimg APLE - 1st International Workshop on Agile Produicte
Engineering2006. Baltimore, Maryland.

Noor, M.A., R. Rabiser, and P. Griinbacleagile Product Line Planning: A Collabora-
tive Approach and a Case Studyournal of Systems and Software (to appear),
doi:10.1016/j.jss.2007.10.028.

Schmid, K. and M. Verlag&he Economic Impact of Product Line Adoption andl&v
tion. IEEE Software, 200209(4): p. 50-57.

Bayer, J., J.F. Girard, M. Wuerthner, J.M. DeBard M. Apel,Transitioning legacy
assets to a product line architectu®®CM SIGSOFT Software Engineering Notes, 1999.
24(6): p. 446-463.

Ebert, C. and M. Smoutricks and Traps of Initiating a Product Line ContapExist-
ing Products.Proceedings of the 25th International Conferenc&aitware Engineering
(ICSE'03), 2003: p. 520-525.

Kircher, M., C. Schwanninger, and |. GrohBmnsitioning to a Software Product Family
Approach - Challenges and Best PracticB3th International Software Product Line Con-
ference, 2006: p. 163- 171.

Briggs, R.O., G.L. Kolfschoten, G.J.d. Vreedea] BxL. DeanDefining Key Concepts for
Collaboration Engineeringin Americas Conference on Information SysteP®6. Aca-
pulco, Mexico:AlS.

De Vreede, G.J., G.L. Kolfschoten, and R.O. BrigginkLets: a collaboration engineer-
ing pattern languagelnternational Journal of Computer Applications ieclinology,
2006.25(2): p. 140-154.

Kolfschoten, G.L., J.H. Appelman, R.O. Briggs] &hJ. de Vreed&ecurring patterns of
facilitation interventions in GSS sessioRsoceedings of the 37th Annual Hawaii Interna-
tional Conference on System Sciences, 2004: p819-2

Boehm, B.W. and R. RosEpeory-W software project management principles exam-
ples.IEEE Transactions on Software Engineering 198¢7): p. 902-916.

Harder, R.J., J.M. Keeter, B.W. Woodcock, J.Wg&son, and F.W. Willsinsights in
Implementing Collaboration Engineeringroceedings of the 38th Annual Hawaii Inter-
national Conference on System Sciences, HICSS'0%,; p005b-15b.

Eisenbarth, T., R. Koschke, and D. Simomgating features in source cod&EE Trans-
actions on Software Engineering, 2029(3): p. 210-224.

Egyed, A.A Scenario-Driven Approach to Traceabili§roceedings of the 23rd Interna-
tional Conference on Software Engineering (ICSEypmto, Canada, 2001: p. 123-132.
Barnard, JA new reusability metric for object-oriented softwaBeftware Quality Jour-
nal, 1998.7: p. 35-50.

McCabe, T.J. and C.W. Butlé&esign complexity measurement and test@gnmunica-
tions of the ACM, 198932(12): p. 1415-1425.

