

A Collaborative Method for Reuse Potential
Assessment in Reengineering-Based Product Line

Adoption

Muhammad Asim Noor1, Paul Grünbacher2, Christopher Hoyer1

1Institute for Systems Engineering & Automation, Johannes Kepler University
4040 Linz, Austria

2Christian Doppler Laboratory for Automated Software Engineering
Johannes Kepler University

4040 Linz, Austria
1man, hoc@sea.uni-linz.ac.at, 2paul.gruenbacher@jku.at

Abstract. Software product lines are rarely developed from scratch. Instead the
development of a product line by reengineering existing systems is a more
common scenario, which relies on the collaboration of diverse stakeholders to
lay its foundations. The paper describes a collaborative scoping approach for
organizations migrating existing products to a product line. The approach uses
established practices from the field of reengineering and architectural recovery
and synthesizes them in a collaborative process. The proposed approach em-
ploys best practices and tools from the area of collaboration engineering to
achieve effective collaboration. The paper presents a case study as initial vali-
dation of the proposed approach.

Keywords: Reuse potential assessment, collaboration, product line adoption,
product line planning.

1. Introduction

Organizations usually do not start software product lines from scratch. It is more
common that organizations with successful products in a particular domain find the
need to adopt a product line (PL) approach to capitalize on systematic reuse of the
common functionality among existing products [1, 2]. Existing systems are the result
of large investment and can not be easily discarded as they embody substantial do-
main knowledge and expertise. The reuse of existing assets is critical in PL adoption
as developing existing systems anew for a PL is typically expensive and risky [3].
Careful planning is thus needed for the success of product line adoption. It is essential
to assess the suitability of existing assets for reuse in a product line and to estimate
the effort required to tailor those assets. Software products are planned, designed, and
developed collaboratively by diverse people. The knowledge essential to assess the
reuse potential of existing products is distributed among architects, product managers,
developers, or maintainers and spread in documents and application source code [4].
Numerous formal approaches for reuse potential assessment exist in areas such as

Muhammad Asim Noor, Paul Grünbacher, Christopher Hoyer

software maintenance [5, 6] or software reengineering [7-10]. These methods focus
on formally captured information in documentation, models, and source code. The
collaborative aspects of reuse potential assessment have so far received only little
attention. Although existing approaches related to reuse potential assessment [8, 11-
13] are collaborative in nature they are rather vague with respect to how effective
collaboration can be achieved.

In the paper we present a collaborative and stakeholder-centric approach to reuse
potential assessment. It uses stakeholders’ knowledge and experience of existing
systems as primary sources of information to identify the existing components and to
prioritize them according to their potential for reuse. The approach also enables the
team to produce working estimates of the effort needed to modify those components.
Such an approach is invaluable at PL scoping and planning stage. It is conducted at a
high level of granularity (i.e., logical components, subsystem or packages) to avoid
getting lost in technical details.

Boehm has argued that collaborative methods are key elements of future software
engineering methods [14]. We thus believe that the collaborative approach nicely
complements more formal approaches. It uses proven techniques and guideline from
the discipline of collaboration engineering (CE) to achieve effective collaboration. CE
is an approach to designing work practices for high-value collaborative tasks [15, 16].
In CE proven patterns of group collaboration, called thinkLets, are used to describe
collaborative processes [15] and to foster the interaction of individuals and teams.
ThinkLets describe collaborative techniques in a compact form and can be flexibly
combined to achieve the desired results. For instance, there are thinkLets that con-
cisely describe different brainstorming and prioritization techniques. It has been
shown that different software engineering tasks can be supported by composing col-
laborative activities from thinkLets [17, 18]. While thinkLets might appear process-
centric and tool-centric at first sight they should rather be seen as facilitation tech-
niques that are optimized to structure high-value group tasks.

The remainder of the paper is structured as follow: In Section 2 we discuss re-
lated work in the field of product line adoption, software assessment for reengineer-
ing, and collaboration engineering. Section 3 presents layers 1 and 2 of our approach
and explains how the approach is supported by thinkLets. In Section 4 we present a
case study and discuss its results. A conclusion and an outlook to further research
round out the paper.

2. Related Work

Many methods and techniques are reported in literature [5-7, 9, 10] for assessing
existing software for maintenance and evolution. These methods aim at evaluating
existing software with respect to business value and technical value to identify prom-
ising candidates for reengineering (e.g. [5]). The technical value is determined by
variables such as maintainability, decomposability, deterioration, or obsolescence.
The Product Line Practice Framework by Clements et al. [1] represents a comprehen-
sive framework dealing with all aspects of product lines from development to evolu-
tion. It provides high level guidance for mining existing assets. The approach makes

A Collaborative Method for Reuse Potential Assessment in Reengineering-Based Product Line
Adoption

use of the options analysis for reengineering (OAR) method [8] and the mining archi-
tecture for product line (MAP) method [12] for identifying existing assets to be reused
in product line development. However, the framework does not shed light on the
collaborative aspects of this process [8, 12].

Bergey et al. [8] define software reengineering as “transforming an existing design
of a software system (or element of that systems) to a new design while preserving the
system’s intrinsic functionality”. Traditional reengineering approaches start with the
analysis of legacy assets, the extraction of design and architectural information fol-
lowed by an exploration of the options and possibilities, and the implementation of
the best option (e.g. [13]). The Horse shoe model presented as part of OAR in [8] is an
example of such an approach. SRAH [7] is a process for assessing legacy software to
select the best options for legacy software evolution and to ease maintenance. The
output of the process is a succinct report on which senior management can make in-
formed decisions. Kolb et al. report on a case study [19] about the use of refactoring
techniques to evolve and adapt existing components for reuse in a product line.

Several authors have addressed product line scoping and planning. For instance,
Schmid [20] proposes a three staged approach comprised of product mapping, domain
potential analysis and reuse infrastructure scoping. We presented a collaborative
product mapping approach in the context of product line adoption in earlier work [4,
21, 22] based on Schmid’s framework. In [23] Schmid explores the economic impact
of product line adoption and evolution and identifies the four adoption strategies: big
bang, project integration, reengineering-based, and leveraged (deriving a product line
from another product line). In reengineering-based product line adoption the scoping
activities gain a different focus as the product map guides the extraction of features
from legacy systems as suggested in [4, 21, 22]. Other work on product line adoption
can be found in a case study by Bayer et al. [24] who report on a migration process
guided by the RE-PLACE approach. In [25] Ebert et al. identify a clear business fo-
cus, strong release planning, and requirements management as success criteria for
product line adoption. Kircher et al. in [26] discuss challenges in product line adop-
tion and report a set of best practices.

The discipline of collaboration engineering provides a wide range of practices, pat-
terns and tools to achieve effective collaboration. Collaboration engineering aims at
designing work practices for practitioners to support high-value recurring collabora-
tive tasks [15]. There are six general patterns of collaboration: generate, reduce, clar-
ify, organize, evaluate, and build consensus [27]. The approach tries to provide the
efficiency and effectiveness of professional facilitators to the practitioners who are
not experts in team interaction. ThinkLets [16] describe patterns for collaborative
activities and have become widely accepted building blocks for designing collabora-
tive processes. A thinkLet is a named, scripted, and well-tested activity that produces
a known pattern of collaboration among people working together on a common goal
[28]. There are currently about 70 well-documented thinkLets [29] some of which are
used in our approach to reuse potential assessment. Many collaborative processes
have been successfully designed using thinkLets. An example is the requirements
negotiation method EasyWinWin which incorporates a number of agile princi-
ples [30]. Our earlier work [4, 21, 22] also suggest that collaborative techniques are
valuable and useful in product line planning.

Muhammad Asim Noor, Paul Grünbacher, Christopher Hoyer

3. A Collaborative Process for Reuse Potential Assessment

Fig. 1 shows the involved participants, inputs and outputs of the Reuse Potential As-
sessment (RPA) process. The process relies on the knowledge and experience of the
participants, available documentation and analyses of the systems to be reused, and
the proposed product map of the future product line.

Fig. 1. Participants, inputs and output of the Reuse Potential Assessment Process

The selection of the right participants is a key factor for the success of the col-
laborative RPA process [31]. The selection must be based upon the knowledge, ex-
perience and expertise of people with the products to be assessed. The inclusion of
domain experts and software architects in the team is essential. The number of techni-
cal experts needed for the RPA process for a particular product depends on the size
and complexity of the products to be assessed.

A product map as defined in [4, 21, 22] is an important input to the RPA process. It
is used to ensure a shared understanding about the common functionality among the
products of the PL and helps the team to identify logical components from the exist-
ing systems. A further input to the RPA process is a list of subsystem for each of the
products to be assessed. A brief summary explaining the functionality of the subsys-
tems is also provided. Furthermore, reusability metrics for the subsystems are ex-
tracted beforehand and are provided as part of the subsystem summary. Similar to
existing models for reuse potential assessment [5, 8, 10] our RPA process makes use
of static analyses of the existing systems. The metrics used to evaluate the reusability
are size (e.g., file size method size), complexity (e.g., cyclomatic complexity, boolean
expression complexity, nesting levels), decomposability (e.g., n tier architecture),
dependencies (e.g., data abstraction coupling, fan-out), or understandability (e.g., ratio
of non commented line of code, naming) [5]. The static analysis can be facilitated by
tools, e.g., Checkstyle1. Commercial IDEs (e.g. IntelliJIDEA) support static analysis
on the desired levels of abstraction (e.g., method, class, or package).

1 http://eclipse-cs.sourceforge.net/index.shtml

A Collaborative Method for Reuse Potential Assessment in Reengineering-Based Product Line
Adoption

Fig. 2. Task View of the RPA Process (Layer 1).

We describe the collaborative RPA process on three layers of abstraction: Fig. 2
shows the highest layer 1, i.e., the tasks of the process, input and output of the tasks,
the collaboration patterns used in the execution of the task, and the sequence of the
execution of the tasks. At layer 2, we show how the tasks and collaboration patterns
are supported by thinkLets (cf. Fig. 3). Layer 3 (cf. case study section 4) describes a
concrete enactment of the process during a pilot case study demonstrating the actual
use of collaborative tools.

Fig. 2 shows the process tasks and their associated thinkLets. There are seven thin-
kLets used in the process: The thinkLet ReviewReflect facilitates a group to review an
outline or a document. Team members collaboratively go through the outline and
record their thoughts and suggestion by adding comments. Right after, these ideas are
discussed in a moderated fashion. Consolidated recommendations are prepared or
changes to the documents are made. The thinkLet BucketWalk aims at achieving a
shared vision amongst groups of people by a collaborative walkthrough of all the
items in different categories while encouraging the discussion for issues and demand-
ing explanation. The group does not move forward before open issues are resolved.
The thinkLet LeafHopper aims at eliciting ideas from participants regarding a set of
topics. The thinkLet PopcornSort helps structuring collected raw ideas into appropri-
ate categories.

Muhammad Asim Noor, Paul Grünbacher, Christopher Hoyer

Fig. 3. ThinkLets View of the Process (Layer II).

The thinkLet StrawPoll enables decision-making through measuring opinions of
the participants in quantitative terms. A wide variety of voting methods can be used
with this thinkLet. The thinkLet CrowBar helps to elicit reasons for discord. It is
usually used after the thinkLet StrawPoll, which highlights the agreements and dis-
agreements resulting from certain issues. The thinkLet MoodRing aims at building
consensus. It is usually used together with the thinkLet CrowBar, which highlights
reasons for disagreement. These reasons are discussed in a moderated fashion. During
the discussion persons originally disagreeing can change their mind and change their
vote anonymously.

More specifically the purpose of each task in the collaborative process is as fol-
lows:

Task 1: Review Process Objectives and Reuse Focus. The facilitator
(i) communicates to the participants the objectives of the overall process and the
agenda and (ii) fine-tunes the process in light of the participants’ input. The involved
stakeholders include product managers, architects, developers, maintainers and do-
main experts. The participants collaboratively review each task of the agenda. The
team agrees on the focus of reuse at this stage, i.e., the principal elements of interest
for a team meeting (e.g., particular areas of the source code, algorithms, GUI compo-
nents, documentation, test cases or test data, etc.). This task is supported by the thin-
kLet ReviewReflect.

Task 2: Review Product Line Feature Map. The RPA process relies on a product

A Collaborative Method for Reuse Potential Assessment in Reengineering-Based Product Line
Adoption

map as input, which can be defined collaboratively as outlined in [4, 21, 22]. It is
important for the team to develop a shared vision regarding the scope and vision of
the product line before mining for potential assets. The participants familiarize them-
selves with t he product map of the product line under development, which is
described in terms of features, domains and products. They use the thinkLet Bucket-
Walk to collaboratively navigate through the product map and to suggest changes.
This helps to create a shared vision among participants regarding the scope and struc-
ture of the product line. This knowledge is essential to identify correct logical compo-
nents, which may be suitable to be reused as PL core assets. Schmid [20] suggests to
use domains to ease the task of identifying core assets for a PL. Domains are defined
as relatively independent coherent clusters of functionality that contain one or more
features. Features represent externally visible characteristics of systems (e.g., software
project tracking in a product line for project management).

Task 3: Identify Logical Components. In this task participants identify logical
components from existing products, which are then further investigated for their suit-
ability to be included in the product line. A logical component can be seen as an ab-
stract core asset of the envisaged PL. A logical component can be realized by either
adapting existing implementation or by developing them anew. However, the focus of
our approach is on reuse of existing assets. That is why we discuss only the case of
adaptation. The challenge of this task is to identify solution elements (e.g., classes,
modules, subsystems, libraries) from existing systems as candidate core assets. It is
essential to balance the desire for high quality core assets and the effort required to
adapt the existing technical implementation. The output of the task is a list of logical
components for every existing product. The task is based on a collaborative walk-
through of the modules of a product. For instance, in case of a Java-based system,
modules are packages with a brief summary and the list of constituent classes. As-
suming that the participants are well familiar with the products, they identify candi-
date logical components based on the information presented to them. The collection
of the logical components is accomplished by executing the thinkLet LeafHopper
which uses directed brainstorming. The participants brainstorm candidate components
to a shared list. People see what other logical components have been suggested by
other participants and they can add comments. The thinkLet BucketWalk facilitates
common understanding and refinement of the list of logical components through
moderated discussion. The thinkLet StrawPoll (electronic voting) may be conducted
to reach consensus within the team whether a proposed logical component should be
kept for further investigation or not. This task is repeated for every existing product
and results into a list of logical components for every investigated system.

Task 4: Map Technical Solution Packages to Logical Components. Participants
identify links between the logical components and the technical solution packages of
the existing product. For instance, dependencies are established between existing
modules or subsystems which implement the functionality of a logical component.
The scope and definition of logical components are refined where necessary. The
thinkLet PopcornSort facilitates the assignment of implementation units (e.g., mod-
ules or classes or packages) to the appropriate logical components and helps bounding
the scope of the logical component. The thinkLet BucketWalk ensures consensus
among participants about the appropriateness of the scope of the logical components.

Muhammad Asim Noor, Paul Grünbacher, Christopher Hoyer

This task is repeated for each prospective product and results in improved definitions
of the logical components. The results can be refined in task 6 when performing a
more detailed analysis of the existing system. This task can be supported by feature
location approaches (e.g., [32]) or scenario-based traced analysis techniques [33]
depending on the complexity of the system and the knowledge of the stakeholders.

Task 5: Map Features to the Logical Components. Participants identify links be-
tween logical components and the features from the product map. This task is per-
formed in a similar manner as the previous task using the thinkLets PopcornSort and
BucketWalk. Each feature is assessed and assigned to the appropriate logical compo-
nent. The task is repeated for every product. The goal of tasks 4 and 5 is to establish
initial coarse-grain traceability between features, logical components and source code.
This traceability allows the visualization of the logical components and eases later
design activities. Even if traceability links exist (e.g., between requirements, design
artefacts and source code) the above two tasks may be performed to take into account
the new abstraction layer of logical components.

Task 6: Review Reusability Metrics of Logical Components. Participants review
the logical components using the thinkLet ReviewReflect. For each package thought to
be reusable in the logical component, they go through the information provided in the
subsystem summary. Mainly, the different implications for the efforts required for
reusing the package are reviewed. First, participants collaboratively go through the
information (functional summary and metrics of each package) and add their opinion.
Questions they try to answer include ‘What are the challenges in reusing this pack-
age?’ or ‘What reengineering techniques are suitable for this package?’. Later, the
collected comments are discussed in a moderated fashion and a consolidated list of
issues and possible solution is created for each logical component.

Task 7: Evaluate the Reuse Potential of Logical Components. Participants esti-
mate the costs and effort required to adapt the logical component as a core asset of the
product line. The reuse effort estimation of the participants can be elicited through the
thinkLet StrawPoll, where participant have to assess the level of effort required to
tailor a particular logical component. In case stakeholders cannot agree about the
efforts required to tailor a certain logical components the thinkLet CrowBar is used
followed by the thinkLet MoodRing to reveal the reasons for disagreement. This proc-
ess is repeated for each logical component. The result of this task is an initial estimate
of cost/effort for adapting the logical components. These estimates are intended for
selecting the most promising components for adaptation during planning while more
formal cost estimation approaches can be used at design time. The task is repeated for
each product.

Task 8: Prioritize Logical Components for Reuse. In this task the logical compo-
nents are prioritized for further investigation at design time and later adaptation. It is
accomplished through the thinkLet StrawPoll, which is conducted by electronic vot-
ing. Participants assign values on a scale of 4 to each logical component. Two pa-
rameters are used: (i) the value of reuse and (ii) the effort required to reuse the logical
component. Logical components which require less tailoring effort and have the high-
est business value will be assigned a top priority. In case of significant differences of
opinion the thinkLets CrowBar and MoodRing are executed as in the previous task.
This task concludes the RPA process and produces a list of the most promising candi-
date logical components for further adaptation and refinement as core assets.

A Collaborative Method for Reuse Potential Assessment in Reengineering-Based Product Line
Adoption

4. Initial Evaluation

We conducted a pilot case study to assess the usefulness of the proposed collaborative
process and the usability of the supporting tools. The study was a fictitious organisa-
tion developing a product line for project management tools based on open source
code assets. In order to define the desired product line, a group of three domain ex-
perts developed a product map containing 120 features, 14 domains and three prod-
ucts for the project management domain. The feasibility study was based on the open

source systems Gantt Project2 and Project Factory3: The size of Gantt Project is 51
packages, 492 classes and is 63 KLOC. The size of Project Factory is 16 packages,
140 classes and 29 KLOC.

Fig. 4. Package summary containing Reusability metrics.

Three engineers participated in this case study. The process was conducted in three

workshops with duration of approximately 4 hours each. As preparation for the work-
shop the moderator (i) defined the agenda according to the tasks identified in this
paper, (ii) uploaded the feature map of the product line to the collaboration tool
GroupSystems, and (iii) uploaded the package list and package summaries containing
the reusability metrics to the collaborative tool (see Figure 4). The feature map was
developed prior to the workshop following the method described in [4, 21, 22].

2 http://sourceforge.net/projects/ganttproject
3 http://sourceforge.net/projects/projectfactory/

Muhammad Asim Noor, Paul Grünbacher, Christopher Hoyer

In order to extract the reusability metrics a static analysis was conducted by one
software engineer for both products. Source code metrics such as cyclomatic com-
plexity, data abstraction coupling, fan-out, non commented line of code, size of the
class and size of the methods, are reported in literature to be useful indicators of the
reusability of the code [19, 34]. Generally, it is assumed that the lower the value of
above mentioned metrics the more reusable is that source code [34]. These combined
metrics were used to complement the overall picture and help to identify the reusable
software elements.

Cyclomatic complexity, non-commented line of code, and size of method were
measured at method level. The remainder at class level. We used the open source tool
CheckStyle (available as an Eclipse plug-in) to calculate these metrics. The default
threshold values of CheckStyle (for above mentioned metrics) were used. These val-
ues concur with existing literature in the field of software maintenance and evolution
[19, 35]. Table 1 shows a brief description of the metrics, along with the default
threshold values of CheckStyle.

Table 1. Metrics Applied in the static analysis.

Metric Level Description Value
Cyclomatic
Complexity

Method A measure for the minimum number of possible paths
through the source and therefore the number of required
tests.

10

Coupling Class A measure for the number of instantiations of other classes
within the given class.

7

Fan-out Class A measure for the number of other classes a given class
relies on.

20

NCSS Method A measure for the number of non-commented source state-
ment within a method.

50

BEC Line A measure for the number of &&, || and ^ in an expression.
(BEC = Boolean expression complexity).

3

File Size Class A measure of the file size in lines of code. 2000
Method Size Method A measure for the method size in lines of code. 150

Table 2 shows the consolidated summary of these metrics for one of the products

assessed, i.e., Gantt project. For example, among 492 classes of Gantt Project 51
classes have a class data abstraction coupling of more than 7. Among these 51 classes
the average class data abstraction coupling is 18. Further analysis shows that these are
mainly those classes which primarily deal with the GUI (in the case of Gantt Project
they use Java Swing components). This indicates coupling is not a big hindrance
when reusing the Gantt Project source code.

Table 2. Gantt Project metrics.
Metric # of violations Average violations value

Cyclomatic complexity 45 15
Coupling: 51 18
Fan-out 36 38
NCSS (Non-commented lines of code) 35 97
BEC (Boolean expression complexity) 3 9
File Size 2 2539
Method Size 12 230

A Collaborative Method for Reuse Potential Assessment in Reengineering-Based Product Line
Adoption

Overall, these metrics indicate that the Gantt Project implementation is not overly
complex as only 45 methods exceed the threshold complexity value. Mostly, these
methods handle XML tags as data is stored in XML files. Most classes are within an
acceptable range of coupling and fan-out. There are only two classes and 12 methods
which violate the modest limit (2000, 150 LOC). The code is mostly well commented.
The extracted metrics indicate that components can be extracted from Gantt Project
implementation without excessive difficulty. Similar metrics were extracted from
Project Factory but are not reported in this paper due to space limitations. These met-
rics were added in the package summary for easy perusal of the participants. The
package level summary serves as a quick reference of the package implementation
and is used to define the logical components (task 3) and to review the reusability
metrics of the logical component (task 6).

In the following, we describe the enactment of each task in the pilot case study:
The first two tasks were performed once in the beginning whereas task 3 was repeated
for the two analyzed products. Tasks 4 to 7 were repeated for each logical component.
The first tasks (Review process objective and reuse focus and Review product line
feature map) were accomplished by conducting the thinkLets ReviewReflect and
BucketWalk respectively. The small number of participants who had already jointly
developed the process and product map earlier simplified these tasks. However, in
more realistic settings a presentation about the agenda would be needed to explain the
purpose and objectives of the exercise. The focus of the reuse was on GUI elements,
algorithms and cohesive functionality (e.g., forecasting, Gantt chart) in the source
code.

The third task was to identify logical components from the source code. In Fig. 5
coloured entries represent the identified logical components. Participants used the
thinkLet LeafHopper to identify the logical components. This task was performed for
both products simultaneously. In total the team identified 23 logical components from
Gantt Project. Many logical components were later found to be of too limited size or
use but no new components were added. Different team members had identified logi-
cal components at different level of granularity, which did not raise problems as logi-
cal components were refined in subsequent steps. Logical components were also fil-
tered out if considered as inappropriate based on selected criteria (e.g. the minimum
size of the implementation encompassed by the logical component).

Due to the tight schedule of the team members at the time of the case study task 4
(Map Technical Solution Packages to Logical Components) and task 5 (Map Features
to the Logical Components) were performed asynchronously. This allowed creating a
better visualization of the logical components, which was also necessary to support
the detailed analysis in task 6 as detailed traceability reports where unavailable for the
selected open source applications.

Task 6 (Review reusability metrics of logical component) was accomplished by
conducting the thinkLet ReviewReflect. The participants created a consolidated list of
issues and opinions for each logical component as shown in Fig. 5. This task aimed at
collecting information about the reusability of packages (in order to realize the logical
component) from the calculated metrics and the technical knowledge and experience
of the people with these packages.

Muhammad Asim Noor, Paul Grünbacher, Christopher Hoyer

Fig. 5. Consolidate list of issues of a logical component (output of task 6).

Task 7 (Evaluate the Reuse Potential of Logical Components) is supposed to be

performed directly after task 6 so that participants still have the findings of the previ-
ous step in their minds. However, in our case study the team did not perform this task.
Estimates of effort and cost can only be made on the basis of above mentioned infor-
mation if the team has in depth knowledge of the system. Such knowledge is available
only for people that have been involved in the design, development or maintenance of
the product. The teams in our case did not have such an intimate knowledge. Instead,
the prioritization of the logical components was performed directly after task 7.

Lastly, the prioritization (task 8) was done using a collaborative voting tool. First,
the team members assessed the business value and the ease of reuse of each compo-
nent on a scale of 4. The average of these two values determined the priority of the
component. Table 3 shows the list of prioritized high level logical components begin-
ning with the components having highest priority.

Table 3. Prioritized high level logical components.

Logical Component # of Packages # of Classes Total Size
GUI Components 11 103 13 KLOC
Task Management 6 67 7 KLOC
Gantt Chart 3 51 7 KLOC
IO Handling 4 51 6 KLOC
Calendar and Time Mgmt 3 31 3 KLOC
Actor (resource) Mgmt 2 19 2 KLOC
Test Suite 1 22 2 KLOC
Project Forecast (Factory) NA 2 1 KLOC
Project Management 1 46 17 KLOC

A Collaborative Method for Reuse Potential Assessment in Reengineering-Based Product Line
Adoption

These components have a similar business value as all are important in a project man-
agement application. Their priority is mainly determined on the basis of ease of reuse.

We started the case study with two products offering quite similar functionality.
We aimed at identifying reusable components from these two products which can be
modified and used as core assets of a product line in the project management domain.
Out of 9 components identified for reuse, 8 come from Gantt Project and only the
component “Project Forecast” comes from Project Factory.

It is essential that people with intimate technical knowledge of the products par-
ticipate in the reuse potential assessment. Without such knowledge identifying rele-
vant logical components and creating traceability links between features, logical com-
ponent and physical component of the technical solution is difficult. The case study
team also suffered to some extent from these problems due to a lack of in-depth
knowledge of the products. It identified 9 components that can be reused as core as-
sets in the product line (as shown in table 3) based on an initial list of 24 and 13 can-
didate components from Gantt Project and Factory respectively.

5. Conclusions and Future Work

We presented a collaborative approach for reuse potential analysis that is intended to
complement more formal approaches for reengineering legacy assets in the area of
product line planning. The process aims at supporting a team to collaboratively iden-
tify components with a high reuse potential from different legacy products. The proc-
ess also increases the understanding of traceability and the dependencies between
features and technical solution components and provides initial estimates for the effort
of reuse. The presented process relies on the careful selection of stakeholders to en-
sure the knowledge and experience required. Absence of such knowledge and experi-
ence will undermine the collaborative aspects of the process and force the team to rely
on more formal approaches, i.e., reverse engineering.

Due to our experience with collaboration engineering methods and thinkLets in
other areas of software engineering such as requirements negotiation, risk manage-
ment, or software inspection we expect this collaborative process to scale well in a
real-world product line setting. The experience gained in the feasibility study con-
firms these findings. We will use the process in near future with an industrial partner
specialized in ERP solutions who is currently shifting to a product line approach. The
experiences also confirm that thinkLets can be effectively supported by collaborative

tools, in our case a Group Support System (GSS4) tool was used to support the stake-
hoder collaboration.

4 http://www.groupsystems.com

Muhammad Asim Noor, Paul Grünbacher, Christopher Hoyer

References

1. Clements, P. and L. Northrop, Software product lines: practices and patterns. 2002: Addi-
son-Wesley Boston.

2. Boeckle, G., P. Clements, J.D. McGregor, D. Muthig, K. Schmid, A.G. Siemens, and G.
Munich, Calculating ROI for software product lines. IEEESoftware,, 2004. 21(3): p. 23-
31.

3. Aversano, L. and M. Tortorella, An assessment strategy for identifying legacy system
evolution requirements in eBusiness context. J. Softw. Maint. Evol.: Res. Pract, 2004. 16:
p. 255-276.

4. Noor, M.A., P. Grünbacher, and R.O. Briggs, Defining a Collaborative Approach for
Product Line Scoping: A Case Study in Collaboration Engineering. IASTED Conference
on Software Engineering (SE 2007) Innsbruck, Austria February 13, 2007

5. De Lucia, A., A.R. Fasolino, and E. Pompelle, A decisional framework for legacy system
management. Proceedings of IEEE International Conference on Software Maintenance,
2001, 2001: p. 642-651.

6. Ransom, J., I. Sommerville, and I. Warren, A Method for Assessing Legacy Systems for
Evolution. Proceedings of Reengineering Forum, 1998. 98.

7. Software Engineering Assessment HandBook Version 3, in Available at URL:
http://www.swen.uwaterloo.ca/~kostas/ECE750-3/srah.pdf 1997 last checked: 9-08-07,
DoD US.

8. Bergey, J.K., L. O'Brien, and D. Smith, Options Analysis for Reengineering (OAR): A
Method for Mining Legacy Assets. 2001: Carnegie Mellon University, Software Engineer-
ing Institute.

9. Caldiera, G. and V.R. Basili, Identifying and qualifying reusable software components.
IEEE Computer, 1991. 24(2): p. 61-70.

10. Sneed, H.M., Planning the reengineering of legacy systems. IEEE Software 1995. 12(1):
p. 24-34.

11. DeBaud, J.M., O. Flege, and P. Knauber, PuLSE-DSSA—a method for the development of
software reference architectures. Proceedings of the third international workshop on
Software architecture, 1998: p. 25-28.

12. O'Brien, L. and D. Smith, MAP and OAR Methods: Techniques for Developing Core
Assets for Software Product Lines from Existing Assets. 2002: Carnegie Mellon Univer-
sity, Software Engineering Institute.

13. Stoermer, C. and L. O’Brien, MAP-Mining Architectures for Product Line Evaluations.
Proceedings of the IEEE/IFIP Working Conference on Software Architectures, Amster-
dam, The Netherlands, Aug, 2001: p. 35–44.

14. Boehm, B., A view of 20th and 21st century software engineering. Proceeding of the 28th
international conference on Software engineering (ICSE '06) 2006: p. 12-29.

15. Briggs, R.O., d.V. G.J., and J.J.F. Nunamaker, Collaboration Engineering with ThinkLets
to Pursue Sustained Success with Group Support Systems. Journal of Management Infor-
mation Systems, 2003. 19(4): p. 31-64.

16. Briggs, R.O., G.J. De Vreede, J.F. Nunamaker Jr, and D. Tobey, ThinkLets: achieving
predictable, repeatable patterns of group interaction with group support systems (GSS).
Proceedings of the 34th Annual Hawaii International Conference on System Sciences,
2001: p. 9.

17. Grünbacher, P., M. Halling, and S. Biffl, An empirical study on groupware support for
software inspection meetings. Automated Software Engineering, 2003. Proceedings. 18th
IEEE International Conference on, 2003: p. 4-11.

A Collaborative Method for Reuse Potential Assessment in Reengineering-Based Product Line
Adoption

18. Grünbacher, P., N. Seyff, R.O. Briggs, H.P. In, H. Kitapci, and D. Port, Making every
student a winner: The WinWin approach in software engineering education. Journal of
Systems and Software, 2007. 80(8): p. 1191-1200.

19. Kolb, R., D. Muthig, T. Patzke, and K. Yamauchi, Refactoring a legacy component for
reuse in a software product line: a case study. Journal of Software Maintenance and Evo-
lution: Research and Practice, 2006. 18: p. 109-132.

20. Schmid, K., A comprehensive product line scoping approach and its validation. Proceed-
ings of the 24th International Conference on Software Engineering, 2002: p. 593-603.

21. Noor, M.A., R. Rabiser, and P. Grünbacher. A Collaborative Approach for Reengineering-
based Product Line Scoping in APLE - 1st International Workshop on Agile Product Line
Engineering 2006. Baltimore, Maryland.

22. Noor, M.A., R. Rabiser, and P. Grünbacher, Agile Product Line Planning: A Collabora-
tive Approach and a Case Study. Journal of Systems and Software (to appear),
doi:10.1016/j.jss.2007.10.028.

23. Schmid, K. and M. Verlage, The Economic Impact of Product Line Adoption and Evolu-
tion. IEEE Software, 2002. 19(4): p. 50-57.

24. Bayer, J., J.F. Girard, M. Wuerthner, J.M. DeBaud, and M. Apel, Transitioning legacy
assets to a product line architecture. ACM SIGSOFT Software Engineering Notes, 1999.
24(6): p. 446-463.

25. Ebert, C. and M. Smouts, Tricks and Traps of Initiating a Product Line Concept in Exist-
ing Products. Proceedings of the 25th International Conference on Software Engineering
(ICSE'03), 2003: p. 520-525.

26. Kircher, M., C. Schwanninger, and I. Groher, Transitioning to a Software Product Family
Approach - Challenges and Best Practices. 10th International Software Product Line Con-
ference, 2006: p. 163- 171.

27. Briggs, R.O., G.L. Kolfschoten, G.J.d. Vreede, and D.L. Dean. Defining Key Concepts for
Collaboration Engineering. in Americas Conference on Information Systems. 2006. Aca-
pulco, Mexico:AIS.

28. De Vreede, G.J., G.L. Kolfschoten, and R.O. Briggs, ThinkLets: a collaboration engineer-
ing pattern language. International Journal of Computer Applications in Technology,
2006. 25(2): p. 140-154.

29. Kolfschoten, G.L., J.H. Appelman, R.O. Briggs, and G.J. de Vreede, Recurring patterns of
facilitation interventions in GSS sessions. Proceedings of the 37th Annual Hawaii Interna-
tional Conference on System Sciences, 2004: p. 19-28.

30. Boehm, B.W. and R. Ross, Theory-W software project management principles and exam-
ples. IEEE Transactions on Software Engineering 1989. 15(7): p. 902-916.

31. Harder, R.J., J.M. Keeter, B.W. Woodcock, J.W. Ferguson, and F.W. Wills, Insights in
Implementing Collaboration Engineering. Proceedings of the 38th Annual Hawaii Inter-
national Conference on System Sciences, HICSS'05, 2005: p. 15b-15b.

32. Eisenbarth, T., R. Koschke, and D. Simon, Locating features in source code. IEEE Trans-
actions on Software Engineering, 2003. 29(3): p. 210-224.

33. Egyed, A., A Scenario-Driven Approach to Traceability. Proceedings of the 23rd Interna-
tional Conference on Software Engineering (ICSE), Toronto, Canada, 2001: p. 123-132.

34. Barnard, J., A new reusability metric for object-oriented software. Software Quality Jour-
nal, 1998. 7: p. 35-50.

35. McCabe, T.J. and C.W. Butler, Design complexity measurement and testing. Communica-
tions of the ACM, 1989. 32(12): p. 1415-1425.

