A Case Study on the Impact of Refactoring
on Quality and Productivity in an Agile Team

Raimund Moseét Pekka Abrahamssgnwitold Pedryc?, Alberto Sillitti*, and
Giancarlo Sucéi

1Free University of Bolzano-Bozen, ItaBYTT Electronics, Oulu, Finland,University of
Alberta, Canada

rmoser@unibz.it, pekka.abrahamsson@uvitt.fi, pedryez@alberta.ca, asillitti@unibz.it,
gsucci@unibz.it

Abstract. Refactoring is a hot and controversial issue. Stppoclaim that it
helps increasing the quality of the code, makinggsier to understand, modify
and maintain. Moreover, there are also claims tb&ctoring yields higher
development productivity — however, there is onfgited empirical evidence
of such assumption. A case study has been condtmtassess the impact of
refactoring in a close-to industrial environmentsi&es indicate that refactoring
not only increases aspects of software quality,dism improves productivity.
Our findings are applicable to small teams workimgsimilar, highly volatile
domains (ours is application development for moldlevices). However,
additional research is needed to ensure thatdhideed true and to generalize
it to other contexts.

Keywords: Refactoring, Software process, Methodologies, Softwnetrics

1 Introduction

Fowler defines refactoring as “a change made tarttegnal structure of software to
make it easier to understand and cheaper to medthout changing its observable
behavior” [17]. In Agile Methods refactoring is amegral part of the development
process; it is adopted to improve continuously gtrecture and understandability of
source code during development. In the agile conityiinis widely accepted that

refactoring contributes to confine the complexifysource code and has a positive
impact on the understandability and maintainabitifya software system: frequently
refactored code is believed to be easier to uramistcorrect and adjust to new
requirements.

A growing number of studies address the relatignglgitween refactoring and the
internal structure of source code and its impacpmyram understanding, software
quality, and the evolution of a software designeacellent overview is given in [25].
Most of these studies focus on the following issues

» Impact of refactoring on the structure of the seurade [6]
» ldentification of code smells to locate possibléackorings [7], [15], [28],
[32]

Raimund Moser, Pekka Abrahamsson, Witold Rexjlberto Sillitti, Giancarlo Succi

» In reverse engineering, how refactoring can recansthe overall design of
existing systems [12] and improve the quality gfdey code [26]

Mens et al. [25] define and discuss different refactoring tiés related to the
issues mentioned above: In this research we fooume particular topic, namely the
assessment of the effect of refactoring on soméitgudaracteristics that depend or
have an impact on software maintainability bothrfréhe point of view of the
software product and the software process [14]y@elv empirical studies analyze
the impact of refactoring on code quality: Demejji] analyzes whether refactoring
has a negative impact on program performance; Bod Mens [6] develop a
framework for analyzing the impact of refactoring mternal quality metrics, but
they do not provide any experimental validatiommindustrial environment. Stroulia
and Kapoor [33] perform a case study in an academitronment, where it is shown
that size and coupling metrics of a software sysiesrease after refactoring. Beis
al. [7] propose refactoring guidelines for enhancimipesion and coupling metrics
and obtain promising results by applying them omp@n source project. Simehal.
[32] follow a similar strategy. Sahraoeti al. [29] use quality estimation models for
analyzing whether some object-oriented metrics lmamused for detecting situations
where a particular transformation of source coddatoring) can be applied to
improve the quality of a software system. Agaireytldo not validate their approach
within an industrial case study or experiment. ¥ual. [35] use a modeling
framework for non-functional requirements and eelafactorings to soft goals. They
perform a case study, which shows that refactoriag be measured as the
transformation on the state of program in the duaBpace. Tahvildari and
Kontogiannis [34] investigate the use of metrics detecting potential design flaws
and for suggesting potentially useful transformadidor correcting them. Finally,
Kataokaet al. [20] provide a quantitative evaluation of maintdiilidy enhancement
by refactoring. For the purpose of validation tlemalyze a project developed by a
single developer, but do not provide any information the development
environment. Thus, it is questionable if their fings are valid in a different context
where development teams follow a structured proeesbs use common software
engineering practices for knowledge sharing.

In the context of Agile Methods there are sevelaints that refactoring provides
four significant advantages [17]:

» Refactoring helps developers to program faster

» Refactoring improves the design of the software
» Refactoring makes software easier to understand
» Refactoring helps developers to find bugs

The first advantage relates to productivity angrisbably the most important for
managers who are mainly concerned with time to etarklevertheless, there is
almost no solid, empirical, and quantitative evitkenf such claim, apart from a small
case study, where it appeared that refactoringedsed the long-term productivity
[1]. Recently Schofieldtt al. [30] performed a return on investment analysisaan
open source project in order to estimate savinggfort, given a specific (beneficial)
code change. They found that, most of the timectefings have beneficial impacts
on maintenance activities, and thus are motivatah fin economic perspective.

The last three advantages of refactoring referoftwsre quality attributes. We
have previously mentioned some studies that andhgénpact of code restructuring

A Case Study on the Impact of Refactoring
on Quality and Productivity in an Agile Team

induced by refactorings on internal product mefriadich are typically used to
measure quality attributes, such as complexity,pling and cohesion. Such early
results are promising, still there is a need fgrddditional empirical validation to
better understand and generalize the findings, (@)da clear linkage to external
quality attributes, such as number of defects.

Altogether, the real advantages of refactoringsgiteto be fully assessed [24]. In
particular, it is not yet clear whether refactoringreases developer productivity and
the extent to which refactoring improves softwarngaliy. As regards quality, it
appears to be a convergence of positive remarits,vathout solid quantification.
Needless to say, a major impediment for a deepeéerstanding of these issues is a
lack of empirical investigation, based on hard dataing from industry.

The paper is organized as follows. In Section 2, describe our research
methodology and the experimental set-up. In Se@iowe present a case study and
discuss the results obtained from it; in Sectiowé, discuss the limitations of our
approach. Finally, conclusions and implicationstlod investigation are drawn in
Section 5.

2 Research Methodology and Experimental Set-up

In order to investigate a research problem we hHawefine (a) the objectives and
hypotheses of the study, (b) the variables alonip Wie metrics used to measure
them, (c) the instruments used in the experimedttae data collection procedure,
and (d) the data analysis method. We will discumsheof these points below. The
results of the case study and threats to the walidithe experiment are presented in
subsequent sections.

2.1 Research Hypotheses

Software is naturally subjected to continuing chegrigcreasing size and complexity
and therefore declining maintainability. In partamn) in the one-way traditional
development process, internal code measures testow a continuous increase in
complexity and coupling and a decrease in coheafonew features are added to a
software system. This natural process of code smmnas even more manifest as time
goes by [21]. More complex and intertwined codenisre difficult to manage and
maintain; therefore, we expect that also develognmoductivity will show a
decreasing trend over time. In contrast, in XP-ljx@cesses, thanks to its agile
practices (in particular constant refactoring, utgsting, frequent releases), the
complexity of the code and the effort for addingvnfeinctionalities is claimed to
remain about constant or to grow very slowly [3pftttunately, due to high costs of
industrial software development we are not ableutba formal experiment with an
industrial partner where we could analyze two simprojects, one developed using
XP practices and one without, and compare diretity evolution of respective
quality and productivity metrics.

Raimund Moser, Pekka Abrahamsson, Witold Rexjlberto Sillitti, Giancarlo Succi

We have to content ourselves with a simpler apgrodée focus only on one XP
practice, namely refactoring, and compare changgwanluctivity before and after
explicit refactorings and use such comparison #@seria for assessing the impact of
refactoring on it. As regards quality and maintaifity, we determine the changes of
several design metrics after arplicit refactoring has been applied and compare
changes with the average daily changes per iterdtithey are significantly different
(improved) we then conclude that refactoring hgsositive effect on code quality
and, as a consequence, on software maintainaMiigydefine in section 2.2 what we
intend byexplicit refactorings in the context of our study.

Framed in terms of research questions, we aim edepting evidence that will
allow us to reject (or accept) the following twdlrypotheses:

« HC%: after anexplicit refactoring the average productivity for the consecutive
development iteration is the same as for the ptesviteration.

« H%: the considered internal quality metrics (compexicoupling, and
cohesion) do not show any improvement afteregplicit refactoring with
respect to their average daily changes.

In order to obtain more reliable and smoother tesué do not simply compare the
changes of productivity and quality metrics befared after the application of a
refactoring. Such changes could happen by chanteause of some other factors
we do not control within this case study (for exéenmood of developers, work on
particular part of the code, problems with toolfiem XP practices). To minimize the
influence of random and uncontrolled changes we paoe average productivities
between development iterations (the one in whictesplicit refactoring has been
applied with the following iteration). Also for thguality metrics we compute their
average daily changes and compare them with thagesainduced by aexplicit
refactoring.

2.2 Explicit Refactorings, Productivity, and Quality

In more traditional development processes, refaxgoris present in ordinary
maintenance tasks or extraordinary maintenanceeqqj in order to improve
software maintainability [20]. The context of ounafysis however is an agile
development process, namely a tailored versionxtene Programming [2]; in such
environment refactoring is an integral part of waite development. Kent Beck
illustrates the principle of agile development wttie two hats metaphor: One is
adding new functionality (coding) and the otherafactoring. The developer should
swap frequently between these two hats but weagr @mé at a time. Therefore, we
assume that developers apply small refactorings Ektract Method, Rename,
Simplify Conditional, Move Method/Field, and so [rY] throughout development —
without even documenting it. We believe that akgh small refactorings improve
slightly the quality of the code and increase oWNed®velopment productivity
compared to a development process, which doessedte practice of refactoring.
However, due to the lack of empirical data (of teamparable software projects,
one developed using an agile and one using aitraditmethod) such comparison is
out of scope of this research. Instead, we anahaeffect ofexplicit refactorings on
productivity and quality within the same proje&xplicit refactoring means that

A Case Study on the Impact of Refactoring
on Quality and Productivity in an Agile Team

developers wroteexplicitly a user story for refactoring tasks and that the
implementation of such user story took a consideramount of time — in our case
even several hours.

For the time being, we do not identify differenh#s of refactorings and analyze
separately the impact of each type of refactoringpooductivity or quality. After
having defined what we intend kexplicit refactoring we have to define the other
variables of interest for this research, namelyetlgsment productivity and metrics
for software quality and in particular maintainalil

Lots of work has been done on how to measure dpeeddb productivity [16].
However, no definitive measure has been found artigps such definite measure
does not exist. A very simple measure of produstiis the ratio of lines of code
(LOC) produced and effort in hours spent in prodgdhem:

LOC

roductivity =
P y Effort

In this research we use this equation becauses airitplicity and expressiveness.
In addition, programmers are all working in goodhfa- they volunteered for this
experiment, the effort spent in activities othartltoding has been closely monitored
and evenly distributed, code reuse has been clasmlytinized also via the CVS
repository, and no code generators have been used.

Software quality is a composite property of manieinal and external software
attributes. There has been a lot of discussiorhemteaning of software quality [23],
[5]. It is now commonly agreed [16] that softwaneatity is a property defined by
several small-scaled and directly measurable ate# In this research we use
complexity, coupling, and cohesion metrics, asragfiby Chidamber and Kemerer
(CK) [10]; such measures are widely accepted bgtipriactitioners and researchers
and validated by several previous studies [4], [[®laddition, such measures are easy
to collect and to understand, a precondition feirteffective use [19].

Software maintainability is related both to softevaquality (it is considered as a
quality factor) and cost, as good maintainabilify software reduces significantly
maintainance effort [11]. An XP project is constgiih the state of maintainance [3],
therefore, besides quality measures also evoluifodevelopment productivity is a
good indicator for its maintainability. The CK mef include measures for
complexity (WMC) and coupling (CBO) of object-orted systems: Both of them are
related to software maintainability as an increafssoftware complexity and coupling
deteriorates its understandability [18].

2.3 Data Collection

The software project we analyze was developed wuminggile, XP-like methodology
tailored by Abrahamssost al. [2]. Therefore, data collection had to (& non-
invasive to preserve the agile nature of the ptajself [27], and(b) accurate and
reliable for doing meaningful statistics.

Raimund Moser, Pekka Abrahamsson, Witold Rexjlberto Sillitti, Giancarlo Succi

In order to achieve these two goals we use the PR@M [31] for collecting
product and effort metrics. PROM is a fully autoethimeasurement framework for
software engineering processes and products. Scod® metrics are extracted daily
from the source code management system employ¢debsgompany. PROM enables
the automatic collection of the effort associatathwlifferent tasks such as reading
documents, browsing the web and coding. In padic@ plug-in for the IDE in place
collects the time spent by developers for codingyiies for individual methods and
classes. Effort data for coding is collected amsa® the developer enters the cursor
in the source code editor of the IDE and ends é&f ¢ditor is off focus, the IDE is
closed or the screensaver is activated. Moreo\ROM allows the user to specify if
one or two programmers are sitting in front of echiae.

The notion of effort adopted in this context isosgly related to only coding
activities and does not include the time spentudising about the design/code on a
whiteboard; however in an XP-like process, whidelit assigns to coding activities
the highest importance, this measure is a reasemabasure for development effort.
Both source code metrics and effort data are iatedrand stored automatically in a
central database, from which we access the dataufoanalysis.

To collect the product and process metrics listedable 1 with the PROM tool,
we adopt the following data collection procedure:

» Every day at midnight the source code metrics ateaeted from a CVS
repository.

* A plug-in for Eclipse (the IDE used by developersllects automatically the
time spent for coding on individual classes andhods.

» We identify the days on which explicit refactorirey® applied from the user
stories (described in the project plan).

Table 1 provides an overview of the informationtthame from PROM and is
used in this research.

Table 1. Sample data collected by PROM and aggregated yatens level. All metrics are per
day.

CK Effort Productivity
Day | LOC metrics (hour) (LOC/hour)

22 150 30,7,5,3 4.24h 35.3

We aggregate metrics at a system level (we adalligingle classes) and compute
their overall changes per day in the case of prochetrics and the total time spent
for coding per day in the case of effort. The wag aggregate metrics is a first
approach and could be refined: We could for exarnt#atify the classes affected by
refactoring using a technique presented in [12)] ghd use only them for analyzing
changes in quality and productivity. Whether thisuld change our findings, has to
be assessed in a future analysis.

A Case Study on the Impact of Refactoring
on Quality and Productivity in an Agile Team

2.5 Data Analysis Method

Our research design is to some extent a one-faepgated-measures design: The
treatment (in our case refactoring) is applied éntic the same subjects. We use box-
plots for comparing the means of different popolasi (before-after refactoring
productivity). In addition we perform a Wilcoxonnia sum test [22], as we cannot
assume a normal distribution and homogeneity déwae of data.

As regards the quality metrics we proceed in thieviong way: first, we compute
their changes at the end of a day when developgiged an explicit refactoring with
respect to the previous day. Then, we use a WiltoS@ned-Rank [22] test to
conclude whether these changes are lower thanvdrage daily changes per iteration
or not. Our final goal is to disprove the null hiljpeses by using the Wilcoxon
Signed-Rank tests to determine (a) if the developnpeoductivity is higher after
refactoring than before, and (b) if quality metrigee significantly improved by
refactoring with respect to their average changes.

3 Case Study

In the following section, first we describe the tmt of the case study; afterwards,
we present and discuss the results of our analysis.

3.1 Context of the Case Study

The object under study is a software project in agile, close-to-industrial
development environment (“close-to-industrial” msféo an environment where the
development team is composed of both professiarfalvare engineers and students
[2]). The result is a commercial software produeteloped at VTT in Oulu, Finland,
to monitor applications for mobile, Java enabledicks. The programming language
was Java (version 1.4) and the IDE was Eclipse ™e. project was a full business
success in the sense that it delivered on timeoarsldget the required product.

Four developers formed the development team. Tdiegelopers had an education
equivalent to a BSc and limited industrial expecenThe fourth developer was an
experienced industrial software engineer.

The development process followed a tailored versiotihe Extreme Programming
practices [2], which included all the practicesXd¢t but the “System Metaphor” and
the “On-site Customer”; there was instead a lomaisite manager that met daily with
the group and had daily conversations with thesd#-customer. In particular, the
team worked in a collocated environment and usecpthctice of pair programming.
The project lasted eight weeks and was divided fin iterations, starting with a 1-
week iteration, which was followed by three 2-wedlesations, with the project
concluding in a final 1-week iteration. Throughadiie project, mentoring was
provided on XP and other programming issues acogrth the XP approach. Since
the team was exposed for the first time to an XB-firocess, a brief training of target
XP practices was given before the start of theqmtoj

Raimund Moser, Pekka Abrahamsson, Witold Rexjlberto Sillitti, Giancarlo Succi

The total development effort per developer was &€& hours (6 hours per day
for 32 days). Since with PROM we monitored all theeractions of the developer
with different applications, we are able to diffietiate between coding and other
activities: About 75% of the total development effwvas spent for pure coding
activities inside the IDE while the remaining 25%saspent for other assignments
like working on text documents, reading and writiemgails, browsing the web and
similar tasks. The developed software consistsOod@va classes and a total of about
1770 Java source code statements (LOC countedmalsemwf semicolons in a Java
program).

During development two user stories have been @Hpliwritten for refactoring
activities: One at the end of iteration two witle ttitle “Refactor Static Classes to
Object Classes” and one at the end of iteratiorr faith the title “Refactor
Architecture”. We refer to the implementation oEs$le two user stories as explicit
refactorings; we analyze changes of productivitd guality measures before and
after their completion.

3.2 H, — Does Productivity Increase After ‘explicit refactorings’?

Figure 1 shows the evolution of the average pradtytper iteration over the
whole development period.

301 n
- Average productivity per iteration
== QOverall average productivity

LOC
HOUER

28

26

24

Productivity in

22} ™

Q- Refactoring 1

18

Refactoring 2
16
u

2 I I I |
1st1|teration 2nd iteration 3rd iteration 4th iteration 5th iteration

Fig. 1. Average development productivity per iteration.

The productivity is almost the same in iterations 2, and 4, (about 15
LOC/HOUR) while it is significantly higher in itetians 3 and 5 (more than 22
LOC/HOUR). This distribution is interesting for tweasons: First, productivity does
not show a decreasing trend during software devedop as we were expecting due
to higher effort for adding new functionality agthystem’s complexity and coupling
is growing. Second, whenever developers perforraxphcit refactoring — i.e. at the
end of iteration 2 and at the end of iteration greductivity of the following iteration

A Case Study on the Impact of Refactoring
on Quality and Productivity in an Agile Team

is significantly higher than average productivitiytbe remaining iterations. For the
data under scrutiny we can only measure changgsoafuctivity after twoexplicit
refactorings (treatments). With such small sample size staéibttests are hardly
applicable as significance values are rather metasn. Instead we prefer to use a
box-plot for visualizing the difference in produdty in the before-after refactoring
situations.

Figure 2 shows a box-plot of the average produgtipier iteration throughout
development. Moreover, we draw two dashed lineg owlicating the average
productivity for the iteration following the firgxplicit refactoring, the other for the
iteration following the secondexplicit refactoring. We can observe a clear
improvement of productivity for both cases withgest to average productivity.

For the sake of completeness we perform a Wilcaxak sum test to compare
productivity after the 2 refactorings with averageoductivity of the remaining
iterations. As expected, given our small sample,size obtain a p value of 0.2
meaning that we cannot rejecfHneither for refactoring 1 nor for refactoring 2.
Overall, we can conclude that the productivity dsdatain the claim that refactoring
raises development productivity in the short-tetinus nullifying to some extent the
complexity naturally added during development. Heeve this conclusion is more a
confirmation of a suspicion and not a clear affitiora based on statistical inference
from experimental data.

In order to consider the overall evolution of protivity throughout development,
we compare the medians of the daily productivityeach iteration using a non-
parametric Kruskal-Wallis test [22]. The result tisat they are not statistically
different from each other. In fact Figure 1 emphbesithat productivity is rather
increasing than declining towards the end of tloggut.

25 |

e Productivity after refactoring 1

Median productivity

Fig. 2. Box-plot of average productivity per iteration.

Altogether, our findings strongly advocate thataotbring of a software system
raises subsequent development productivity and eptsvin a long-term its
deterioration.

Raimund Moser, Pekka Abrahamsson, Witold Rexjlberto Sillitti, Giancarlo Succi

3.3 H% — Cohesion, Coupling and Complexity: Does Refagiag Improve Code
Quality?

Findings of prior studies claim that refactoringpitoves some low-level quality
metrics like coupling and cohesion measures [7]this research we look at the
temporal evolution of the CBO, WMC, RFC, and LCOMtnits and how it is related
to refactoring. A visual inspection of the evoluiof these metrics (Figure 3)
evidences that their changes, from one iteratiotinéonext, tend to decrease starting
from the second iteration (1stplicit refactoring) for the CBO and RFC metrics, and
from the third for the LCOM and WMC metrics. This a first indication that
refactoring could limit the overall decrease of esibn and increase of coupling and
complexity metrics that we expect to occur duriafjwgare development.

Table 2. p-values for the one-sided Wilcoxon Signed-Rank f@stesting if the population
mean of the median of the daily changes per imnadf CK metrics is higher than the changes
after refactoring.

WMC LCOM CBO RFC
Refactoringl 0.72 0.5 0.03 0.18
Refactoring2 0.03 0.02 0.02 0.07

Table 2 gives the p-values (significant valueshatQ.05 level are set in bold face)
of the Wilcoxon Signed-Rank test for assessing hdrebr not the changes of the 4
CK metrics after the twaxplicit refactorings are the same with respect to their
average changes: We can see that all of them irapafter the second refactoring,
since their changes are significantly lower (theyia fact negative) than the average
of their daily changes. For the first refactorihgstis only true for the coupling metric
CBO. The results are not strong enough to rejégtfet both refactorings, but only
for the second and in part for the first. Stilleyhprovide confidence that with more
comprehensive experimentation on larger projectdlitbe possible to significantly
prove it.

Visually inspecting the plot (Figure 3) of the chgas of LCOM, CBO, RFC and
WMC per iteration, we also notice an interestingmdmenon: After an initial phase
of remarkable growth of these metrics, they startiécrease, most likely thanks to
refactoring. We interpret this as the people gatigea more comprehensive view of
the application to develop, and thus being ableetiber refactor the system, creating
simpler, less coupled, and more cohesive code. dere by refactoring the system
they acquire a better understanding of the progb&ing developed, which could
explain a boost in productivity (this observatiandonsistent with the findings of
other researchers [8]). Yet, this is an interpretabased on a visual inspection rather
than on a statistical test: only future researaloliing larger data samples will be
able to assess its statistical significance anidiital

Altogether, this research evidences that there \aseal indicators (in part
supported by statistical tests) that refactorirgypnts an explosion of complexity and
coupling metrics by driving developers to simplesign and as a consequence less
complex and coupled and easier to maintain code.

A Case Study on the Impact of Refactoring
on Quality and Productivity in an Agile Team

600 Q

4 WMC
“RFC

+QLCOM

~@cBo

500

Changes of CK metrics
@

Development iterations

Fig. 3. Evolution of the average changes of LCOM, CBO, RF@,\WiMC per iteration.

4 Threats to Validity

This research aims at assessing the impact ofteeiiag on development productivity
and software quality measures. The results ofrégearch are particularly interesting
as they come from a case study in a close-to-inguasintext: A situation, which is
quite rare in software engineering. However, thare a number of threats to
construct, internal and external validity of theudst that have to be addressed
properly. Those are in particular:

(a) First, the conclusions we draw depend stronglythan definition we give of
productivity and software quality and its validity industry. We define productivity
as the ratio between source code statements ara dpant for coding. Several
objections have been raised against this measurenaficious developer could
artificially inflate the number of lines of codenly coding is considered ignoring all
the other phases of development — analysis, destgncode reuse and automatically
generated code are not taken properly into accoamtt other. Despite all the
criticism, this equation is by far the most usedindustry, as it is very easy to
understand and gives clear and absolute numbeishwhe easy to compare and to
use in statistical calculations. Moreover, in tbatext of XP much emphasis is put on
coding activities; thus, development effort coiregdmostly with coding effort. In
order to support the validity of the productivityeasure used in this study it would be
interesting to run similar studies using this digifam but also a definition based on
other parameters, for instance function pointssar stories.

(b) As regarding to internal validity we have to beasgvthat with a single case
study it is not possible to infer whether or no¢ tibserved relation is a causal one.
We are not able to control and manipulate the @xfbe of other confounding factors
such as short release cycles or pair programmioagekample, the observed increase
in productivity after explicit refactorings coule explained differently: Maybe in the
iterations following anexplicit refactoring developers implemented “easy” user
stories or did not do any refactoring at all (rédaing itself decreases to some extent

Raimund Moser, Pekka Abrahamsson, Witold Rexjlberto Sillitti, Giancarlo Succi

productivity as measured in this study). Moreoveven if we were sure that
refactoring is the cause for the observed improvesnén productivity due to the

small sample size such relation is of low statidtisignificance. However,

confounding factors, which we identified in the ot of this study, are averaged
over iterations and should impact productivity amablity measures equally (i.e.
independent of specific iterations). Therefore, ave confident that the observed
effects are due to the explicit refactorings andt th larger study would provide
necessary statistical significance, which is oniggested by our results.

(c) We do not consider different kinds of refactorinsch coarse grained analysis
could bias our results: Developers may for exangmply only a limited subset of
refactorings — due to their inexperience or otlesons — and in such case we can
probably not generalize the implications for al@ttypes of refactorings. We plan to
take into account different categories of refactgsiin a more refined, future study.

(d) We sum averaged quality metrics and productivitgroall classes, whereas
probably only a few of them have been affectedHgytivo explicit refactorings. In
doing so we could misinterpret the real impact effictoring; we plan in a future
work with a larger sample size to analyze the cbangf productivity and code
quality only for the classes that have been invdbldigectly in a refactoring activity.

(e) The subjects of the case study are heterogendbree (students and one
professional engineer) and use for the first timeX&-like methodology. This could
confound our findings, as for example students rbaiave very different from
industrial developers. Moreover, also a learninfpatf could be visible and for
example be the cause for the evolution of the prtidty and quality metrics as
shown, respectively, in Figure 1 and Figure 3. Dewvers were aware that they are
monitored, but did not know that we measured inigalar productivity before and
after refactorings; we did not communicate themdhbgectives of the study as such
knowledge could influence their behavior leading Higher productivities after
refactorings.

(f) As with every case study, it is hard to generalizether, larger contexts. We
think that our findings are applicable to smallnsaworking in similar, highly
volatile domains (ours is application developmenmt mobile devices). However,
additional research is needed to ensure that ghisdieed true and to generalize it to
other contexts.

Furthermore, it would be interesting to analyze howch refactoring is “good
enough” to keep productivity high and what kindsrefactorings are important to
improve both productivity and quality.

5 Conclusions

Although agile processes and practices are gaimoge importance in the software
industry there is limited solid empirical evidermfetheir effectiveness. This research
focuses in particular on the practice of refactriwhich is one of the key practices
of Extreme Programming and other Agile Methods.

While the majority of software developers and resleers agree that refactoring
has long-term benefits on the quality of a softwam@duct (in particular on program

A Case Study on the Impact of Refactoring
on Quality and Productivity in an Agile Team

understanding) there is no such consensus regatbeglevelopment productivity.
Available empirical results regarding this issue @ery limited and not clear [1]. This
might refrain managers from adopting refactorirgytteey might be scared of loosing
resources.

This work contributes to a better understandinthefeffects of refactoring both on
code quality — in particular on software maintailigb - and development
productivity in a close-to industrial, agile devafoent environment. It provides new
empirical, industrially based evidence that refdotprather increases than decreases
development productivity and improves quality fastcas measured using common
internal quality attributes — reduces code compyexand coupling; increases
cohesion. The implications on defects are not dised, as such data are not
available. Moreover, we do not contribute in explgrthe linkage of refactoring to
other external quality attributes. Clearly, thisegtion has to be addressed in a future
study.

As regards productivity, these results are in @alittion with the previous work
of Abrahamsson and Koskela [1]. However, such olderk addressed a case that
was too limited to be taken as a reference. Fermal quality metrics, our results are
in accordance with the existing literature. Altdgat we believe that our findings are
particularly relevant, as this work is a case stindg close-to-industry environment, a
kind of empirical investigation that is rare foethesearch problem we discuss here.
Clearly, this is a first work in the area. A regeneralizable assessment of the
implications of refactoring requires several rejimtis of studies like this, possibly
also including data on defects.

The findings of this research have major implicasidor a widespread use of
refactoring, as already mentioned by Beck in histfivork on XP [3]. Of course,
refactoring as any other technique is somethingeeeldper has to learn. First,
managers have to be convinced that refactoringeig valuable for their business;
this research should help them in doing so asstasus that refactoring — if applied
properly — intrinsically improves code maintaindiiland increases development
productivity. Afterwards, they have to provide tiaig and support to change their
development process into a new one that includeSramus refactoring.

Case studies in close-to-industry contexts are kea®y in software engineering and
this gives us a remarkable confidence on the re¢udtt we have obtained. However,
it is important to remember that, formally, sucBulés are only valid in the specific
context of the study. To achieve a high level affence of them, it is essential to
replicate such case studies, also in other conadsusing different measures.

Acknowledgments. Special thanks go to development team at VTT, Okinland,
which has been disposed to install and use the PR@Mor data collection and in
the end, enabled this case study. The authors walsll like to acknowledge the
support by the Italian Ministry of Education, Unigiy and Research via the FIRB
Project MAPS (http://www.agilexp.org) and the awdomus province of South Tyrol
via the Interreg Project Software District (httwwWw.caso-synergies.org).

Raimund Moser, Pekka Abrahamsson, Witold Rexjlberto Sillitti, Giancarlo Succi

References

1. Abrahamsson, P., Koskela, J.: Extreme programmiimpirical results from a controlled
case study. In: ACM-IEEE International Symposium Empirical Software Engineering
(ISESE 2004), Redondo Beach CA, USA (2004)

2. Abrahamsson, P., Hanhineva, A., Hulkko, H., Ihifie Jaalinoja, J., Korkala, M., Koskela,
J., Kyllénen, P., and Salo, O.: Mobile-D: An Agikpproach for Mobile Application
Development. In: Proceedings 19th Annual ACM Confeeeron Object-Oriented
Programming, Systems, Languages, and Applicati@@PSLA'04, Vancouver, British
Columbia, Canada (2004)

. Beck, K.: Extreme Programming Explained: Embi@hange. Addison-Wesley (2000)

. Basili, V.R., Briand, L.C., and Melo, W.L.A.: Valtion of Object-Oriented Design Metrics
as Quality Indicators. IEEE Transactions on Sofewv&ngineering, 22(10): 267-271,
October (1996)

5. Boehm, B.W., Brown, Kaspar, J.R., et al.: Charadiesi®f Software Quality. TRW Series

of Software Technology, Amsterdam, North Hollan€78)

6. Bois, B.D., Mens, T.: Describing the impact ofaabring on internal program quality. In:
Proceedings of the International Workshop on Evoifubf Large-scale Industrial Software
Applications (ELISA), Amsterdam, The Netherlande@3)

7. Bois, B.D., Demeyer, S., Verelst, J.: Refactoringmproving Coupling and Cohesion of
Existing Code. In: Belgian Symposium on Software Restiring, Gent, Belgium (2005)

8. Bois, B.D., Demeyer, S., and Verelst, J.: Does tRefactor to Understand” Reverse
Engineering Pattern Improve Program Comprehensitm?Proceedings 9th European
Conference on Software Maintenance and Reengine@@i8lyIR 2005), Manchester, UK,
21-23 March (2005)

9. Briand, L.C., Wust, J.: Modeling Development Effor Object-Oriented Systems Using
Design Properties. IEEE Transactions on Softwagirigering, 27(11): 963-986, November
(2001)

10. Chidamber, S., Kemerer, C.F.: A metrics suite fdnject-oriented design. IEEE
Transactions on Software Engineering, 20(6): 478-48ne (1994)

11. Corbi, T.A.: Program Understanding: Challenge tfte 1990s. IBM Systems Journal,
28(2): 294-306 (1989)

12. Demeyer, S., Ducasse, S., Nierstrasz, O.: kin&efactorings via Change Metrics. In:
Proceedings of the 15th Annual ACM Conference on @ipriented Programming,
Systems, Languages, and Applications, OOPSLA’'OGndapolis, USA (2000)

13. Demeyer, S.: Maintainability versus Performan@éhat’'s the Effect of Introducing
Polymorphism?. Technical report, Lab. on Reeng.yélsiteit Antwerpen, Belgium (2002)

14. Van Deursen, A.: Program Comprehension Risks @mportunities in Extreme
Programming. In: Proceedings of the Eighth Work@anference on Reverse Engineering
(WCRE'01), Stuttgart, Germany, 2-5 October (2001)

15. Van Emden, E., and Moonen, L.: Java Qualityulasce by Detecting Code Smells. In:
Proceedings of the 9th Working Conference on Revé&msgineering. IEEE Computer
Society Press (2002)

16. Fenton, N., Pfleeger, S.L.: Software MetricsRigorous & Practical Approach. PWS
Publishing Company, Boston (1997)

17. Fowler, M.: Refactoring Improving the DesignExisting Code. Addison-Wesley (2000)

18. Henderson-Sellers, B.: Object-Oriented MetrMsasures of Complexity. p. 62, Prentice-
Hall PTR, Upper Saddle River, New Jersey, USA (1996)

19. Johnson, P.M., Disney, A.M.: Investigating Da@aality Problems in the PSP. In:
Proceedings of Sixth International Symposium onRbendations of Software Engineering
(SIGSOFT 98) (1998)

AW

A Case Study on the Impact of Refactoring
on Quality and Productivity in an Agile Team

20. Kataoka, Y., Imai, T., Andou, H., and Fukaya; A Quantitative Evaluation of
Maintainability Enhancement by Refactoring. In: Prbw’| Conf. Software Maintenance,
pp. 576-585, October (2002)

21. Lehman, M.M., Ramil, J.F., Wernick, P.D., Pefy,E., and Turski, W.M.: Metrics and
laws of software evolution-the nineties view. Imo&edings of the Fourth International
Software Metrics Symposium, 5-7 November (1997)

22. Lehmann, E.L.: Testing Statistical Hypothe§gminger-Verlag, Inc., New York (1986)

23. McCall, J.A., Richards, P.K., and Walters, GHactors in Software Quality. RADC TR-
77-369, Vols |1, 1l, lll, US Rome Air Development CentReports NTIS AD/A-049 014,
015, 055 (1977)

24. Mens, T., Demeyer, S., Bois, B.D., Stenten, kwn Gorp, P.: Refactoring: Current
Research and Future Trends. Electronic Notes in rEtieal Computer Science, 82(3)
(2003)

25. Mens, T., and Tourwé, T.A.: Survey of Softw&efactoring. IEEE Transactions on
Software Engineering, 30(2): 126-139, February £00

26. Pizka, M.: Straightening spaghetti-code wittaceoring?. In: Proceedings of the Int. Conf.
on Software Engineering Research and Practice - SB&jes 846- 852, Las Vegas, NV
(2004)

27. Poppendieck, T., Poppendieck, M.: Lean Softwaeselopment: An Agile Toolkit for
Software Development Managers. Addison-Wesley (2003

28. Ratzinger, J., Fischer, M., Gall, H.: Improvifgyolvability through Refactoring. In:
Proceedings 2nd International Workshop on Minindt&re Repositories, MSR’05, Saint
Louis, Missouri, USA (2005)

29. Sahraoui, H.A., Godin, R., and Miceli, T.: Cantnies help to bridge the gap between the
improvement of oo design quality and its autom&idn: Proc. International Conference on
Software Maintenance, pages 154-162, October (2000)

30. Schofield, C., Tansey, B., Xing, Z., Stroulia; Bigging the Development Dust for
Refactorings. In: Proceedings of the 14th Intermatio Conference on Program
Comprehension (ICPC’06), Athens, Greece (2006)

31. Sillitti, A., Janes, A., Succi, G., Vernazza, Tollecting, Integrating and Analyzing
Software Metrics and Personal Software Process. DatRroceedings of the EUROMICRO
2003, Belek-Antalya, Turkey (2003)

32. Simon, F., Steinbruckner, F., and Lewerentz, Netrics based refactoring. In: Proc.
European Conf. Software Maintenance and Reengineeping30—38, IEEE Computer
Society Press, (2001)

33. Stroulia, E., Kapoor, R.V.: Metrics of Refactgribased Development: An Experience
Report. In: The 7th International Conference on Gbfgrented Information Systems, pp.
113-122, Calgary, AB, Canada, Springer Verlag (2001)

34. Tahvildari, L., and Kontogiannis, K.A.: Metrigased Approach to Enhance Design Quality
through Meta-Pattern Transformations. In: Proc.opaan Conf. Software Maintenance and
Reeng., pp. 183-192 (2003)

35. Yu, Y., Mylopoulos, J., Yu, E., Leite, J.C., Liu, D'Hollander, E.H.: Software refactoring
guided by multiple soft-goals. In: Proceedings bé tlst workshop on Refactoring:
Achievements, Challenges, and Effects, in conjunctigth the 10th WCRE conference
2003, pp. 7-11, Victoria, Canada, November 13-1®320

