
A Case Study on the Impact of Refactoring
on Quality and Productivity in an Agile Team

Raimund Moser1, Pekka Abrahamsson2, Witold Pedrycz3, Alberto Sillitti1, and
Giancarlo Succi1

1 Free University of Bolzano-Bozen, Italy, 2 VTT Electronics, Oulu, Finland, 3 University of

Alberta, Canada
rmoser@unibz.it, pekka.abrahamsson@vtt.fi, pedrycz@ee.ualberta.ca, asillitti@unibz.it,

gsucci@unibz.it

Abstract. Refactoring is a hot and controversial issue. Supporters claim that it
helps increasing the quality of the code, making it easier to understand, modify
and maintain. Moreover, there are also claims that refactoring yields higher
development productivity – however, there is only limited empirical evidence
of such assumption. A case study has been conducted to assess the impact of
refactoring in a close-to industrial environment. Results indicate that refactoring
not only increases aspects of software quality, but also improves productivity.
Our findings are applicable to small teams working in similar, highly volatile
domains (ours is application development for mobile devices). However,
additional research is needed to ensure that this is indeed true and to generalize
it to other contexts.

Keywords: Refactoring, Software process, Methodologies, Software metrics

1 Introduction

Fowler defines refactoring as “a change made to the internal structure of software to
make it easier to understand and cheaper to modify without changing its observable
behavior” [17]. In Agile Methods refactoring is an integral part of the development
process; it is adopted to improve continuously the structure and understandability of
source code during development. In the agile community it is widely accepted that
refactoring contributes to confine the complexity of source code and has a positive
impact on the understandability and maintainability of a software system: frequently
refactored code is believed to be easier to understand, correct and adjust to new
requirements.

A growing number of studies address the relationship between refactoring and the
internal structure of source code and its impact on program understanding, software
quality, and the evolution of a software design: an excellent overview is given in [25].
Most of these studies focus on the following issues:

• Impact of refactoring on the structure of the source code [6]
• Identification of code smells to locate possible refactorings [7], [15], [28],

[32]

 Raimund Moser, Pekka Abrahamsson, Witold Pedrycz, Alberto Sillitti, Giancarlo Succi

• In reverse engineering, how refactoring can reconstruct the overall design of
existing systems [12] and improve the quality of legacy code [26]

Mens et al. [25] define and discuss different refactoring activities related to the
issues mentioned above: In this research we focus on one particular topic, namely the
assessment of the effect of refactoring on some quality characteristics that depend or
have an impact on software maintainability both from the point of view of the
software product and the software process [14]. Only few empirical studies analyze
the impact of refactoring on code quality: Demeyer [13] analyzes whether refactoring
has a negative impact on program performance; Bois and Mens [6] develop a
framework for analyzing the impact of refactoring on internal quality metrics, but
they do not provide any experimental validation in an industrial environment. Stroulia
and Kapoor [33] perform a case study in an academic environment, where it is shown
that size and coupling metrics of a software system decrease after refactoring. Bois et
al. [7] propose refactoring guidelines for enhancing cohesion and coupling metrics
and obtain promising results by applying them on an open source project. Simon et al.
[32] follow a similar strategy. Sahraoui et al. [29] use quality estimation models for
analyzing whether some object-oriented metrics can be used for detecting situations
where a particular transformation of source code (refactoring) can be applied to
improve the quality of a software system. Again, they do not validate their approach
within an industrial case study or experiment. Yu et al. [35] use a modeling
framework for non-functional requirements and relate refactorings to soft goals. They
perform a case study, which shows that refactoring can be measured as the
transformation on the state of program in the quality space. Tahvildari and
Kontogiannis [34] investigate the use of metrics for detecting potential design flaws
and for suggesting potentially useful transformations for correcting them. Finally,
Kataoka et al. [20] provide a quantitative evaluation of maintainability enhancement
by refactoring. For the purpose of validation they analyze a project developed by a
single developer, but do not provide any information on the development
environment. Thus, it is questionable if their findings are valid in a different context
where development teams follow a structured process and use common software
engineering practices for knowledge sharing.

In the context of Agile Methods there are several claims that refactoring provides
four significant advantages [17]:

• Refactoring helps developers to program faster
• Refactoring improves the design of the software
• Refactoring makes software easier to understand
• Refactoring helps developers to find bugs

The first advantage relates to productivity and is probably the most important for
managers who are mainly concerned with time to market. Nevertheless, there is
almost no solid, empirical, and quantitative evidence of such claim, apart from a small
case study, where it appeared that refactoring decreased the long-term productivity
[1]. Recently Schofield et al. [30] performed a return on investment analysis on an
open source project in order to estimate savings in effort, given a specific (beneficial)
code change. They found that, most of the time, refactorings have beneficial impacts
on maintenance activities, and thus are motivated from an economic perspective.

The last three advantages of refactoring refer to software quality attributes. We
have previously mentioned some studies that analyze the impact of code restructuring

A Case Study on the Impact of Refactoring
on Quality and Productivity in an Agile Team

induced by refactorings on internal product metrics, which are typically used to
measure quality attributes, such as complexity, coupling and cohesion. Such early
results are promising, still there is a need for (a) additional empirical validation to
better understand and generalize the findings, and (b) a clear linkage to external
quality attributes, such as number of defects.

Altogether, the real advantages of refactoring are still to be fully assessed [24]. In
particular, it is not yet clear whether refactoring increases developer productivity and
the extent to which refactoring improves software quality. As regards quality, it
appears to be a convergence of positive remarks, still, without solid quantification.
Needless to say, a major impediment for a deeper understanding of these issues is a
lack of empirical investigation, based on hard data coming from industry.

The paper is organized as follows. In Section 2, we describe our research
methodology and the experimental set-up. In Section 3, we present a case study and
discuss the results obtained from it; in Section 4, we discuss the limitations of our
approach. Finally, conclusions and implications of the investigation are drawn in
Section 5.

2 Research Methodology and Experimental Set-up

In order to investigate a research problem we have to define (a) the objectives and
hypotheses of the study, (b) the variables along with the metrics used to measure
them, (c) the instruments used in the experiment and the data collection procedure,
and (d) the data analysis method. We will discuss each of these points below. The
results of the case study and threats to the validity of the experiment are presented in
subsequent sections.

2.1 Research Hypotheses

Software is naturally subjected to continuing change, increasing size and complexity
and therefore declining maintainability. In particular, in the one-way traditional
development process, internal code measures tend to show a continuous increase in
complexity and coupling and a decrease in cohesion as new features are added to a
software system. This natural process of code corrosion is even more manifest as time
goes by [21]. More complex and intertwined code is more difficult to manage and
maintain; therefore, we expect that also development productivity will show a
decreasing trend over time. In contrast, in XP-like processes, thanks to its agile
practices (in particular constant refactoring, unit testing, frequent releases), the
complexity of the code and the effort for adding new functionalities is claimed to
remain about constant or to grow very slowly [3]. Unfortunately, due to high costs of
industrial software development we are not able to run a formal experiment with an
industrial partner where we could analyze two similar projects, one developed using
XP practices and one without, and compare directly the evolution of respective
quality and productivity metrics.

 Raimund Moser, Pekka Abrahamsson, Witold Pedrycz, Alberto Sillitti, Giancarlo Succi

We have to content ourselves with a simpler approach: We focus only on one XP
practice, namely refactoring, and compare changes of productivity before and after
explicit refactorings and use such comparison as criteria for assessing the impact of
refactoring on it. As regards quality and maintainability, we determine the changes of
several design metrics after an explicit refactoring has been applied and compare
changes with the average daily changes per iteration. If they are significantly different
(improved) we then conclude that refactoring has a positive effect on code quality
and, as a consequence, on software maintainability. We define in section 2.2 what we
intend by explicit refactorings in the context of our study.

Framed in terms of research questions, we aim at presenting evidence that will
allow us to reject (or accept) the following two null hypotheses:

• H0
A: after an explicit refactoring the average productivity for the consecutive

development iteration is the same as for the previous iteration.
• H0

B: the considered internal quality metrics (complexity, coupling, and
cohesion) do not show any improvement after an explicit refactoring with
respect to their average daily changes.

In order to obtain more reliable and smoother results we do not simply compare the
changes of productivity and quality metrics before and after the application of a
refactoring. Such changes could happen by chance or because of some other factors
we do not control within this case study (for example mood of developers, work on
particular part of the code, problems with tools, other XP practices). To minimize the
influence of random and uncontrolled changes we compare average productivities
between development iterations (the one in which an explicit refactoring has been
applied with the following iteration). Also for the quality metrics we compute their
average daily changes and compare them with the changes induced by an explicit
refactoring.

2.2 Explicit Refactorings, Productivity, and Quality

In more traditional development processes, refactoring is present in ordinary
maintenance tasks or extraordinary maintenance projects, in order to improve
software maintainability [20]. The context of our analysis however is an agile
development process, namely a tailored version of Extreme Programming [2]; in such
environment refactoring is an integral part of software development. Kent Beck
illustrates the principle of agile development with the two hats metaphor: One is
adding new functionality (coding) and the other is refactoring. The developer should
swap frequently between these two hats but wear only one at a time. Therefore, we
assume that developers apply small refactorings like Extract Method, Rename,
Simplify Conditional, Move Method/Field, and so on [17] throughout development –
without even documenting it. We believe that all these small refactorings improve
slightly the quality of the code and increase overall development productivity
compared to a development process, which does not use the practice of refactoring.

However, due to the lack of empirical data (of two comparable software projects,
one developed using an agile and one using a traditional method) such comparison is
out of scope of this research. Instead, we analyze the effect of explicit refactorings on
productivity and quality within the same project. Explicit refactoring means that

A Case Study on the Impact of Refactoring
on Quality and Productivity in an Agile Team

developers wrote explicitly a user story for refactoring tasks and that the
implementation of such user story took a considerable amount of time – in our case
even several hours.

For the time being, we do not identify different kinds of refactorings and analyze
separately the impact of each type of refactoring on productivity or quality. After
having defined what we intend by explicit refactoring we have to define the other
variables of interest for this research, namely development productivity and metrics
for software quality and in particular maintainability.

Lots of work has been done on how to measure developers’ productivity [16].
However, no definitive measure has been found and perhaps such definite measure
does not exist. A very simple measure of productivity is the ratio of lines of code
(LOC) produced and effort in hours spent in producing them:

productivity = LOC

Effort

In this research we use this equation because of its simplicity and expressiveness.

In addition, programmers are all working in good faith – they volunteered for this
experiment, the effort spent in activities other than coding has been closely monitored
and evenly distributed, code reuse has been closely scrutinized also via the CVS
repository, and no code generators have been used.

Software quality is a composite property of many internal and external software
attributes. There has been a lot of discussion on the meaning of software quality [23],
[5]. It is now commonly agreed [16] that software quality is a property defined by
several small-scaled and directly measurable attributes. In this research we use
complexity, coupling, and cohesion metrics, as defined by Chidamber and Kemerer
(CK) [10]; such measures are widely accepted both by practitioners and researchers
and validated by several previous studies [4], [9]. In addition, such measures are easy
to collect and to understand, a precondition for their effective use [19].

Software maintainability is related both to software quality (it is considered as a
quality factor) and cost, as good maintainability of software reduces significantly
maintainance effort [11]. An XP project is constantly in the state of maintainance [3],
therefore, besides quality measures also evolution of development productivity is a
good indicator for its maintainability. The CK metrics include measures for
complexity (WMC) and coupling (CBO) of object-oriented systems: Both of them are
related to software maintainability as an increase of software complexity and coupling
deteriorates its understandability [18].

2.3 Data Collection

The software project we analyze was developed using an agile, XP-like methodology
tailored by Abrahamsson et al. [2]. Therefore, data collection had to be (a) non-
invasive to preserve the agile nature of the project itself [27], and (b) accurate and
reliable for doing meaningful statistics.

 Raimund Moser, Pekka Abrahamsson, Witold Pedrycz, Alberto Sillitti, Giancarlo Succi

In order to achieve these two goals we use the PROM tool [31] for collecting
product and effort metrics. PROM is a fully automated measurement framework for
software engineering processes and products. Source code metrics are extracted daily
from the source code management system employed by the company. PROM enables
the automatic collection of the effort associated with different tasks such as reading
documents, browsing the web and coding. In particular, a plug-in for the IDE in place
collects the time spent by developers for coding activities for individual methods and
classes. Effort data for coding is collected as soon as the developer enters the cursor
in the source code editor of the IDE and ends if the editor is off focus, the IDE is
closed or the screensaver is activated. Moreover, PROM allows the user to specify if
one or two programmers are sitting in front of a machine.

The notion of effort adopted in this context is strongly related to only coding
activities and does not include the time spent discussing about the design/code on a
whiteboard; however in an XP-like process, which itself assigns to coding activities
the highest importance, this measure is a reasonable measure for development effort.
Both source code metrics and effort data are integrated and stored automatically in a
central database, from which we access the data for our analysis.

To collect the product and process metrics listed in Table 1 with the PROM tool,
we adopt the following data collection procedure:

• Every day at midnight the source code metrics are extracted from a CVS
repository.

• A plug-in for Eclipse (the IDE used by developers) collects automatically the
time spent for coding on individual classes and methods.

• We identify the days on which explicit refactorings are applied from the user
stories (described in the project plan).

Table 1 provides an overview of the information that come from PROM and is
used in this research.

Table 1. Sample data collected by PROM and aggregated at a system level. All metrics are per
day.

Day LOC
CK
metrics

Effort
(hour)

Productivity
(LOC/hour)

22 150 30, 7, 5, 3 4.24 h 35.3

... … …

 We aggregate metrics at a system level (we add up all single classes) and compute

their overall changes per day in the case of product metrics and the total time spent
for coding per day in the case of effort. The way we aggregate metrics is a first
approach and could be refined: We could for example identify the classes affected by
refactoring using a technique presented in [12], [30] and use only them for analyzing
changes in quality and productivity. Whether this would change our findings, has to
be assessed in a future analysis.

A Case Study on the Impact of Refactoring
on Quality and Productivity in an Agile Team

2.5 Data Analysis Method

Our research design is to some extent a one-factor, repeated-measures design: The
treatment (in our case refactoring) is applied twice to the same subjects. We use box-
plots for comparing the means of different populations (before-after refactoring
productivity). In addition we perform a Wilcoxon rank sum test [22], as we cannot
assume a normal distribution and homogeneity of variance of data.

As regards the quality metrics we proceed in the following way: first, we compute
their changes at the end of a day when developers applied an explicit refactoring with
respect to the previous day. Then, we use a Wilcoxon Signed-Rank [22] test to
conclude whether these changes are lower than the average daily changes per iteration
or not. Our final goal is to disprove the null hypotheses by using the Wilcoxon
Signed-Rank tests to determine (a) if the development productivity is higher after
refactoring than before, and (b) if quality metrics are significantly improved by
refactoring with respect to their average changes.

3 Case Study

In the following section, first we describe the context of the case study; afterwards,
we present and discuss the results of our analysis.

3.1 Context of the Case Study

The object under study is a software project in an agile, close-to-industrial
development environment (“close-to-industrial” refers to an environment where the
development team is composed of both professional software engineers and students
[2]). The result is a commercial software product developed at VTT in Oulu, Finland,
to monitor applications for mobile, Java enabled devices. The programming language
was Java (version 1.4) and the IDE was Eclipse 3.0. The project was a full business
success in the sense that it delivered on time and on budget the required product.

Four developers formed the development team. Three developers had an education
equivalent to a BSc and limited industrial experience. The fourth developer was an
experienced industrial software engineer.

The development process followed a tailored version of the Extreme Programming
practices [2], which included all the practices of XP but the “System Metaphor” and
the “On-site Customer”; there was instead a local, on-site manager that met daily with
the group and had daily conversations with the off-site customer. In particular, the
team worked in a collocated environment and used the practice of pair programming.
The project lasted eight weeks and was divided into five iterations, starting with a 1-
week iteration, which was followed by three 2-weeks iterations, with the project
concluding in a final 1-week iteration. Throughout the project, mentoring was
provided on XP and other programming issues according to the XP approach. Since
the team was exposed for the first time to an XP-like process, a brief training of target
XP practices was given before the start of the project.

 Raimund Moser, Pekka Abrahamsson, Witold Pedrycz, Alberto Sillitti, Giancarlo Succi

The total development effort per developer was about 192 hours (6 hours per day
for 32 days). Since with PROM we monitored all the interactions of the developer
with different applications, we are able to differentiate between coding and other
activities: About 75% of the total development effort was spent for pure coding
activities inside the IDE while the remaining 25% was spent for other assignments
like working on text documents, reading and writing emails, browsing the web and
similar tasks. The developed software consists of 30 Java classes and a total of about
1770 Java source code statements (LOC counted as number of semicolons in a Java
program).

During development two user stories have been explicitly written for refactoring
activities: One at the end of iteration two with the title “Refactor Static Classes to
Object Classes” and one at the end of iteration four with the title “Refactor
Architecture”. We refer to the implementation of these two user stories as explicit
refactorings; we analyze changes of productivity and quality measures before and
after their completion.

3.2 H0
A – Does Productivity Increase After “explicit refactorings”?

Figure 1 shows the evolution of the average productivity per iteration over the
whole development period.

Fig. 1. Average development productivity per iteration.

The productivity is almost the same in iterations 1, 2, and 4, (about 15
LOC/HOUR) while it is significantly higher in iterations 3 and 5 (more than 22
LOC/HOUR). This distribution is interesting for two reasons: First, productivity does
not show a decreasing trend during software development as we were expecting due
to higher effort for adding new functionality as the system’s complexity and coupling
is growing. Second, whenever developers perform an explicit refactoring – i.e. at the
end of iteration 2 and at the end of iteration 4 – productivity of the following iteration

A Case Study on the Impact of Refactoring
on Quality and Productivity in an Agile Team

is significantly higher than average productivity of the remaining iterations. For the
data under scrutiny we can only measure changes of productivity after two explicit
refactorings (treatments). With such small sample size statistical tests are hardly
applicable as significance values are rather meaningless. Instead we prefer to use a
box-plot for visualizing the difference in productivity in the before-after refactoring
situations.

Figure 2 shows a box-plot of the average productivity per iteration throughout
development. Moreover, we draw two dashed lines, one indicating the average
productivity for the iteration following the first explicit refactoring, the other for the
iteration following the second explicit refactoring. We can observe a clear
improvement of productivity for both cases with respect to average productivity.

For the sake of completeness we perform a Wilcoxon rank sum test to compare
productivity after the 2 refactorings with average productivity of the remaining
iterations. As expected, given our small sample size, we obtain a p value of 0.2
meaning that we cannot reject H0

A neither for refactoring 1 nor for refactoring 2.
Overall, we can conclude that the productivity data sustain the claim that refactoring
raises development productivity in the short-term, thus nullifying to some extent the
complexity naturally added during development. However, this conclusion is more a
confirmation of a suspicion and not a clear affirmation based on statistical inference
from experimental data.

In order to consider the overall evolution of productivity throughout development,
we compare the medians of the daily productivity of each iteration using a non-
parametric Kruskal-Wallis test [22]. The result is that they are not statistically
different from each other. In fact Figure 1 emphasizes that productivity is rather
increasing than declining towards the end of the project.

Fig. 2. Box-plot of average productivity per iteration.

Altogether, our findings strongly advocate that refactoring of a software system

raises subsequent development productivity and prevents in a long-term its
deterioration.

 Raimund Moser, Pekka Abrahamsson, Witold Pedrycz, Alberto Sillitti, Giancarlo Succi

3.3 H0
B –– Cohesion, Coupling and Complexity: Does Refactoring Improve Code

Quality?

Findings of prior studies claim that refactoring improves some low-level quality
metrics like coupling and cohesion measures [7]. In this research we look at the
temporal evolution of the CBO, WMC, RFC, and LCOM metrics and how it is related
to refactoring. A visual inspection of the evolution of these metrics (Figure 3)
evidences that their changes, from one iteration to the next, tend to decrease starting
from the second iteration (1st explicit refactoring) for the CBO and RFC metrics, and
from the third for the LCOM and WMC metrics. This is a first indication that
refactoring could limit the overall decrease of cohesion and increase of coupling and
complexity metrics that we expect to occur during software development.

Table 2. p-values for the one-sided Wilcoxon Signed-Rank test for testing if the population
mean of the median of the daily changes per iteration of CK metrics is higher than the changes
after refactoring.

 WMC LCOM CBO RFC
Refactoring1 0.72 0.5 0.03 0.18
Refactoring2 0.03 0.02 0.02 0.02

Table 2 gives the p-values (significant values at the 0.05 level are set in bold face)

of the Wilcoxon Signed-Rank test for assessing whether or not the changes of the 4
CK metrics after the two explicit refactorings are the same with respect to their
average changes: We can see that all of them improve after the second refactoring,
since their changes are significantly lower (they are in fact negative) than the average
of their daily changes. For the first refactoring this is only true for the coupling metric
CBO. The results are not strong enough to reject H0

B for both refactorings, but only
for the second and in part for the first. Still, they provide confidence that with more
comprehensive experimentation on larger projects it will be possible to significantly
prove it.

Visually inspecting the plot (Figure 3) of the changes of LCOM, CBO, RFC and
WMC per iteration, we also notice an interesting phenomenon: After an initial phase
of remarkable growth of these metrics, they start to decrease, most likely thanks to
refactoring. We interpret this as the people gathering a more comprehensive view of
the application to develop, and thus being able to better refactor the system, creating
simpler, less coupled, and more cohesive code. Moreover, by refactoring the system
they acquire a better understanding of the program being developed, which could
explain a boost in productivity (this observation is consistent with the findings of
other researchers [8]). Yet, this is an interpretation based on a visual inspection rather
than on a statistical test: only future research involving larger data samples will be
able to assess its statistical significance and validity.

Altogether, this research evidences that there are visual indicators (in part
supported by statistical tests) that refactoring prevents an explosion of complexity and
coupling metrics by driving developers to simpler design and as a consequence less
complex and coupled and easier to maintain code.

A Case Study on the Impact of Refactoring
on Quality and Productivity in an Agile Team

Fig. 3. Evolution of the average changes of LCOM, CBO, RFC, and WMC per iteration.

4 Threats to Validity

This research aims at assessing the impact of refactoring on development productivity
and software quality measures. The results of this research are particularly interesting
as they come from a case study in a close-to-industry context: A situation, which is
quite rare in software engineering. However, there are a number of threats to
construct, internal and external validity of the study that have to be addressed
properly. Those are in particular:

(a) First, the conclusions we draw depend strongly on the definition we give of
productivity and software quality and its validity in industry. We define productivity
as the ratio between source code statements and time spent for coding. Several
objections have been raised against this measure: A malicious developer could
artificially inflate the number of lines of code; only coding is considered ignoring all
the other phases of development – analysis, design, etc; code reuse and automatically
generated code are not taken properly into account; and other. Despite all the
criticism, this equation is by far the most used in industry, as it is very easy to
understand and gives clear and absolute numbers, which are easy to compare and to
use in statistical calculations. Moreover, in the context of XP much emphasis is put on
coding activities; thus, development effort coincides mostly with coding effort. In
order to support the validity of the productivity measure used in this study it would be
interesting to run similar studies using this definition but also a definition based on
other parameters, for instance function points or user stories.

(b) As regarding to internal validity we have to be aware that with a single case
study it is not possible to infer whether or not the observed relation is a causal one.
We are not able to control and manipulate the influence of other confounding factors
such as short release cycles or pair programming. For example, the observed increase
in productivity after explicit refactorings could be explained differently: Maybe in the
iterations following an explicit refactoring developers implemented “easy” user
stories or did not do any refactoring at all (refactoring itself decreases to some extent

 Raimund Moser, Pekka Abrahamsson, Witold Pedrycz, Alberto Sillitti, Giancarlo Succi

productivity as measured in this study). Moreover, even if we were sure that
refactoring is the cause for the observed improvements in productivity due to the
small sample size such relation is of low statistical significance. However,
confounding factors, which we identified in the context of this study, are averaged
over iterations and should impact productivity and quality measures equally (i.e.
independent of specific iterations). Therefore, we are confident that the observed
effects are due to the explicit refactorings and that a larger study would provide
necessary statistical significance, which is only suggested by our results.

(c) We do not consider different kinds of refactorings. Such coarse grained analysis
could bias our results: Developers may for example apply only a limited subset of
refactorings – due to their inexperience or other reasons – and in such case we can
probably not generalize the implications for all other types of refactorings. We plan to
take into account different categories of refactorings in a more refined, future study.

(d) We sum averaged quality metrics and productivity over all classes, whereas
probably only a few of them have been affected by the two explicit refactorings. In
doing so we could misinterpret the real impact of refactoring; we plan in a future
work with a larger sample size to analyze the changes of productivity and code
quality only for the classes that have been involved directly in a refactoring activity.

(e) The subjects of the case study are heterogeneous (three students and one
professional engineer) and use for the first time an XP-like methodology. This could
confound our findings, as for example students may behave very different from
industrial developers. Moreover, also a learning effect could be visible and for
example be the cause for the evolution of the productivity and quality metrics as
shown, respectively, in Figure 1 and Figure 3. Developers were aware that they are
monitored, but did not know that we measured in particular productivity before and
after refactorings; we did not communicate them the objectives of the study as such
knowledge could influence their behavior leading to higher productivities after
refactorings.

(f) As with every case study, it is hard to generalize to other, larger contexts. We
think that our findings are applicable to small teams working in similar, highly
volatile domains (ours is application development for mobile devices). However,
additional research is needed to ensure that this is indeed true and to generalize it to
other contexts.

Furthermore, it would be interesting to analyze how much refactoring is “good
enough” to keep productivity high and what kinds of refactorings are important to
improve both productivity and quality.

5 Conclusions

Although agile processes and practices are gaining more importance in the software
industry there is limited solid empirical evidence of their effectiveness. This research
focuses in particular on the practice of refactoring, which is one of the key practices
of Extreme Programming and other Agile Methods.

While the majority of software developers and researchers agree that refactoring
has long-term benefits on the quality of a software product (in particular on program

A Case Study on the Impact of Refactoring
on Quality and Productivity in an Agile Team

understanding) there is no such consensus regarding the development productivity.
Available empirical results regarding this issue are very limited and not clear [1]. This
might refrain managers from adopting refactoring, as they might be scared of loosing
resources.

This work contributes to a better understanding of the effects of refactoring both on
code quality – in particular on software maintainability - and development
productivity in a close-to industrial, agile development environment. It provides new
empirical, industrially based evidence that refactoring rather increases than decreases
development productivity and improves quality factors, as measured using common
internal quality attributes – reduces code complexity and coupling; increases
cohesion. The implications on defects are not discussed, as such data are not
available. Moreover, we do not contribute in exploring the linkage of refactoring to
other external quality attributes. Clearly, this question has to be addressed in a future
study.

As regards productivity, these results are in contradiction with the previous work
of Abrahamsson and Koskela [1]. However, such older work addressed a case that
was too limited to be taken as a reference. For internal quality metrics, our results are
in accordance with the existing literature. Altogether, we believe that our findings are
particularly relevant, as this work is a case study in a close-to-industry environment, a
kind of empirical investigation that is rare for the research problem we discuss here.
Clearly, this is a first work in the area. A real, generalizable assessment of the
implications of refactoring requires several repetitions of studies like this, possibly
also including data on defects.

The findings of this research have major implications for a widespread use of
refactoring, as already mentioned by Beck in his first work on XP [3]. Of course,
refactoring as any other technique is something a developer has to learn. First,
managers have to be convinced that refactoring is very valuable for their business;
this research should help them in doing so as it sustains that refactoring – if applied
properly – intrinsically improves code maintainability and increases development
productivity. Afterwards, they have to provide training and support to change their
development process into a new one that includes continuous refactoring.

Case studies in close-to-industry contexts are very rare in software engineering and
this gives us a remarkable confidence on the results that we have obtained. However,
it is important to remember that, formally, such results are only valid in the specific
context of the study. To achieve a high level of confidence of them, it is essential to
replicate such case studies, also in other contexts and using different measures.

Acknowledgments. Special thanks go to development team at VTT, Oulu, Finland,
which has been disposed to install and use the PROM tool for data collection and in
the end, enabled this case study. The authors would also like to acknowledge the
support by the Italian Ministry of Education, University and Research via the FIRB
Project MAPS (http://www.agilexp.org) and the autonomous province of South Tyrol
via the Interreg Project Software District (http://www.caso-synergies.org).

 Raimund Moser, Pekka Abrahamsson, Witold Pedrycz, Alberto Sillitti, Giancarlo Succi

References

1. Abrahamsson, P., Koskela, J.: Extreme programming: Empirical results from a controlled
case study. In: ACM-IEEE International Symposium on Empirical Software Engineering
(ISESE 2004), Redondo Beach CA, USA (2004)

2. Abrahamsson, P., Hanhineva, A., Hulkko, H., Ihme, T., Jäälinoja, J., Korkala, M., Koskela,
J., Kyllönen, P., and Salo, O.: Mobile-D: An Agile Approach for Mobile Application
Development. In: Proceedings 19th Annual ACM Conference on Object-Oriented
Programming, Systems, Languages, and Applications, OOPSLA’04, Vancouver, British
Columbia, Canada (2004)

3. Beck, K.: Extreme Programming Explained: Embrace Change. Addison-Wesley (2000)
4. Basili, V.R., Briand, L.C., and Melo, W.L.A.: Validation of Object-Oriented Design Metrics

as Quality Indicators. IEEE Transactions on Software Engineering, 22(10): 267-271,
October (1996)

5. Boehm, B.W., Brown, Kaspar, J.R., et al.: Characteristics of Software Quality. TRW Series
of Software Technology, Amsterdam, North Holland (1978)

6. Bois, B.D., Mens, T.: Describing the impact of refactoring on internal program quality. In:
Proceedings of the International Workshop on Evolution of Large-scale Industrial Software
Applications (ELISA), Amsterdam, The Netherlands (2003)

7. Bois, B.D., Demeyer, S., Verelst, J.: Refactoring – Improving Coupling and Cohesion of
Existing Code. In: Belgian Symposium on Software Restructuring, Gent, Belgium (2005)

8. Bois, B.D., Demeyer, S., and Verelst, J.: Does the “Refactor to Understand” Reverse
Engineering Pattern Improve Program Comprehension?. In: Proceedings 9th European
Conference on Software Maintenance and Reengineering (CSMR 2005), Manchester, UK,
21-23 March (2005)

9. Briand, L.C., Wüst, J.: Modeling Development Effort in Object-Oriented Systems Using
Design Properties. IEEE Transactions on Software Engineering, 27(11): 963-986, November
(2001)

10. Chidamber, S., Kemerer, C.F.: A metrics suite for object-oriented design. IEEE
Transactions on Software Engineering, 20(6): 476-493, June (1994)

11. Corbi, T.A.: Program Understanding: Challenge for the 1990s. IBM Systems Journal,
28(2): 294-306 (1989)

12. Demeyer, S., Ducasse, S., Nierstrasz, O.: Finding Refactorings via Change Metrics. In:
Proceedings of the 15th Annual ACM Conference on Object-Oriented Programming,
Systems, Languages, and Applications, OOPSLA’00, Minneapolis, USA (2000)

13. Demeyer, S.: Maintainability versus Performance: What’s the Effect of Introducing
Polymorphism?. Technical report, Lab. on Reeng., Universiteit Antwerpen, Belgium (2002)

14. Van Deursen, A.: Program Comprehension Risks and Opportunities in Extreme
Programming. In: Proceedings of the Eighth Working Conference on Reverse Engineering
(WCRE'01), Stuttgart, Germany, 2-5 October (2001)

15. Van Emden, E., and Moonen, L.: Java Quality Assurance by Detecting Code Smells. In:
Proceedings of the 9th Working Conference on Reverse Engineering. IEEE Computer
Society Press (2002)

16. Fenton, N., Pfleeger, S.L.: Software Metrics A Rigorous & Practical Approach. PWS
Publishing Company, Boston (1997)

17. Fowler, M.: Refactoring Improving the Design of Existing Code. Addison-Wesley (2000)
18. Henderson-Sellers, B.: Object-Oriented Metrics: Measures of Complexity. p. 62, Prentice-

Hall PTR, Upper Saddle River, New Jersey, USA (1996)
19. Johnson, P.M., Disney, A.M.: Investigating Data Quality Problems in the PSP. In:

Proceedings of Sixth International Symposium on the Foundations of Software Engineering
(SIGSOFT 98) (1998)

A Case Study on the Impact of Refactoring
on Quality and Productivity in an Agile Team

20. Kataoka, Y., Imai, T., Andou, H., and Fukaya, T.: A Quantitative Evaluation of
Maintainability Enhancement by Refactoring. In: Proc. Int’l Conf. Software Maintenance,
pp. 576-585, October (2002)

21. Lehman, M.M., Ramil, J.F., Wernick, P.D., Perry, P. E., and Turski, W.M.: Metrics and
laws of software evolution-the nineties view. In: Proceedings of the Fourth International
Software Metrics Symposium, 5-7 November (1997)

22. Lehmann, E.L.: Testing Statistical Hypotheses. Springer-Verlag, Inc., New York (1986)
23. McCall, J.A., Richards, P.K., and Walters, G.F.: Factors in Software Quality. RADC TR-

77-369, Vols I, II, III, US Rome Air Development Center Reports NTIS AD/A-049 014,
015, 055 (1977)

24. Mens, T., Demeyer, S., Bois, B.D., Stenten, H., van Gorp, P.: Refactoring: Current
Research and Future Trends. Electronic Notes in Theoretical Computer Science, 82(3)
(2003)

25. Mens, T., and Tourwé, T.A.: Survey of Software Refactoring. IEEE Transactions on
Software Engineering, 30(2): 126-139, February (2004)

26. Pizka, M.: Straightening spaghetti-code with refactoring?. In: Proceedings of the Int. Conf.
on Software Engineering Research and Practice - SERP, pages 846- 852, Las Vegas, NV
(2004)

27. Poppendieck, T., Poppendieck, M.: Lean Software Development: An Agile Toolkit for
Software Development Managers. Addison-Wesley (2003)

28. Ratzinger, J., Fischer, M., Gall, H.: Improving Evolvability through Refactoring. In:
Proceedings 2nd International Workshop on Mining Software Repositories, MSR’05, Saint
Louis, Missouri, USA (2005)

29. Sahraoui, H.A., Godin, R., and Miceli, T.: Can metrics help to bridge the gap between the
improvement of oo design quality and its automation?. In: Proc. International Conference on
Software Maintenance, pages 154–162, October (2000)

30. Schofield, C., Tansey, B., Xing, Z., Stroulia, E.: Digging the Development Dust for
Refactorings. In: Proceedings of the 14th International Conference on Program
Comprehension (ICPC’06), Athens, Greece (2006)

31. Sillitti, A., Janes, A., Succi, G., Vernazza, T.: Collecting, Integrating and Analyzing
Software Metrics and Personal Software Process Data. In: Proceedings of the EUROMICRO
2003, Belek-Antalya, Turkey (2003)

32. Simon, F., Steinbruckner, F., and Lewerentz, C.: Metrics based refactoring. In: Proc.
European Conf. Software Maintenance and Reengineering, pp. 30—38, IEEE Computer
Society Press, (2001)

33. Stroulia, E., Kapoor, R.V.: Metrics of Refactoring-based Development: An Experience
Report. In: The 7th International Conference on Object-Oriented Information Systems, pp.
113-122, Calgary, AB, Canada, Springer Verlag (2001)

34. Tahvildari, L., and Kontogiannis, K.A.: Metric-Based Approach to Enhance Design Quality
through Meta-Pattern Transformations. In: Proc. European Conf. Software Maintenance and
Reeng., pp. 183-192 (2003)

35. Yu, Y., Mylopoulos, J., Yu, E., Leite, J.C., Liu, L., D'Hollander, E.H.: Software refactoring
guided by multiple soft-goals. In: Proceedings of the 1st workshop on Refactoring:
Achievements, Challenges, and Effects, in conjunction with the 10th WCRE conference
2003, pp. 7-11, Victoria, Canada, November 13-16 (2003)

