Modeling of Requirements Tracing

Matthias Heindl, Stefan Bifff

! Support Center Configuration Management, Siemeogrem and Systems Engineering,
Siemens AG Austria, Gudrunstrasse 11, A-1100 VieAnatria
Matthias.a.Heindl @siemens.com
2 |nstitute of Software Technology and Interactiyst®ms, Vienna University of Technology,
Favoritenstrasse 9/188, A-1040 Vienna, Austria
Sefan.Biffl @tuwien.ac.at

Abstract. Software customers want both sufficient producalitpy and agile
response to requirements changes. Formal softwegrarements tracing helps
to systematically determine the impact of changed to keep track of
development artifacts that need to be re-testednwieguirements change.
However, full tracing of all requirements on thesndetailed level can be very
expensive and time consuming. In the paper arairitiacing activity model”
is introduced along with a framework that allowsas#ing the expected cost
and benefit of tracing approaches. In a feasibditidy a subset of the activities
belonging to the model has been applied to comfjaee tracing strategies:
agile, “just in time” tracing, and fully formal ttang. The study focused on re-
testing and it has been performed in the conteanahdustry project where the
customer was a large financial service providethim study a) the model was
found useful to capture costs and benefits of tilaeing activities and to
compare different strategies; b) a combinationratihg approaches proved
helpful in balancing agility and formalism.

Keywords: Software Requirements Tracing, Re-Test, TracingvitgtModel,
Feasibility study.

1 Introduction

The main goal of software development projects iddvelop software that fulfills the
requirements of most important stakeholders, caestomers and users. However, in
typical projects requirements tend to change thmouy the project, e.g. due to
revised customer needs or modifications in theeaegvironments. These changes of
requirements may introduce significant extra effartd risk, which need to be
assessed realistically when change requests come.gp test cases have to be
adapted in order to test the implementation agahwstrevised requirements. Thus,
software test managers need to understand the likgdact of requirement changes
on product quality and needs for re-testing (regjogs testing) to continuously
balance agile reaction to requirements changes sy#tematic quality assurance
activities.

Matthias Heindl, Stefan Biffl

An approach to support the assessment of the imgfastquirements changes is
formal requirements tracing, which helps to deteemnecessary changes in the
design and implementation as well as needs foestrg existing code more quickly
and accurately. Requirements tracing is formallfingéel as the ability to follow the
life of a requirement in a forward and backwardediion [11], e.g. by explicitly
capturing relationships between requirements atatect artifacts. For example, a
trace between a requirement and a test case iadithat the test case checks code
against the requirement.

Such traces can be used for change impact analyaisequirement changes, a test
engineer can efficiently follow the traces from thquirement to the related test cases
and identify the correct test cases that have teheeked, adapted, and re-run to
systematically re-test the software product.

However, in a real-world project full tracing ofl akquirements on the most
detailed level can be very expensive and time coimgyt Thus, the costs and benefits
to support the desired fast and complete changeadmpnalysis need to be
investigated with empirical data. While there aranyn methods and techniques on
how to technically store requirements traces, tlienery few systematic discussion
on how to measure and compare the tracing effodt @ffiectiveness of tracing
strategies in an application scenario such asstete

This paper proposes an initidacing activity model (TAM), a framework to
systematically describe and help determine thelilefforts and benefits, like
reduced expected delay and risk, of the tracinggs® in the context of a usage
scenario such as re-testing of software. The TAMinde common elements of
various requirements tracing approaches: trace ifgyaion, generation,
deterioration, validation, rework, and applicati@and parameters influencing each
activity like number of units to trace, average odff per unit to trace, and
requirements volatility.

The model can support requirements and test manageomparing requirements
tracing strategies, e.g. for tailoring the expecteeest effort and risk based on
selected parameters: process alternatives, expdestecase creation effort, and
expected change-request severity. We apply the TiAMy feasibility study that
compares effort, risk, and delay of three tracimgtsgies: no tracing at all (no-T), full
formal tracing (full-T) for re-testing, and valueded tracing (value-T).

The remainder of the paper is organized as folld&®extion 2 summarizes related
work on requirements tracing and requirements-bassting; Section 3 introduces
the tracing activity model and research objectivisction 4 outlines the feasibility
study and summarizes the results. Section 5 dissuhe results and limitations of the
study and lessons learned; finally Section 6 catediand suggests further work.

2 Related Work on Requirements Tracing and Re-Testing

Several approaches have been proposed to effgctwel efficiently capture traces
for certain trace applications like change impamlgsis and testing [1][4][7].

Many standards for systems development such ablh®epartment of Defense
(DoD) standard 2167A mandate requirements tradgalptactice [23]. Gotel and

M odeling of Requirements Tracing

Finkelstein [11] define requirements tracing as #dlity to follow the life of a
requirement in both a backward and forward directRequirements traceability is an
issue for an organization to reach CMMI level 3 mgktracing an issue that many
maturing software development organizations haveaiesider: the assessment for
maturity level 3 there contains questions concermigquirements tracing: whether
requirements traces are applied to design and andewhether requirements traces
are used in the test phases.

The tracing community, e.g., at the Automated safearengineering (ASE) tracing
workshop TEFSE [7][8], traditionally puts somewinadre weight on technology than
on process improvement. Basic techniques for rements tracing are cross
referencing schemes [9], key phrase dependenci&k f{dmplates, RT matrices,
hypertext [20], and integration documents [21]. Senetechniques differ in the
quantity and diversity of information they can &abetween, in the number of
interconnections between information they can adntnd in the extent to which
they can maintain requirements traces when faceth whgoing changes to
requirements.

Commercial requirements management tools like DdRegjuisite Pro, or Serena
RM provide the facility to relate (i.e. create tacbetween) items stored in a
database. These tools also automatically indicdietwartifacts are effected if a
single requirement changes (suspect traces). Hawthe2tools do not automate the
generation of trace links (capturing a dependeratyvéen two artifacts as a trace),
which remains a manual, expensive, and error-pagstigity.

Watkins and Neal [24] report how requirements tabdéy aids project managers
in: accountability, verification (testing), conssty checking of models,
identification of conflicting requirements, chang@nagement and maintenance, and
cost reduction.

Gotel and Finkelstein [11] also state the requinetméraceability problem, caused
by the efforts necessary to capture and maintaice. Thus, to optimize the cost-
benefit of requirements tracing, a range of apgreadocused on effort reduction for
requirements tracing. In general, there are twamreffeduction strategies: (1)
automation, and (2) value-based software engingerin

1. Automation. Multiple approaches have been deezloto automate trace
generation: Egyed has developed the Trace/Analigehinique that automatically
acquires trace links based on analyzing the trace df executing key system
scenarios [5][6]. He further defines the tracingapaeters: precision (e.g., traces into
source code at method, class, or package leveljeatoess (wrong vs. missing
traces), and completeness. Other researchers haleited information retrieval
techniques to automatically derive similarities vie#n source code and
documentation [1], or between different high-lesed low-level requirements [17].
Rule-based approaches have been developed that usakef matching patterns to
identify trace links between requirements and UMbjeat models represented in
XML [25]. Neumuller and Griunbacher developed API®][a data warehouse
strategy for requirements tracing. Cleland-Huagtgal. adopt an event-based
architecture that links requirements and deriveiaats using the publish-subscribe
relationship [3].

2. Value-based software engineering. The purpose \wlue-based requirements
tracing approach is not to reduce effort of eact tantrace (like automation) but to

Matthias Heindl, Stefan Biffl

trace all requirements with varying levels of psémi, and thereby reduce the overall
effort for requirements tracing [13], e.g., highepity requirements are traced with a
higher level of precision (e.g., at source code haetlevel), while low-priority
requirements are traced with lower precision (&gsource code package level).

The effort used to capture traces should be jabli#i with the effort that could be
saved by using these traces in software engineextigities like change impact
analysis, testing [4][16][19], or consistency chagk It is a matter of balancing
agility and formalism to come close to an optimewvdl of cost-benefit [2]. The
approaches described above serve the purposeunfingdhe effort to capture traces.

Effort for capturing tracing + effort for trace djmation by using traces < Eqn (1)
effort for trace application without using traces

Equation 1 captures this idea from a value-basesbpetive: to achieve a positive
return on investment of requirements tracing tHerebf generating and using traces
should be lower than the effort for a trace appilica without traces. Such trace
applications are (amongst others) change impadysisand re-testing [10]. Besides
effort of capturing traces, reduction of risk doentissed traces and delay due to the
need to update traces are criteria that deterni@ausefulness of tracing approaches
for software engineering activities.

Changes of requirements affect test cases and attifacts [12]. Change impact
analysis is the activity where the impacts of auregment’s change on other artifacts
are identified [18]. Usually, all artifacts have b@ scanned for needed adoptions
when a change request for a requirement occursadetbased approach relates
requirements with other artifacts to indicate idegendencies. These relations
(traces) can be used during change impact anafgsisnore efficient and more
correct identification of potential change locason

In [13] we proposed an initial cost-benefit modehere the following parameters
that influence the cost-benefit of RT are identifimumber of requirements and
artifacts to be traced, volatility of requiremendsid effort for tracing. In [14] we
further discussed the effects of trace correctassparameter influencing the cost-
benefit of RT. However, tracing activities were movdeled explicitly, which would
facilitate a more systematic discussion of the taerf different tracing approaches.

3 AnInitial Tracing Activity Model

Most work in requirements tracing research hasdedumore on technology than on
processes supported by this technology to genarataise traces. For the systematic
comparison of tracing alternatives we propose ia #ection a process model, the
tracing activity model (TAM), which contains thetiaities and parameters found in

research tracing approaches; we label the framewaikitial, although it is based on

a systematic review literature and tracing acteitin practice, as the external

validation process has not yet concluded. The moalkelbe used as basis to formally
evaluate and compare tracing approaches as wideasosts and benefits.

M odeling of Requirements Tracing

3.1 Tracing Process Variants, Activities, and Parameters

The tracing activity model (TAM) in Figure 1 demd set of activities to provide and
maintain the benefits of traces over time. The rh@la framework to measure the
cost and benefit of requirements tracing in ordecdmpare several tracing strategies
for a development project. The framework is baseg@vious work that identified
tracing parameters, e.g., [3][7][8][13][14][17].

The activities in the model are building blocks riited from practice and
literature and follow the life cycle of a set cdices.

Trace Specification is the activity where the project manager defithestypes of
traces that the project team should capture andtaiai For example, the project
manager can decide to capture traces between eegiits, source code elements,
and test cases. This activity influences tracinfprefbased on the following
parameters: Number of artifacts to be traced, nurolbdraces, and artifacts to be
traced. Other relevant parameters are tracing sgupeision of traces [7][8][13],

F —_——_——— — T — — — — — Fesdback beration (optionalp — — — — — — — — — — — I

== =

pecification Generation Usage lq

@ Usage directly after generation

Deterioration
Mo Deterioration (e.g. after the fact fracing)

A
\
\
@ Using deteriorated but not validated races ‘
\
\
\
\
\
\
\

(33) FulTAM set
Validation Rework
m\-r‘aled re'.chrked
ua?es ‘wfes
- a1

Fig. 1. Tracing activity model: Activities and processiaats.

Trace Generation. Trace generation is the activity of identifyingdaaxplicitly
capturing traces between artifacts. Methods faretrgeneration range from manually
capturing traces in matrices or requirements mamage tools that automatically
create traces between artifacts based. The efforgenerate traces in a project
depends on the following parameters [13]:

* Number of requirements: in a software developmeuojept; the effort for
tracing increases with increasing number of reauoinets.

 Number of artifacts to be traced to the higher taenber of artifacts, the
higher is the effort to create traces between them.

» Average trace effort per unit to trace, which dejseon the used tools and
the point in time of tracing.

Other relevant parameters are: number of tracekstport, point in time of trace
generation in the software development process ptmiity/size of tracing objects,
value of traces [13], correctness and completeoiesaces.

Matthias Heindl, Stefan Biffl

Trace Deterioration. Trace deterioration is more the impact of extermadnts
than an activity. Traces can degrade over timeekeded artifacts change. If only the
artifacts are updated, e.g., due to change requasdsthe traceability information is
not updated, the set of existing traces is likety get less valid over time.
Deterioration of traces affects the value of tradescause it reduces the correctness
and completeness of traces.

Trace Validation and Rework. Trace validation is the activity that checks iéth
existing traceability information is valid or neetdsbe updated, e.g., identify missing
trace links. In the example above, when artifachanges fundamentally so that there
is no longer a relationship to artifa®, trace validation would check the trace
betweenA andB and flag it as obsolete. Trace validation is neassto keep the
trace set (traceability information) correct andtapdate, so that the traces are still
useful when used, e.g., for change impact analys&s.call the updating of traces
“trace rework”. Trace validation and trace reworle aften performed together as
they ensure correct and up-to-date traces and eotnaice deterioration effects. The
effort for validation and rework depend partly twe tvolatility of requirements.

The tracing activities are not necessarily perfanie sequence. Furthermore,
some activities are mandatory, like trace genematishereas other activities are
optional, as indicated by the arrows in Figure 1:

» Trace Usage directly after generation (process variant 1 in figure 1): Trace
deterioration depends on the changes made to renti#fiacts. If traces stay
valid over time and do not deteriorate, validatiand rework are not
necessary so that the existing traces can be esged,for change impact
analyses.

» Using deteriorated traces (process variant 2 in figure 1) without validating
and reworking them before is possible, but reduites traces’ benefits,
because wrong or missing traces may hinder theostggbactivity more than
they help

* No Deterioration (process variant 3b in figure 1); Traces can be validated
after generation whenever the project manager waven when they did
not deteriorate.

Trace Usage. Finally, traceability information is used as inptt tracing
applications like change impact analysis, testimgconsistency checking [24]. The
overall effort of such a tracing application is egfed be lowered by using traces. The
benefits of tracing during trace usage depend oanpeters explained in [15].

The cost-benefit of requirements traceability candetermined as the balance of
efforts necessary to generate, validate, and rewaides (cost); and saved efforts
during trace usage, reduced risk and delay ofrigagibenefits during change impact
analysis). To maximize the net gain of requiremérgsing the effort of generating,
validating and reworking traces can be minimizedthe saved effort of trace usage
can be maximized.

M odeling of Requirements Tracing

3.2 Resear ch Objectives

The value of tracing comes from using the tracermftion in an activity such as re-
testing that is likely to be considerably hardegrenexpensive, or to take longer
without appropriate traces. If a usage scenaridrading is well defined, trace
generation can be tailored to provide appropriasces more effectively and
efficiently. Keeping traceability in the face oftifact changes takes further
maintenance efforts.

The tracing activity model allows to formally defitracing strategies for a usage
scenario by selecting the activities to be perfatramd by setting or varying the
activity parameters.

We address the following research question:

* RQ1: How useful isthe TAM to model requirements tracing strategies and to
determine and compare their efforts?

 RQ: To what extent can we balance the agility of a re-testing approach
without using traces and the formalism of a systematic tracing approach for
re-testing with a value-based approach?

In order to evaluate the usefulness of the traciciiyvity model we conducted a
small feasibility study in the finance domain, wieve applied the TAM to 3 tracing
strategies for the trace application re-testing. déeussed the usefulness of the re-
testing strategies and the tracing model with dgweent experts. If useful, the
lessons learned from our evaluation could be asbfsi extrapolation of tracing
strategies and cost-benefit parameters to larggeqs.

Re-testing is a software engineering activity tlsan be supported well by
requirements tracing. The goal of a trace-basetingegpproach can be to make
testing less expensive, less risky, and to redbeedelay. For a positive return on
investment of tracing the effort to generate andntain traces plus the effort of re-
testing has to be lower than the effort of testinipout tracing support.

4 Application of the TAM in an Industrial Feasibility Study

This section describes a feasibility study to \atiéd the initial TAM framework
concept. Together with practitioners from the duadissurance department of a large
financial service provider we modeled 3 tracingtgtgies by using TAM building
blocks and parameters and calculated tracing sffufrieach strategy, their risks and
delay in order to support the practitioners in daaj which tracing strategy provides
the best support for re-testing in the practitishgrarticular project context. This
section describes an overview how we modeled esaating strategy; detailed
information of the study context can be found ia thchnical report [15].

The main focus of the study was to compare thetsffaf each tracing strategy and
the expected benefits of trace usage for re-testihg TAM output variables were (1)
the total effort of re-testing, (2) the risk of bastrategy, and (3) the delay. Input
variables were parameters covered the number btéses, effort to create a trace,
effort to create a test case, change impact asalgfort, etc. (see [15] for a
comprehensive list of parameters).

Matthias Heindl, Stefan Biffl

Based on discussions with the experts in the img@stvironment and suggestions
from literature we defined and compared 3 tracingtsgies for re-testing: no tracing
at all (no-T), full formal tracing (full-T), and We-based tracing (value-T). The data
from this study can provide an initial snapshotairtypical scenario to find out
whether the framework are useful to provide dath the proposed tracing strategies
seem worthwhile for further discussion.

No tracing at all (no-T). As a baseline strategy we used the no-T strategigh
was the standard strategy in the feasibility stodytext; in this traditional re-testing
process there is no trace support. Thus the deswuif the tracing activity model are
not performed and re-testing has to cope withagets: For each change request, the
testers create new test cases instead of re-usth@d@apting existing ones. Obsolete
test cases are replaced by new ones in order id #we risk of having redundant or
inconsistent test cases, and to make sure evegythitested and test cases are still
valuable after the change.

E(no-T) = #cr * #tc * tcn + dor. Eqr24)

E(no-T) = 20 change requests * 6 test cases* 1hrs + 6*g0dih = 120 Eqn @b)
hrs + 560 hrs 680 hrs.

Equation (2a) calculates the overall re-testingreffollowing the no-T strategy:
for each change request (#cr), new test caseseatd with the expected effort (#tc*
tcn). Finally, the testers have to check newly m@aest cases with existing test cases
and delete redundant (obsolete) old test casek (dor

In the particular study the total effort for no-Tasvas calculated in Egqn 2b (see
[15] for detailed explanation.

Full formal tracing (full-T) for retesting. In the full-T strategy, testers

systematically establish traceability by relatingguirements and test cases (full
tracing) via a tool, the Mercury Test Director. Wihe change request occurs, they
check, and adapt existing test cases wheneverbp@ssise they create new test
cases.

E(full-T) = #tntc * te + cia_T * #cr + tcnra * #tt#cr Egn @)

Equation (3) calculates the overall re-testing reffollowing the full-T strategy:
The formula consists of 3 parts: (a) upfront tréditg effort (#tntc * te), which
establishes traceability for each existing tesecdls) the effort to identify affected
test cases for each change request (cia_T * #od),(@ the effort needed to either
reuse (tcr) or adapt (tca) existing test casesentdipg on the severity of the change
requests (#cr). If existing test cases can neltkereused nor adapted, new test cases
have to be developed (tcn).

The shares of test cases that can be reused, ddapteeed to be created anew
typically has an important impact on the overalbsfof re-testing.

The effort of full-T for change impact analysis deds on how many traces
between requirements and test cases can be rewmezlto be adapted, or must be

M odeling of Requirements Tracing

created. These values depend on the type of chaetgeest, as not every change
request effects artifacts in the same way, e.@retlare simple low-effort change

requests, e.g., affecting locally the user int@fawhereas more severe change
requests may need more extensive adaptations eraeoftware product parts. Eqn

4a and 4b depict the efforts for full-T.

CIA_T effort overall = 54 + 86 + 33 hrs = 173 hours Eqgn da)

E(full-T) = upfront trace effort + CIA_T =350 + 173523 hrs Eqgn é@b)

Based on effort reports for typical change requéstthe case study context we
categorized change request into the classes: Mmalf), Midi (medium), and Maxi
(severe) (see [15] for detalils).

Value-based tracing (value-T) is a hybrid between full-T and ad-hoc tracing.
Usually the upfront effort for full-T is considedgbhigh, because all existing
requirements have to be traced to test cases.-Valties to reduce this tracing effort
by establishing traceability on a coarse level tgst case packages instead of
particular test cases) and to refine them ad-hoenwiecessary. That means that all
requirements are traced to test case packages hed g@hange requests occur for
some requirements, the traces from these test easesfined to particular test cases
to improve change impact analysis. Equation (5ruates the overall re-testing
effort following the value-T strategy:

E(value-T) = upfront trace effort (on package I¢wethange impact Eqn 6a)
analysis (value-T)

E(value-T) = 70 hrs + 325 hrs 395 hrs Eqgn 6b)

The upfront tracing effort for value-T is lower sstraces have to be captured on
more coarse level of detail than with full-T (7Glmn comparison to 350 hrs with full-
T). The change impact analysis effort for valuedngists of refining traces from
changing requirements to the affected test caskapgas. The effort for identifying
particular test cases by refinement was 325 hthérstudy resulting in a total effort
of 395 hrs for the value-based tracing strategsuigport re-testing.

5 Discussion

The purpose of the case study was to evaluateethshility of the TAM to model
tracing strategies, in our case with focus on &ffiiso considering delay, and risk.

For practical reasons, the case study size andexiontas chosen to allow
evaluating the approaches in a reasonable amouitef However, the case study
project setting seems typical in the company andritial service sector; the project
context allows reasonable insight into the feaigjbibf the trace-based re-testing
strategy in this environment.

Matthias Heindl, Stefan Biffl

In the feasibility study project, we deliberatelgpied a simple process variant
from the TAM focusing on the activities trace spieaition, trace generation and the
usage of generated traces for re-testing. Traceridedtion, validation and re-work
were not enacted; rather we assumed for trace wdbgenerated traces to be correct.
While this reduction of scope limits the experietigis focus was found beneficial to
make sure that the proposed process is actualliedgp the practical setting.

As with any empirical study the external validity @nly one study can not be
sufficient for general guidelines, but needs cdrefwamination in a range of
representative settings. Furthermore, we analysdyl @ simple instantiation of the
tracing activity model in the case study; consistof trace generation and trace
usage, but without considering trace deterioratiamd consequently neither trace
validation nor rework. In practice incorrect tracasd trace deterioration can
considerably lower tracing benefits and need tmbestigated.

Modelling the 3 tracing strategies by using TAM igities and parameters
provided data points for effort of each strategg. tAese are single data points in a
specific study setting, we see the results as shafs, which should motivate further
data collection to allow statistical data analysisl sensitivity analysis.

Comparing the 680 person hours effort of the ndrdtegy, where new test cases
are created for each test case, with the full-@ralitive, with 523 person hours, full-T
takes around 20% less effort. In this case theompinvestment into traceability pays
off. In many cases, full tracing (tracing each liegment to each relevant test case)
can cause considerably high effort which may preweating in practice. Here, the
study results suggest that the value-based strateffpce requirements to test cases
on a coarse level and refine them later on demaihe & promising approach that can
significantly save efforts.

Besides effort, the alternatives also differ inayelvhen traces can be used for the
trace application, in our case re-testing. valubak a larger delay, because trace
refinement has to be done before re-test. Conagmigk, no-T would be more risky
if obsolete test cases were not checked. Inconsisteredundant test case sets could
then result in increased hidden testing efforbevdr-quality test sets.

Lessons Learned from the Feasibility Study. The tracing activity model was
found useful for systematically modeling the tracialternatives, e.g., no tracing,
systematic full tracing, and value-based tracingtli@ certain tracing application re-
testing. The model helps make alternative straseginparable, as it makes the main
tracing activities explicit and allows mapping relat parameters that influence
tracing costs and benefits. Some input parameligesfumber of change requests in
the project, or effort to create a test case) balet estimated based on practitioners’
experience. Other data elements could be measureatiei project context, e.g.,
number of requirements. The TAM allows choosingrfrihe listed tracing activities
and parameters and selecting the relevant onesottelntracing strategies for a
particular usage scenario.

According to the expert feedback the calculatedr&ffprovide a good input to
reason about which tracing strategy seems mostfibithén a particular project
context.

The lessons learned of our study for trace-supg@nhge impact analysis are:

M odeling of Requirements Tracing

e TAM provides useful building blocks for reasonindpoat relevant
parameters (efforts, risks, etc.) of a tracingtetig and estimation of
outcomes in advance helps to rationally discusslidates for the best-
fitting strategy.

e The volatility of traces is a major risk for fuliacing. In volatile parts of
the project, agile (just in time) or value-basegrapches are favorable as
full tracing has a particularly high risk of loogirupfront investments in
tracing in these volatile areas.

* Full tracing provides detailed traces, which aretipalarly useful for
situations when artifacts are not volatile and Kufeedback is at a
premium, e.g., for comprehensive cross checks lastone reviews.

« If calculated efforts of tracing strategies do differ significantly, choose
a value-based strategy to provide full (completagdability at a coarse
level of detail. This coarse-level traceability ct#man be refined on
demand with reasonable total effort for change chpaalysis.

6 Conclusion and Further Work

In the paper we proposed an initial tracing agtiwitodel (TAM) as a framework for
defining and comparing tracing strategies for wvasiccontexts. For each tracing
activity, relevant parameters were identified frgelated work and practice and
mapped into the model. The model allows to syste@iét compare tracing strategy
activities, their costs and benefits. We perforraesinall study in the financial service
domain, where we evaluated the feasibility of tlaeihg activity model.

Main results of the study are: a) The model wasdbuseful to capture costs and
benefits of the tracing activities and compare edéht strategies; b) for volatile
projects or project parts just-in-time tracing ssefiavorable; c) for parts that need
quick feedback detailed upfront preparation of éemccan be warranted; d) a
combination of upfront tracing on a coarse levetlefail (e.g. package or class level)
and just-in-time detailed tracing of really needeates can help balancing agility
(important from the project point of view) and fality (that allows evidence-based
software process improvement and is important ftoensoftware organization point
of view).

Further work will be a) to use TAM as a framewodk & systematic literature
review concerning requirements tracing and b) tphyap AM for studies on tracing
strategies in other contexts.

References

1. G. Antoniol, G. Canfora, G. Casazza, A. De Lueiad E. Merlo. Recovering traceability
links between code and documentation. IEEE Tramseton Software Engineering,
28(10):970-983, 2002.

2. Boehm, Turner. Balancing Agility and Disciplineddison Wesley, 2005

Matthias Heindl, Stefan Biffl

3. J. Cleland-Huang, G. Zemont, W. Lukasik, A Hegereous Solution for Improving the
Return on Investment of Requirements Traceability 2R&4, 230-239

4. S. Elbaum, D. Gable, G. Rothermel, UnderstandimijMeasuring the Sources of Variation
in the Prioritization of Regression Test Suites, EBEEETRICS 2001

5. A. Egyed, A Scenario-Driven Approach to Tracgp®wdency Analysis, IEEE Transactions
on Software Engineering, Vol. 29, No. 2, Februe092

6. A. Egyed, P. Grunbacher, Automating Requiremé&néeability: Beyond the Record &
Replay Paradigm, Proceedings 17th International €@ente on Automated Software
Engineering, ASE 2002, pp. 163-171,Edinburgh

7. A. Egyed, S. Biffl, M. Heindl, P. Griinbacher, tBenining the cost-quality trade-off for
automated software traceability, ASE 2005: 360-363

8. A. Egyed, S. Biffl, M. Heindl, P. Griinbacher, Alwe-based approach for understanding
cost-benefit trade-offs during automated softwaeedability, Proc. 3rd int. workshop on
Traceability in emerging forms of SE (TEFSE 05)ngdBeach, California

9. M.W. Evans, “The Software Factory”, John WileyS&ns, 1989

10.P. G. Frankl , G. Rothermel, K. Sayre, An EngairiComparison of Two Safe Regression
Test Selection Techniques, Proceedings of the 2@@8national Symposium on Empirical
Software Engineering (ISESE’03)

11.0. C. Z. Gotel, A. C. W. Finkelstein, An analysfsthe requirements traceability problem,
1st International Conference on Requirements Engimgepp. 94-101, 1994

12.S.D.P. Harker, K.D. Eason, The Change and Beolutf Requirements as a Challenge to
the Practice of Software Engineering, IEEE, 1992

13.M. Heindl, S. Biffl, A Case Study on Value-Badeequirements Tracing, Proc. ESEC/FSE
2005, pp. 60-69.

14.M. Heindl, S. Biffl, The Impact of Trace Correess Assumptions, 5th ACM/IEEE
International Symposium on Empirical Software Ergiring 2006 (ISESE 2006)

15.M. Heindl, S. Biffl, An Initial Tracing ActivityModel to Balance Tracing Agility and
Formalism - Requirements Tracing Strategies for Cadngpact Analysis and Re-Testing,
Technical Report, TU Wien, 2007 (http://gse.ifs.temviac.at/publications)

16.P. Hsia, J. Gao, J. Samuel, D. Kung, Y. ToyoshiC. Chen, Behavior-based Acceptance
Testing of Software Systems: A Formal Scenario Apph, IEEE, 1994

17.J. Huffman Hayes, A. Dekhtyar, S. Karthikeyamn&aram, Advancing Candidate Link
Generation for Requirements Tracing: The Study othidés, IEEE Trans. on Software
Engineering, Vol. 32, No. 1, January 2006

18.J. Jackson, A Keyphrase Based Traceability SehdEE Colloquium on Tools and
Techniques for Maintaining Traceability during Ogsi 1991, pp.2-1-2/4

19.N. Juristo , A. M. Morenol, S. Vegas, Reviewif§ Years of Testing Technique
Experiments, Journal Empirical Software Engineeritsgue Volume 9, Numbers 1-2 /
March, 2004, Pages 7-44

20.H. Kaindl, “The Missing Link in Requirements Emeering”, ACM SigSoft Soft. Eng.
Notes, vol. 18, no. 2, pp. 30-39, 1993

21.M. Lefering, “An Incremental Integration Tooktween Requirements Engineering and
Programming in the Large”, Proc. IEEE Internatio8gmp. on Requirements Engineering,
San Diego, California, Jan. 4-6, pp. 82-89, 1993

22.C. Neumiller, P. Grinbacher, Automating Softwenaceability in Very Small Companies:
A Case Study and Lessons Learned, Proc. IEEE Autah®E 2006, 145-156

23.B. Ramesh, T.Powers, C. Stubbs, M. Edwards, Ingiéng Requirements Traceability: A
Case Study, IEEE, 1995

24.R. Watkins, M. Neal, Why and how of Requiremélracing, IEEE Software, vol. 11, no.
7, pp. 104-106, July 1994

25.A. Zisman, G. Spanoudakis, E. Perez-MinanaFari¢tause. Tracing software requirements
artefacts. 2003.

