Platfor m-I ndependent Programming of Data-I ntensive
ApplicationsUsing UML"

Grzegorz Falda Piotr Habela Krzysztof Kaczmarskj Krzysztof Stencéd)
Kazimierz Subieta

" Polish-Japanese Institute of Information Technolalygrsaw, Poland
Faculty of Mathematics and Information Sciencera&a University of Technology,
Warsaw, Poland
+ Institute of Informatics Warsaw University, Wansa&Poland
{ofalda, habela, stencel, subieta}@pjwstk.edu.pK&czmarski@mini.pw.edu.pl

Abstract. The shift of development effort onto the modelelevas postulated
by MDA, provides an opportunity for establishinget of modelling constructs
that are more intuitive and homogeneous than #&qin-specific counterparts.
In the paper UML is confronted with the needs siedor data-intensive
applications and propose a seamlessly integrateatfoph-independent
language with powerful querying capability, whictowid allow specifying a
complete application behaviour. The proposal isedimat high level of
compliance with existing modelling standards — ashsit is based on UML
behavioural elements and on OCL for expressiores.nibtivation behind this
approach is presented, the challenges implied émeitiscussed, and the role of
the model runtime implementation is indicated.

Keywords: UML, executable modelling, query language, actilanguage,
MDA, database applications

1 Introduction

The approach of model-driven software developmentl ahe Model Driven
Architecture (MDA) initiative in particular sketctme vision of the next big step in
raising the level of abstraction and flexibility gfogramming tools. While any
method that treats modelling activities as centeal be considered “model-driven”,
the key expectation behind MDA is achieving a pwitity gain through the
automating of software construction based on modeisés results in a significant
shift of expectations regarding modelling constsuet from being merely a semi-
formal mean for outlining and communicating projéd¢as, to machine-readable
specification demanding precise semantics. ThusANMEeates a spectrum of model
applications, which is often described using tHefang three categories:

1 This work is supported by the European Commis&ich Framework Programme, Project
VIDE - Vlisualize all moDel drivEn programming, 19033606-STP

Grzegorz Falda, Piotr Habela, Krzysztof Kaarski, Krzysztof Stencel, Kazimierz Subieta

» SKketches, that represent the traditional use of UML andilsinlanguage as a help
in understanding the problem and communicating Sdead solutions to other
developers. Those kinds of models do not need tocdmmplete nor fully
formalized.

 Blueprints, that follow the traditional distinction betweeasign and its realization
— as in case of other engineering domains. Théndigin of design and coding is
maintained in terms of artifacts and is also reflddn assignment of those tasks to
different groups of developers.

» Executable models, that require the presence of precise semantids—ahy the
automation of executable code production — blurdisénction between modelling
and programming.

The last case is especially connected with the MD#iative of the Object

Management Group and has motivated significantuestring and extension of the

UML standard as experienced in its version 2 [1je Tnost far-reaching variant of

this vision is to replace existing programming laages with platform-independent

modelling languages in majority of applications [fje same way the former once
replaced assembly languages). This requires thesepce of sophisticated
transformation tools encapsulating the knowledge pamticular target platform
technologies, and depending on mature and widebpted modelling standards — at
least at the Platform Independent Model (PIM) lelelthat case the application code
produced would not be the subject of direct editih@ll. The amount of work at the

Platform Specific Model (PSM) level could also leeluced to minimum.

That vision is inherently challenging due to theansformations between
heterogeneous high level languages involved (ealbgei if multi-tiered software and
data processing are considered). This is probahiytie idea of so highly automated
MDA has not been extensively applied to the busraplications so far [3]. At the
same time, however, applying strict MDA to thateasmems especially compelling
given the uniformity and reuse it could potentigipvide there. This idea underlies
the development of our platform-independent languagned at the data-intense
business application area, which is being creasesha of the central elements of our
project of visual modelling toolset VIDE/{sualize all model-driven programming).

In the paper we describe our approach to that pmplwhich is based on the
following postulates:

* UML Structures unit seems to be rich and versaiileugh to be considered as a
foundation for a data model used in platform-indefemt development. A number
of semantic details needs to be clarified to aahtéat aim though.

» To make the model complete, the means of impergiegramming need to be
available at the PIM level. To raise the intuitiesa and productivity compared to
the mainstream platform-specific technologies, stetements and queries should
be integrated into a single language in a trulyrdeas way.

» An execution engine for PIMs is needed as a referemplementation. It is also
essential as a modelling tool component serving gtatform-neutral model
validation.

» Representing an application code in the form aiddad metamodel instances and
flexibly combining textual and visual notations fibre behavioural modelling of
introduced constructs can provide a significant asd&ges over plain, purely
textual languages.

Platform-Independent Programming of Data-Intengigplications Using UML

The rest of the paper is organized as follows.i8e& describes the expectations and
concerns regarding the executable modelling appr@ael explains the motivation
behind our approach. In Section 3 the UML 2 stashdsupresented from the point of
view of precise specification of data-intensive laggtions. Section 4 describes the
idea of a UML-based programming and query language summarizes the current
results in its development. In Section 5 we outline role of the language within a
broader toolset and development process and irdicather challenges. Section 6
concludes the paper.

2 Motivation

This should not be a surprise that pragmatic aghwemto the problem outlined may
depend on the programming notions known from exgsfirogramming and database
languages. Specifying just a structural aspecthefrhodel (using e.g. UML Class
diagrams) is not sufficient if a high degree of eakneration is the aim. Delegating
the details of the behaviour specification to craist definitions — as explained e.g.
in [4] has the quality of the higher level of alstion. However, realizing
behavioural modelling this way in general is proéegic from the point of view of
complexity of model transformations. Moreover, ase of more complex behaviour
this could be highly complicated and hard to acdgptievelopers who are familiar
with the traditional, imperative style of specifiicm. Even at the side of imperative
programming there is a dilemma regarding the selecof particular modelling
notions to be supported in the executable modelzsatWieeds to be balanced is the
ease of translation into other languages and mattirglanguage familiar for the
developers knowing mainstream platform-specificglsages, against the aim of
achieving a higher level of abstraction and hidilhg heterogeneity of type systems
and programming paradigms.

When speaking about the current modelling standéedpecially UML2 [1],
MOF2 [5] and OCL2 [6]) and their development towattie vision of executable
modelling, it is necessary to mention the critiginés vision of model driven
development faces — see e.g. [7]. While its matiwatof raising the level of
abstraction and controlling the level of detailseésognised, the overall approach to
dealing with complexity is considered problematic.question of maintainability
given the number of model representations is raiSkdre is even a doubt expressed
if the MDA does not just push the complexity intier phases of the development
process instead of reducing it (as the round-tnigireeering requiring translation of
lower-level notions into a higher level of abstrawtis problematic). The size of the
current UML specification is a concern, Especialiiven that some areas essential
for business applications are missing or weaklyreskbd there. This includes for
example user interface specification, workflow/lmesis process definition and data
modelling. Moreover, the techniques that could supthe stakeholders’ involvement
into the development process are also found migsarg the language and not much
visible in MDA in general [8]. The demand for a @efnce implementation and a
human-readable operational semantics is emphasizddo for assuring the proper
implementation of UML transformation tools [9].

Grzegorz Falda, Piotr Habela, Krzysztof Kaarski, Krzysztof Stencel, Kazimierz Subieta

There are also varying opinions on the role andulisess of visual programming
at the level of detail suggested by UML Actions afxctivities units. In [8] an
observation is made that most developers prefdrb@sed solutions for modelling
and the focus of many tool vendors on diagram-basédions is questioned. Fowler
[10] and several other practitioners express caorgabout visual programming as
they indicate the diagrammatic way of code consivucis incomparably slower.
Indeed, majority of action languages in existerasay [11, 12] are purely textual.
However, if the difficulties related with visual dimg at this level of granularity could
be overcome, the visual notation may be advantagender the following criteria:

» More control of the editing process, giving the gib#ity to assist the developer
and to avoid some coding errors,

» More expressive distinction of different languagestructs,

» Ability to more clearly visualize scopes and nanisibilities — especially for
complex expressions,

» Ability to incorporate domain specific user-definegmbols to make the code
easier to follow e.g. during the validation by tt@main experts.

» More potential for annotation and substitution seiymbols use.

Given the above considerations and the implememtatind transformation issues

explained later, we chose to build the core of WIDE language (called VIDE-L in

the sequel) on the notions known from programmangyliages (expressed in terms of

UML Actions and Structured Activities) rather thatarting from flow-oriented

activity models, state machines [11] or interactiolVhile this approach can be

considered conservative from the point of viewtaf tnodellers’ community, we note
the following advantages compared to traditionagpamming languages:

» Depending on executable semantics for UML and thi dnodel it assumes to
support its adoption as a canonical model for werinodelling and integration
efforts.

» Capability of avoiding the “impedance mismatch” stixig between database and
programming languages in mainstream platform-sjeigithnologies.

» Flexibility of code composition, validation, transmation and annotation gained
through its representation in the model repository.

» Ease of switching syntactic options to offer aniraptn combination of visual and
textual notation for making the coding intuitivedaproductive for developers who
know UML.

3 Standard Base

What makes the UML a natural choice of a standavdse for the intended language
is the popularity of the standard and its recestroeturing aimed precisely towards
the executable modelling paradigm. Another fact gtiengthens the position of this
standard is recent development of the modelling towlementation framework
based on the UML 2.x metamodel [13], which may suppiniform handling and
exchange of UML models among various tools.

Platform-Independent Programming of Data-Intengigplications Using UML

However, that selection itself is only a first step the road for defining a
platform-independent language for the area of appiin assumed. It is necessary to
note the following factors:

» At the origin of the UML when it served rather ordg an analysis and design
language, some degree of ambiguity regarding theastc details could be even
considered desirable, as it leaves more freedomapglying its modelling
constructs to varying technologies. The detailsedf. inheritance mechanism,
parameter passing or object lifecycle could remaialevant on the level of
abstraction assumed by those models or could bepietted locally in terms of the
technology of choice. This is not the case for igee®IM development, hence the
efforts to provide UML with precise executable seties specification [14].

» Moreover, the multi-purpose nature of UML implibst not all of its elements are
capable of having a precise executable semantfasede Moreover, from among
the concepts having such capability, a subset dhbal selected to make the
resulting language acceptably simple and suitatniat§ area of application (e.g.
taking into account the needs of target platforms).

While it is impossible to provide a complete spieaifion of the VIDE language here,

in the rest of this section we try to present tteshimportant decisions on selecting

and detailing such a UML subset and describe mitiva behind them.

The foundational problem (especially given the pse of our language) is
specifying the data definition language. We stamrf the complete UML Classes unit
and perform the selection to achieve a data mdadelis expressive and universal but
at the same time realistic in terms of its impletagan and handling by the language
statements. To this end, our motivation is to et teveloper get rid of the object-
relational mapping complexity. Hence we assumelgacd model with classes, static
generalisation/specialisation supporting for subkbility and disallowing
inheritance conflicts in terms of the multi-inharite. Further work on achieving a
greater flexibility of the inheritance hierarchy asmed at exploiting the notion of
dynamic inheritance in UML which we plan to realirethe form of dynamic object
roles [15]. However, since it would require exterglithe behavioural part of the
language either, we postpone this to the next @ersi the language.

The role of the UML Classes unit in VIDE can be souamnized as follows. The
current selection of UML notions used by the largriaeems to be the shortest way
for achieving the expressive power of a programmiagguage. The selection
includes the core notions of UML Classes, Structubetivities and Actions units.
Class model provides the structures that estaldistontext (in terms of features
available to the behaviour: attributes, links, @pens) under which a given
behaviour is specified. It also provides a plagebiehaviour definition in the form of
methods implementing operations of UML classes.ntysVIDE for specifying
behaviour in other contexts than class operatisiteing considered for the future (it
seems to be feasible to adapt because of the &t compliance of VIDE
constructs).

A feature that makes the language more distinanfpmpular OO programming
languages is the realization of the AssociationomotCompared to its complete
definition a number of limitations have been inwodd. Particularly, we skip the
support for non-binary associations and associatiasses. Although useful in
conceptual modelling, they are problematic dueh® ¢omplexity involved in their

Grzegorz Falda, Piotr Habela, Krzysztof Kaarski, Krzysztof Stencel, Kazimierz Subieta

implementation. The weak adoption of CORBA Relalup Service [16] that
supported similar notions seems to support thieiagion. On the other hand, the
language will automate the creation and referemiggrity of updates of links that
instantiate bi-directional associations. The curgpecification of UML provides big
number of options for relationships among obje&scdbed by the Property notion:
this includes unidirectional and bidirectional asations, plain attributes (Property
not belonging to an Association) and the possibititdescribe each property with the
aggregation attribute distinguishing 3 aggregation kihd$his may be considered
redundant. Moreover, what blurs that distinctiomliswing the UML notation to use
the attribute and association notation virtuallyeiochangeably. Those issues are
considered important since our language demandgabsibility of expressing nested
data structures (like e.g. XML documents) — heneenged to distinguish several
options for connecting two complex objects: plaididectional association, plain
unidirectional association, bidirectional composi@ssociation, unidirectional
composite association (the latter substitutablé win-primitive attribute).

There are also several considerations relatededlitferences in data modelling
and accessing between programming languages arabadat environments. In
programming languages the class definition doesusotlly determine the name of
variables that will store its instances. On theeothand, this is quite natural for
database schemas.

The aims and patterns of encapsulation are alserrdifferent in case of database
schema. While the current version supports justisibility specification for classes’
features, we consider future extending of the esglation mechanism using the
notion of updateable views, which may require momecise declarations at the side
of UML [1].

In contrast to programming languages like Java wendt assume the garbage
collection of the objects expressed in our languagastead explicit
DestroyObjectAction of UML is supported.

4 Language Development

While “query language” is listed in the standarddfication as one of the OCL
possible purposes, the use of the language in MIDE- significantly different
compared to the purpose OCL was originally designedSo far, the expressions of
OCL have been used mainly for constraint specificaiwhere eventually were
evaluated into Boolean values) or e.g. for calangathe initial values of attributes
etc. In our case the area of application is mucbader, since anywhere a
programming construct needs to be extracted (elgcting objects to be updated,
removed, linked or passed as a parameter in aratqercall), the expressions in
OCL are used. This means the result of such expresi®es not necessarily need to
be just an r-value.

2 Note that the meaning of this attribute (i.e hi¢ towner of the property plays the “whole” or
the “part” role) is unfortunately dependent on et the property is a member of
association or not).

Platform-Independent Programming of Data-Intengigplications Using UML

VIDE-L language as a whole makes the similar sifigations in dealing with
complex / primitive data and reference / valueind@tons as e.g. Java. However, it
achieves a bit higher expressiveness thanks toduating dedicated statements for
link updating and by supporting two parameter pagsnodes from among the ones
assumed by UMLin andinout.

The use of queries as described above leads tamlessly integrated language,
which is in contrast with embedding queries of pasate language as strings and
dealing with resulting heterogeneity of type systesyntaxes, binding phases etc.
which is the issue e.g. in the ODMG standard [1W] dava-based specifications that
evolved from it.

Those problems are to a big extent absent in e, doowever, to achieve the goal
we needed to deal with some overlap and heteroyenesiulted from this rather novel
use of OCL and from the fact that UML and OCL sfieations have been recently
developed separately. Among those it is worth t@:no
» Varying style of variable declarations: UML usesltiplicities and the ordering

and uniqueness flags. OCL in turn does not supi@mn and depends on the

collection type constructors instead.

* Introducing the seamless support for OCL expressfon UML behaviour makes
the following actions redundant: ReadStructuraltsesiiction, ReadSelfAction,
ReadExtentAction, ReadLinkAction etc.

Apart from the language semantics, also its syplays an important role for the

productivity and ease of its adoption. It is neaegdo note that the decisions on the

concrete syntax that UML2 specification leaves ofoerdevelopers is not necessarily
just a plain selection of the list of visual or tiged symbols. The elements not having

a concrete syntax specified (which refers rougbbAttions and Structured Activities

units) are fairly universal and fine-grained. Thimcourages the designers of

particular action languages to consider creatiorvarfious higher level language
constructs that are useful for the intended aresppfication and whose mapping onto

UML element instances is not necessarily “one-te*on
Indeed, although we tried to provide the statemémds rather directly represent

respective UML Actions and Activities primitives,ramber of useful programming

language constructs required a more complex mappimgse cases include:

* Reusing generic Structured Activities elements tovijle useful statements for
loops and conditional instructions. For examplenditionalNode does not provide
dedicated construct for “else” or “otherwise” classOn the other hand, we do not
take advantage of the ConditionalNode’s capabibify providing results (i.e.
serving as expressions).

» Providing useful shortcuts like the +=, -=, *= afwl assignments is especially
useful when considering iterative processing ofultesprovided by expressions
over data sources. Those shortcuts also miss dedisapport from UML Actions
and while it is of course easy to construct a metdghinstance of the desired
semantics, the reverse mapping into a code denfandsnotation or stereotype to
ease it.

» Macroscopic updates. While (which is also in theitspf UML behaviour) we
avoid macroscopic updates (e.g. updating many tbjeith a single statement
without resorting to an iterating instruction), vieund the following exceptions
useful. First, we allow collections to be the inmft object removal statement.

Grzegorz Falda, Piotr Habela, Krzysztof Kaarski, Krzysztof Stencel, Kazimierz Subieta

Second, we allow to assign a collection to a mutited attribute or variable

instead of the need of inserting its elements opeie. Due to the constraints

imposed by UML compliance, this required an impligse of iterative construct

(that is, the ExpansionRegion).

While not providing a formal specification of thenguage here, we present below
several illustrative code examples referring to #whema defined by the class
diagram in Fig. 1, which is assumed to be defimsitie a package nam&ulidents.

The first example illustrates a simple method plige query nature (i.e. having no
side effects). Those kinds of methods could beedaihside pure OCL statements.
This distinction is possible to maintain in VIDE-&s the calls of methods marked as
having side-effects can be delegated to the Cali@jo@Action rather than handled at
the OCL side. However, we currently do not enfdtdée our language. Note also the
OCL-stylecontext declaration which specifies to which operatiorihia class model
the given method body refers to. In the final vansof our prototype the modelling
environment will provide more assistance for tisis,this header will not need to be
directly used by the programmer.

cont ext Students::Person.getFullName() : String
body {

r et ur n firstName+' ‘+lastName;
}

The second example shows a more complex updatintpoehe which uses link
navigation and performs iterative updates of thgeab selected by an OCL
expression.

cont ext Students::Department.assignScholarship(

i n amount : I nteger, in noOfStudents: I nteger) body {
students-> sortedBy(s|
-s.calcAvgGrade()). subSequence(1,noOfStudents)
foreach{s]|
i f s.scholarship-> si ze()=0
t hen s.scholarship i nsert amount;
el se s.scholarship += amount;
endi f
}

}

The third example illustrates the link manipulatitat moves employees to another
department (the reverse links will be maintainetbanatically).

Department-> al | | nst ances()-> sel ect (name="SE’).employs

foreach {f|
f unli nk worksAt;
f |ink worksAt

t o Department-> al | | nst ances() -> sel ect (name ='IS’);

Platform-Independent Programming of Data-Intengigplications Using UML

Person
+firsthame : String
+lastMame : String
+getFullNamel

1

Student | Facu :tvte
+scholarship ¢ Integer[0..1] +?ta| EI’S;{IIH ger
i +itle : Strin
+dtudents { unique } |+calcAvgGrade : Real g

+employs { unique }

1. | +studiesAt { unique }

Department 1

+name : String
+assignScholarship{amount : Integer, noOfStudents : Integer) | +worksAt

Fig. 1. Exemplary schema for code samples (the package i=f8tudents”)

The fourth example shows an ad-hoc query which this case a pure OCL.

Department-> al | I nst ances()-> sel ect (hame='lS’)
-> collect(d]

employs.title-> asSet ()-> col |l ect (t]
Tupl e{ title = t, avgSal =
d.employs-> sel ect (title=t).salary-> avg()})

Note that two of those examples depend on the estent retrieval. While this can
be natural for some flavours of object schemag (ilg. in ODMG), for typical cases
we assume a presence of an object that will beepisting with respect to the
application execution (rather than explicitly ingfated later) to provide an entry
point to the application. For this purpose we haweoduced the class stereotype
«Module».

As can be seen from the above diagram and codelesntpe textual syntax can
be considered a bit eclectic, as it is influencedthree trends: UML type and
multiplicity declarations, OCL with its specific istax which influenced also the
VIDE-L statements to take a more postfix-style agtit patterns, plus some
solutions coming from Java as the most popular igépairpose programming
language. The positive aspect is that the syntamsewell suited for extensive
contextual support when coding, which is to be pmles# by type checking
mechanisms. This can be especially visible whererygexpressions are involved.
Compare the marked steps of the code of example 2:

/¥ 1*/students /* 2*/->sortedBy(s |
- s.calcAvgGrade()).subSequence(1,noOfStudents)
foreach { s |
if s.scholarship /* 3*/->size()=0
then s.scholarship insert amount;
else s.scholarship += amount;
endif}

Grzegorz Falda, Piotr Habela, Krzysztof Kaarski, Krzysztof Stencel, Kazimierz Subieta

with analogous code expressed with a syntax drawm fODMG OQL [17] and
popular programming languages:

foreach (select s fromstudentss
order by s.calcAvgGrade()

desc)[1..noOfStudents] as std {
if (not exists(s.scholarship))
s.scholarship i nsert amount;

el se s.scholarship += amount;

}

It can be observed that the way the OCL syntaxrenged makes it easier and more

natural to provide hintghan in case of the select-from-where patterrpdint 1 a list

of names visible in the scope (starting from thesnbocal ones) and statements could

be presented to support that step of code creaBonilarly, at point 2 the list of

available collection information can be presentsthoe the expressiostudents
returns a collection of objects) as well as thepprtes of the Student object (because

OCL allows for building path expressions in 1:nedtion). A slighter advantage in

terms of the contextual hits can be achieved att@iwhere the selection of proper

operator (OCL operatiosize()) may be performed from among of few choices
determined by the context of expresssmceholarship.

The visual notation considerations are rather dat$he scope of this paper. We
just note the dilemma between choosing the traditidiagrammatic style of syntax
(and aiming at “keyboard-less programming”) or Bigycloser to textual style of
coding though supporting it with visualization. Ttextual coding of this level of
granularity is rather predominant. We are awareoanfy one action language
depending on visual notation — namely Scrall [19Which deals with a similar
problem in terms of combining the visual and tektuatation. The similarities with
our language include:

« The idea of controlling the level of detail by @gbking and expanding code
elements and resorting to textual code wherentdse suitable.

» Considering data processing as the purpose oatiwbge.

The following differences can be indicated:

» Scrall assumes relational data. It provides sorgh tével operators, but does not
provide a complete query language functionality parable with OCL.

» Scrall supports the flow-style of behaviour spegifion which is made possible by
the visual notation. VIDE currently does not ditgatover this powerful feature,
but the compliance with UML provides the capabildf achieving it in future
extensions by embedding VIDE-L code inside the idiag supporting UML
Complete Activities.

3 This applies to some extent also to XQuery langya§g].

Platform-Independent Programming of Data-Intengigplications Using UML

5 Challenges of the Development Process

Apart from creating a standard-compliant languagedequate expressive power,
MDA solutions need to address the problem of madeisformations to automate
code creation. Translating between high-level laggs usually involves big
complexity. Examples of the potential problems thaed to be faced in that area
include:

» Translating PIM-defined application logic onto thaulti-tier solutions of target
platforms. The number of possible options in suemglations complicates the
process and / or undermines the idea of full ptatftndependence of the main
model.

 Introducing a platform-independent specificatiortted presentation layer which is
of high importance in various business applications

e Dealing with data management — including schemanitieh on the target
platform and hiding the “impedance mismatch” betwdeday’s database and
programming languages behind a uniform platfornepghdent modelling
language. When dealing with the code to be hanbjed DBMS it is not only
necessary to preserve its original semantics, g # guarantee that the
opportunities for optimization will not be lost ihe course of translation, which is
essential for achieving acceptable performancerasdurce consumption in data-
intensive applications.

In some applications, an alternative to those cemphnslations could be the idea of

“model driven runtime” [20]. This means that atfam is available that is capable

of directly executing models (e.g. representedhim form of the UML metamodel

instance), so running an application does not requansformation to some other
programming and / or query language. The cited pampments that the difference
between having different platform-specific modedsided and having many different
model runtimes deployed is less substantial thamaly appear. The described
solution deals with simpler scenarios of applicatidevelopment (some Web
applications are given as an example), where ngbtopoaapplication logic occurs and
the presentation layer is closely driven by theesth of underlying database.

Moreover, the runtime described in that paper dedls different kind of behavioural

models as it “interprets OCL-annotated class diagrand state machines”

Of course this solution is not always acceptahieesithe use of existing platform
specific tools and environments is required by @ustrs for the applications being
created. That's why VIDE assumes developing resgeatodel compilers.

However, we have provided a runtime for direct exien of models, as we have
found it important for the following reasons:

* Current standardization efforts of UML should becled with a reference
implementation to verify the consistency of thegaage and to disambiguate its
semantics through an operational definition.

» Auvailability of the engine that would allow direekecution of models seems to be
a feature of primary importance for model-drivewelepment tools, as a mean of
model simulation (also in terms of tracking and wighing particular elements of
the application at the PIM level and in terms ofPdrtifacts). Since our current
runtime engine provides rather straightforward enpéntation for particular

Grzegorz Falda, Piotr Habela, Krzysztof Kaarski, Krzysztof Stencel, Kazimierz Subieta

model constructs compared to typical target platirit is an interesting option
for the future development of complete model siniata and debugging
environment.

Among other challenges to be faced by VIDE tooisdhe integration with business

modelling. This is important to meet the demandidiasiness-process driven software

development approaches and the Service Orientetiitdcture viewpoint on the
applications. A similar, but separate problem isattempt to improve the business
stakeholders’ involvement into modelling and apgtiien prototyping.

The above considerations set the following assumptfor the current work on the

VIDE project:

 UML compliant PIM, provided with the means and lew# precision of a
programming language becomes the central artefabesoftware construction.

» Model execution capability allows to validate thgstem functionality directly
from the tool (i.e. without the steps of explicitde generation and its deployment).

» Appropriate elements of model behaviour may beirdjisished as externally
available service interfaces and equipped withraptete Web service descriptions
for the purpose of model’s direct execution.

» For the scenarios that allow it, the model may dibdear directly deployed in the
flavour of a MDR using its execution engine (purelligject-oriented database
system prototype).

» If creating application functionality on the Javéatform is the aim, a model
compiler (currently under design) will be used tnegrate Java code defining the
application logic and using data persistency thioting JDO interface [21].

« At the side of initial phases of a software develept process, a significant
amount of work has been allocated to describe gdathcremental transition from
informal requirements set and computation independeodel towards precise
PIM.

6 Conclusionsand Future Work

The aim of the research outlined in the paper carcdnsidered challenging for
several reasons. The first challenge is to prosukquate and advantageous means of
software specification, taking into account newdsirof user profiles assumed by the
MDA development process. It has to recognize arupgnty balance the needs of
such user groups as modellers familiar with CAS&stoprogrammers familiar with
traditional programming and query languages, ana-lfiostakeholders seeking for
model accessibility. Another challenge is the neddalignment with modelling
standards on one side and target platform techigdogt the other side. Those
considerations draw two important goals for thetrstep of our research:
1. Completing the existing textual prototype withe timplementation of selected
concepts of visual notation and gaining feedbackfusers.
2. Investigating the possibilities of developing deb compilers from the kind of
modelling constructs VIDE employs, onto the implemad¢ion technologies used in
the industry.

Platform-Independent Programming of Data-Intengigplications Using UML

References

1. Object Management Group: Unified Modeling LarmggiaSuperstructure version 2.1.1,
February 2007. formal/2007-02-05.

2. S.J.Mellor, K.Scott, A.Uhl, D.Weise: MDA Disttl: Principles of Model-Driven
Architecture. Addison Wesley 2004.

3. A.McNeile: MDA: The Vision with the Hole?, wwwetamaxim.com 2003.

4. J.Warmer, A.Kleppe: Object Constraint Languagee: TGetting Your Models Ready for
MDA. Addison Wesley 2003.

5. Object Management Group: Meta Object FacilityQlW) Core Specification version 2.0,
January 2006. formal/06-01-01.

6. Object Management Group: Object Constraint Laggueersion 2.0, May 2006. formal/06-
05-01.

7. B.Hailpern, P.Tarr: Model-driven development: Tgeod, the bad, and the ugly. IBM
Systems Journal: Model-Driven Software Developme&ptume 45, Number 3, 2006.

8. SW.Ambler: A Roadmap for Agile MDA. Ambysoft, dp 2007,
http://www.agilemodeling.com/essays/agileMDA.htm

9. D.A.Thomas: MDA: Revenge of the Modelers or UMtopia?, IEEE Software 21, No. 3,
15-17 (May/June 2004).

10.M.Fowler: UML as Programming Language, 2003.
http://ww.martinfowler.com/bliki/lUmlAsProgramminginguage.html

11.S.J.Mellor, M.J.Balcer: Executable UML: A Foutida for Model-Driven Architecture
Addison Wesley 2002.

12.1.Wilkie, A.King, M.Clarke, C.Weaver, C.Rastrick,APancis: UML ASL Reference Guide
ASL Language Level 2.5 Manual Revision D, Kennedy t&arLimited 2003
http://www.omg.org/docs/ad/03-03-12.pdf

13.Eclipse Modeling Project, Model Development [Boo Eclipse Foundation
http://www.eclipse.org/modeling/mdt/

14. Object Management Group: Semantics of a Foiorddt Subset for Executable UML
Models. Request For Proposal. ad/2005-04-02.

15.A.Jodtowski, P.Habela, J.PtodzieK.Subieta: Dynamic Object Roles - Adjusting the
Notion for Flexible Modeling. Proc. of the Interimatal Database Engineering and
Application Symposium (IDEAS), IEEE Computer SocjeGoimbra, Portugal, 2004, pp.
449-456.

16.0Object Management Group: Relationship Servicec@ipation version 1.0. April 2000.
formal/00-06-24.

17.0bject Data Management Group, The Object Datltandard ODMG, Release 3.0,
R.G.G. Cattel, D.K. Barry, Eds., Morgan Kaufmann, 2000

18.World Wide Web Consortium: XQuery 1.0: An XML Que Language. W3C
Recommendation 23 January 2007. http://www.w3.org{deéry/

19.L.Starr: Starr’'s Concise Relational Action Langgiaversion 1.0. August 2003.
http://www.modelint.com/downloads/mint.scrall.tqpdf

20.J.Pleumann, S.Haustein: A Model-Driven Runtimeidnment for Web Applications. The
Unified Modeling Language, Modeling Languages angpliations, 6th International
Conference, San Francisco, CA, USA, October 20-2832®roceedings. LNCS 2863.
Springer 2003, pp. 190-204.

21.Java Data Objects Expert Group: J¥vBata Objects 2.0. JSR 243 Final 23 February 2006.
http://java.sun.com/javaee/technologies/jdo/

