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Abstract. Metric values can be used in order to compare and evaluate software 
entities, find defects, and predict quality. For some programming languages 
there are much more known metrics than for others. It would be helpful, if one 
could use existing metrics in order to find candidates for new metrics. A 
solution is based on an observation that it is possible to specify abstract syntax 
of a language by using a metamodel. In the paper a metrics development 
method is proposed that uses metamodel-based translation. In addition, a 
metamodel of a language helps us to find the extent of a set of metrics in terms 
of that language. That allows us to evaluate the extent of the core of a language 
and to detect possible quality problems of a set of metrics. The paper contains 
examples of some candidate metrics for object-relational database design, 
which have been derived from existing metrics. 

Key words: Metric, Measure, Metamodel, UML, Object-relational database, 
Data model, Reusability. 

1 Introduction 

Metrics, the values of which characterize software designs, can be used in order to 
compare designs, find defects, and predict quality. For example, Choinzon and Ueda 
[1] refer to 22 object-oriented design metrics that are presented in the research 
literature. In addition, they define 18 new design metrics. There are fewer metrics that 
allow us to evaluate database designs. For example, Piattini et al. [2] present three 
table oriented metrics for relational databases. Piattini et al. [3] present twelve 
metrics that help us to evaluate the design of an object-relational database. Muller [4] 
proposes to evaluate structural cohesion of tables based on their normal forms. 

Metamodeling is a well-known activity in software engineering that allows us to 
specify abstract syntax of a language. Seidewitz [5] writes that a metamodel "makes 
statements about what can be expressed in the valid models of a certain modeling 
language." If we use UML as a metamodeling language, then language elements and 
their relationships are presented by using classes/attributes (properties) and 
attributes/relationships, respectively [6]. Is it possible to use metamodels in order to 
create and improve metrics? McQuillan and Power [7] write that definitions of 
metrics should be reusable. Researchers have used metamodels and ontologies in 
order to present object-oriented design metrics [8] and database design metrics [9], 
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respectively, as precisely as possible.  For example, SQL:2003 [10] is a large 
international standard that specifies the database programming language SQL. An 
SQL:2003 ontology [9] is presented by using UML. The ontology resembles a 
metamodel. A difference with a metamodel of SQL:2003 is that the ontology follows 
the principle of minimal ontological commitment [11] and therefore covers only the 
most important parts of SQL:2003 instead of specifying the entire language.  

Baroni et al. [12] think that an SQL:2003 ontology, which is a step towards a 
complete SQL:2003 metamodel, helps us to prevent ambiguity in metrics 
specifications and automate the collection process of metrics values.  

In this paper, we propose additional means for using metamodels in the 
development of metrics. We assume that metrics that belong to a set M help us to 
evaluate software entities that are created by using a language L. Models, patterns, 
and fragments of code are examples of software entities. 

The first goal of the paper is to propose a metamodel-based method for creating 
candidate metrics. This novel method uses a metamodel-based translation and allows 
us to reuse existing metrics specifications. Such method could be used in case of any 
software development language if a metamodel of the language is available. 

The second goal of the paper is to propose a metamodel-based method for 
calculating the extent of a set of metrics M in terms of a language L. This method 
allows us to find concrete numerical estimates of the size of the core of L as the 
designers of metrics see it. A small extent of M is a sign of possible quality problems 
of M because M may be incomplete. For example, McQuillan and Power [7] note that 
existing UML metrics deal only with a small part of all the possible UML diagram 
types. The existing metrics evaluation methods [3, 13, 14] do not take into account 
whether all the metrics, which belong to a set of related metrics, together help us to 
evaluate all (or at least most of the) parts of a software entity. 

The data model, based on which a database system (DBMS) is implemented, is a 
kind of abstract language [15]. In this work, we investigate two object-relational data 
model approaches as the examples:  

1. The underlying data model of SQL:2003 (ORSQL) [10]. 
2. The underlying data model of The Third Manifesto (ORTTM) [16].  

We have found few metrics about ORSQL database design and no metrics about 
ORTTM database design. 

The third goal of the paper is to use the proposed metamodel-based methods in 
order to evaluate the existing ORSQL database design metrics and to show how to 
develop an ORTTM database design metric based on an ORSQL database design metric.  

The rest of the paper is organized as follows. Section 2 analyzes how we can use 
metamodels of languages in order to create and evaluate metrics. In Section 3, we 
present examples. Firstly, we evaluate some ORSQL database design metrics in terms 
of an ORSQL metamodel. Secondly, we design some candidate ORTTM database design 
metrics based on a set of ORSQL database design metrics. Thirdly, we find the extent 
of some sets of metrics. Finally, Section 4 summarizes the paper. 
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2 On Using Metamodels in the Development of Metrics 

Piattini et al. [3] and IEEE Standard for a Software Quality Metrics Methodology [17] 
describe frameworks of metrics development. They do not propose the reuse of 
existing metrics as one possible method how to find candidate metrics. A candidate 
metric is a metric that has not yet been approved or rejected by experts. 

We think that it is not always necessary to start development of a metric from 
scratch. Instead, we could try to reuse existing metrics. The motivation of this 
approach is that it allows us to create quickly candidate metrics and experiment with 
them in order to improve our understanding of a domain and get new ideas. In 
addition, candidate metrics provide a communication basis for discussions among all 
groups that are involved in the development of a new set of metrics. It is possible that 
a candidate metric evolves and becomes accepted and validated metric or the 
candidate metric is rejected after evaluation. The proposed approach should 
complement existing methods of metrics development but not replace them. Figure 1 
presents the concepts that are used in the proposed approach and their 
interconnections. 
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Fig. 1. A domain model of the proposed approach. 

Each language consists of one or more language elements. It is possible to 
represent abstract syntax of a language by using a metamodel. A language can have 
different metamodels, which are for instance created by different parties or are 
presented with the help of different languages. A metamodel, a software metric, and a 
set of software metrics are examples of software entities. Each software entity is 
created by using one or more languages. For example, a metamodel of UML [18] 
consists of UML diagrams, OCL expressions, and free-form English text. Another 
example is that ORSQL metrics [9] are presented by using OCL expressions and free-
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form English text. A language can have associated metrics that can be used in order to 
measure properties of the software entities that are created by using this language. 
Each metamodel consists of one or more metamodel elements. There could exist 
mappings between elements of different metamodels that allow us to create candidate 
metrics by using metamodel-based translation. A metric could be calculated based on 
values of other metrics. 

Let us assume that the metrics that belong to a set M help us to evaluate software 
entities that are created by using a language L. Let us also assume that there is a 
language L', the corresponding metrics of which belong to a set M'. All the methods 
that are proposed in this paper require the existence of the metamodels of L and L' and 
also the existence of mapping of elements of L and L' metamodels. If UML is used in 
order to create these metamodels, then the elements that must participate in the 
mapping are classes. For example, a metamodel of UML [18] contains classes like 
"class", "action", and "actor" and a metamodel of ORSQL [19] contains classes like 
"data type", "constructed data type", and "data type constructor". We follow the 
example of Opdahl and Henderson-Sellers [20], who evaluate a language based on 
classes of a metamodel and do not use a mapping between relationships and a 
mapping between attributes. 

A pair of elements (that are from the different metamodels) exists in the mapping if 
the constructs behind these elements have exactly the same semantics or they are 
semantically quite similar. Designers of L and L' and users of both these languages 
are the experts who are the best suited to decide whether the semantic similarity of the 
underlying constructs of two elements is big enough in order to place a pair of these 
elements into the mapping or not. Ideally, these mappings should be standardized. 

The use of mapping of elements of metamodels in order to evaluate languages or 
translate models is not a new idea. However, we use this approach in a new context. 
For example, ontological evaluation of a language is a comparison of the concrete 
classes of a language metamodel (language constructs) with the concepts of an 
ontology in order to find ontological discrepancies: construct overload, construct 
redundancy, construct excess, and construct deficit [20]. Opdahl and Henderson-
Sellers [20] use UML metamodel in order to perform an ontological evaluation of 
UML by comparing it with Bunge–Wand–Weber (BWW) model of information 
systems. Researchers have proposed metamodel-based comparison of ontologies [21]. 
It is also possible to compare two languages by using their metamodels. For example, 
researchers have proposed metamodel-based comparison of data models [19, 22]. The 
work of Levendovszky et al. [23] is an example of study about metamodel-based 
model transformations from one language to another. 

2.1 New Means of Using Metamodels in Metrics Development 

In this section, we present some new means of using metamodels of languages L and 
L' in order to create and improve metrics that belong to the sets M and M', 
respectively. We will present examples of the use of these means in Section 3. 

1. A metamodel of L helps us to find shortcomings in the specification of individual 
metrics that belong to M. We have to make sure that all the language elements that 
are referenced in a specification of a metric (the set of these language elements is 
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X) have a corresponding element in a metamodel of L (the set of all the metamodel 
elements is Y; there is a total injective function f: X→Y) and X is the same in all 
the different specifications of the same metric. If these conditions are not fulfilled, 
then it shows us that the wording of a metric may not be precise enough. The result 
of this investigation could be improved wording of the specifications of metrics or 
the creation of new candidate metrics. 

2. It is possible to develop candidate metrics for L' (that belong to M') by translating 
metrics that belong to M. This translation is based on a mapping of elements of 
metamodels of languages L and L'. 

3. A metamodel of L helps us to evaluate the extent of M and find the elements of L 
that are not covered by M. This may lead to the creation of new candidate metrics. 

The quality of the results of the use of these means depends on the quality of a 
metamodel. For example, if a metric refers to a language element l (that belongs to L) 
but a metamodel of L has no element that represents l, then we will erroneously 
conclude that the metric is imprecise (see the first mean) because an element of X has 
no corresponding element in Y. This example stresses an importance of evaluation 
and standardization of metamodels. 

2.1.1 Metamodel-Based Creation of a Candidate Metric 
Let us assume that we want to translate a metric m from a set M in order to use it in 
case of software entities that are created by using L'. Next, we propose a method that 
allows us to develop metrics by using a metamodel-based translation: 

1. Extract nouns from the text of a specification of m. 
2. Find all the elements of L metamodel that correspond to the nouns that are found 

during step 1. It allows us to find language elements, based on which a value of m 
is calculated. 

2.3.For each element of L metamodel that is found during step 2, find a corresponding 
element of L' metamodel. Discrepancies of the metamodels will cause some 
problems: 
� If an element of L metamodel has more than one corresponding element of L' 

metamodel, then it is not possible to perform automatic translation and a human 
expert has to choose one corresponding element of L' metamodel. 

� If at least one of the found elements (see step 2) of L metamodel does not have a 
corresponding metamodel element of L' (there is a construct deficit in L'), then it 
is not possible to perform automatic translation. A human expert has to 
investigate whether it is possible to use any metamodel element of L'. If it is not 
possible, then the process finishes. As you can see, the bigger are the 
discrepancies between two languages, the harder it is to translate a metric. 

4. In case of each element of L' metamodel (each class in case of UML) that is found 
during step 3, check whether it is part of a specialization hierarchy.  
 If a metamodel element e' is part of a specialization hierarchy, then a human 

user has to evaluate whether it is instead possible to use some direct or indirect 
supertype of e' in order to construct a metric for L'. If the use of a supertype is 
reasonable, then a metrics designer has to use this supertype instead of e' in 
order to construct a new metric. It ensures that this new metric can be used in as 
many cases as possible. 
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5. Use the names of all the selected metamodel elements of L' (from step 3, 4) in 
order to construct a candidate metric m'.  
 "Initialism is an abbreviations formed from initial letters."[24] If m has an 

initialism, then create an initialism of m' based on m. Firstly, we have to identify 
a phrase or name based on which an initialism of m is created. Secondly, we 
have to find the corresponding name or phrase in m'. Finally, we have to use 
initial letters of words in this phrase or name in m' in order to construct an 
initialism to m'. 

6. Validate the new candidate metric m' formally and empirically in order to accept or 
reject it. The validation procedure is not the subject of this paper. However, there 
are already a lot of studies about evaluation of metrics [3, 13, 14]. 

If a metric m is a derived metric, the value of which is calculated based on the 
values of a set of metrics, then we firstly have to translate metrics that belong to this 
set before we can translate m.  

For instance, the proposed method could be used in order to translate metrics of 
UML models [25] or ORSQL database designs to metrics that could be used in case of 
Object-Process models [26] or ORTTM database design, respectively. This would 
allow us to quickly find some metrics and to start their evaluation.  

A poblem is that if the quality of an initial metric is low, then the quality of a 
resulting metric will also be low. If an initial metric has associated tresholds of 
undesirable values [1], then we cannot use them in case of a new metric, without 
extensive testing. It is also possible that a new metric will become less important than 
the original, because languages L and L' could pay attention to different things and 
hence different parts of these languages are important to the designers. A new metric 
might be about relatively unimportant part.  

The existence of this method makes it possible to at least partially automate 
translation of metrics. It is not possible to fully automate it because sometimes a 
human expert has to make decisions (see steps 3, 4, 6).  

2.1.2 Metamodel-Based Calculation of the Extent of a Set of Metrics 
It is possible that some elements of a language L are not taken into account by any 
metric in M. The percentage of the metamodel elements that are covered by at least 
one metric in M shows us the extent of M in terms of L. The extent of M (we denote it 
E(M)) is a candidate metric that helps us to evaluate M in terms of completeness. 
E(M) value is a percentage. The bigger the value is, the more complete is M.  

More precisely, let us assume that we use UML in order to create metamodels. If 
we calculate the value of E(M), then we have to take into account a mapping MA 
between metrics that belong to M and classes in a metamodel of L. MA contains a 
pair of a metric m and a class c, if the calculation formula of m takes into account a 
language element that is presented by c.  

We can calculate E(M) based on the formula (1) where: 

 a is the total number of different classes of a metamodel of L, which participate in 
at least one pair in MA, and their direct or indirect subclasses. We should not count 
any class more than once. For example, if two classes in the mapping have the 
same subclass, then we have to count this subclass only once. 

 b is the total number of all classes in a metamodel of L.  
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E(M) =a*100/b . (1) 

All the elements of a metamodel of L that do not participate in any pair in MA 
represent the parts of L that are not covered by the metrics in M. 

We try to measure completness of a set of metrics by using this metric. We have to 
use matching of metrics and metamodel elements and counting of matches and 
metamodel elements in order to calculate this metric. This metric can be used within 
and across projects and workgroups that deal with the development of metrics or 
decide the use of particular metrics in a particular project. 

Firstly, if we assume that metrics should pay attention only to the most important 
elements of L, then E(M) shows us the extent of the core of L as the designers of 
metrics see it. If this core is small, then it raises a question whether L containts 
unnecessary elements. If a set of metrics M has small E(M) value, then it does not 
necessarily mean that this set has quality problems. Different parts of a language 
could contribute differently to the overall quality of a software entity, that is created 
by using L. However, a small E(M) value points to the possible quality problems of 
M, because M might be incomplete and therefore additional investigation is needed. 

A language could have more than one metamodel. For example, they could be 
created by different parties or by using different languages. It is possible, that: 

1. different metamodels specify different sets of language elements. For instance, 
CIM (Common Information Model) is a conceptual information model that 
specifies different areas of information technology management. Part of CIM 
Database Model [27] is a model of SQL Schema. It presents only eight classes that 
correspond to the constructs that are specified in the SQL standard [10]. On the 
other hand, the ORSQL metamodel [19] contains 110 classes. 

2. in one metamodel a relationship between language elements is presented with the 
help of an association class but in another metamodel by using an association. For 
instance, Baroni et al. [12] use associations in order to model relationships between 
classes Referential constraint and Column. On the other hand, the ORSQL 
metamodel [22] contains association classes Referencing column and Referenced 
column in order to specify these relationships. 

3. in one metamodel a language element is presented with the help of an attribute but 
in another metamodel by using a class. For instance, CIM Database Model [27] 
contains class SqlDomain that has attribute DataType. There is no separate class 
DataType in CIM Database Model. On the other hand, Data type is a separate class 
in the ORSQL metamodel [22]. 

There could also be similar differences between different versions of the same 
metamodel. Therefore, we can find different E(M) value for the same set of metrics if 
we use different metamodels. It means that each E(M) value should always be 
accompanied with the information about the metamodel (including its version) based 
on which it is calculated. If a language has more than one set of metrics and we want 
to compare these sets in terms of E(M), then we have to use the same metamodel 
version in order to calculate E(M) values. 
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A possible negative side efect of the use of this metric is the creation of simplistic 
and unuseful metrics in order to increase the value of E(M). 

Empirical validation of a metric should involve case studies [3]. The next section 
contains a case study about the use of E(M). 

3 Case Study: Object-Relational Database Design Metrics 

In this section, we demonstrate and analyze the use of metamodel-based methods that 
allow us to develop and analyze metrics. We introduced them in Section 2. 

The concept "data model" has different meanings in different contexts. In this 
paper a data model is an abstract, self-contained, implementation-independent 
definition of elements of a set of sets {T, S, O, C} that together make up the abstract 
machine with which database users interact. In this case: T is a set of data types and 
types of data types; S is a set of data structures and types of data structures; O is a set 
of operators and types of operators; C is a set of constraints and types of constraints. 
This is a revised version of the definition that is presented by Date [15] and our 
previous definition [19]. Relational and object-relational data model are examples of 
this kind of data models. These data models are abstract languages [15] and we can 
use the methods that were presented in Section 2 in order to create and improve their 
corresponding metrics. 

In this section, we investigate the object-relational (OR) data model. This model 
should combine the best properties of the relational data model and object-oriented 
programming languages.  Currently there is no common OR data model yet.  The 
work of Seshadri [28], 3rd- generation DBMS manifesto [29], The Third Manifesto 
(ORTTM) [16], the work of Stonebraker et al. [30, 4], and SQL: 2003 (ORSQL) [10] are 
all examples of different OR data model approaches. However, they have significant 
differences. For example, all the approaches from the set of previously mentioned 
approaches support the idea of an abstract data type system that allows designers to 
construct new types. However, there are different opinions about the exact nature of 
this system. For example, only 3rd- generation DBMS manifesto [29] and SQL: 2003 
[10] propose the use of array type constructor. On the other hand, only Stonebraker et 
al. [30, 4] and SQL: 2003 [10] propose the use of reference type constructors. Eessaar 
[22] presents metamodels of ORSQL and ORTTM and their metamodel-based 
comparison. 

More precisely, in this section we investigate ORSQL and ORTTM database design 
metrics. Piattini et al. [3] propose twelve metrics in order to evaluate ORSQL database 
designs. We denote the set of these metrics as MORSQL. We are not aware of database 
design metrics, the specification of which uses ORTTM terminology and which are 
created specifically for ORTTM. Therefore, a task of this section is to investigate, how 
to create candidate ORTTM database design metrics. 

3.1 On Evaluating the Wording of Existing ORSQL Database Design Metrics 

A metamodel of a language (a data model in this case) allows us to find shortcomings 
in the specifications of metrics. A metamodel, is in this case a kind of aiding tool. 
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A metrics designer has to check, whether all the language elements that are 
referred in various specifications of a metric have exactly one corresponding element 
in a metamodel of the language or whether there are inconsistencies. For example, 
some specifications of the metrics that belong to MORSQL refer to "complex columns". 
The ORSQL metamodel [22] does not have a class "complex column" and ORSQL 
specification [10] does not refer to this concept. In addition, Piattini et al. [3] do not 
give exact definition of "complex column". Baroni et al. [9] write that a complex 
column has a structured type. However, a user-defined type is a structured type or a 
distinct type in ORSQL. In addition, ORSQL allows us to use constructed types (multiset 
type, array type, row type) as declared types of columns. Both base and viewed tables 
can have columns, the declared type of which is not a predefined data type. 

A metrics designer has also to check, whether all specifications of the same metric 
refer to exactly the same set of metamodel elements. For example, informally, a value 
of metric PCC(T) is "percentage of complex columns of a table T" [3]. Based on a 
metamodel of ORSQL [22], we can see that a table is a base table, a transient table or a 
derived table (these classes form a specialization hierarchy). A viewed table (view) is 
a derived table. However, Piattini et al. [3] do not indicate, whether PCC(T) considers 
only base tables or also viewed tables. They are both schema objects. Baroni et al. [9] 
presents PCC(T) more formally by using OCL and shows that a PCC(T) value is 
calculated only based on base tables. 

These examples illustrate that (1) informal specifications metrics should be more 
precise and (2) we need additional metrics that would take into account viewed tables, 
distinct types and constructed types. 

3.2 On Designing ORTTM Database Design Metrics Based on Existing Metrics 

Table 1 presents mapping of some classes of the metamodels of ORSQL and ORTTM.  

Table 1. Mapping of some classes of the metamodels of ORSQL and ORTTM.  

Class in the metamodel of ORSQL [22] Class in the metamodel of ORTTM [22] 
Base table Real relvar, Relation 
Typed base table - 
Structured type User-defined scalar type 
Base table column Relvar attribute 
Predefined data type Built-in scalar type 
Attribute Attribute 
SQL-invoked method Read-only operator, Update operator 
SQL-schema - 
Referential constraint Referential constraint 
Referencing column, Referenced column - 

 
Column "Class in the metamodel of ORSQL" contains names of classes from the 

ORSQL metamodel [22]. Name of a class exists in this column, if specification of at 
least one metric from the set MORSQL refers to a language element that has this 
corresponding class in a metamodel of ORSQL. Column "Class in the metamodel of 
ORTTM" contains names of the corresponding classes in the ORTTM metamodel [22]. A 
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pair of classes from the metamodels of ORSQL and ORTTM exists in the mapping, if 
these classes represent language elements that are semantically equivalent or 
significantly similar.  

Next, we present examples of manual resolution of construct deficit problem that 
was described in step 3 of the algorithm in Section 2.1.1. The Third Manifesto argues 
explicitly against pointers at the logical database level and typed tables (including 
typed base tables) in the section "OO Prescriptions"[16]. Therefore, we cannot 
completely translate metric Table size of a table T that belongs to MORSQL. 

Schema Size is a metric from MORSQL. A database is a named container of database 
relational variables (relvars) in ORTTM [16]. ORSQL, on the other hand, does not use 
the concept "Database". Instead it uses concepts "SQL-schema", "Catalog" and 
"Cluster", which are all collections of objects. An object is a cluster, a catalog, a SQL-
schema, or a schema object. The ORSQL metamodel class "SQL-schema" has no 
corresponding class in the ORTTM metamodel. We think that in case of ORTTM we 
could instead calculate Database Size (DS) instead of Schema Size. DS is sum of the 
size of every relvar in a database (a metric for estimating the size of a relvar must also 
be translated from ORSQL). 

Depth of relational tree of a table T DRT(T) is a metric from MORSQL that shows us 
"the longest path between a table and the remaining tables in the schema database" 
[9].  We have created classes Referencing Column and Referenced Column in the 
ORSQL metamodel in order to model associations between Base table column and 
Referential constraint.  Classes Referencing Column and Referenced Column are 
necessary in the ORSQL metamodel because ORSQL pays attention to the order of 
column names in a referential constraint specification and we need a place for the 
attribute ordinal_position. It is possible (but not necessary) to create corresponding 
classes in the ORTTM metamodel. However, these classes would not have any 
attributes (including ordinal_position, because ORTTM does not pay attention to the 
order of attribute names in a referential constraint specification). In addition, metrics 
in MORSQL do not take into account the ordinal position and therefore we conclude that 
it is possible to find corresponding metrics for DRT(T) in ORTTM despite the construct 
deficit.  

3.2.1 An Example 
Next, we demonstrate how to create candidate ORTTM database design metrics based 
on the ORSQL metrics by using the algorithm that was introduced in Section 2.1.1. We 
investigate metrics NFK(T) and RD(T) that belong to the set MORSQL [3]. Baroni et al. 
[9] present specifications of NFK(T) and RD(T) in the following way:  

 "NFK (Number of Foreign Keys): Number of foreign keys defined in a table.  

BaseTable:: NFK(): Integer= self.foreignKeyNumber() 

 RD (Referential Degree): Number of foreign keys in a table divided by the number 
of attributes of the same table.   

BaseTable::RD(): Real= self.NFK() / (self.allColumns() 
-> size())"  
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These specifications consist of a natural language part and are also presented by 
using OCL, which arguably makes them more formal and understandable. 
Unfortunately, Baroni et al. [9] do not specify functions that are used in the OCL 
specification. We note that tables have columns and structured types have attributes 
according to the ORSQL metamodel [22]. As you can see, analysis with the help of a 
metamodel may help us to improve the existing wording of metrics. 

RD is an example of a metric that depends on another metric (NFK) and therefore 
we have to firstly translate NFK. We also note that metric Referential Degree of a 
table T (RD(T)) has different semantics in the studies of Piattini et al. [3] and Baroni 
et al. [9] and it causes confusion. Piattini et al. [3] defines RD(T) metric as "as the 
number of foreign keys in the table T". The corresponding metric in the work of 
Baroni et al. [9] is named Number of Foreign Keys.  

Steps 1, 2: Relevant classes of the ORSQL metamodel [22] are: Base table, Base 
table column, Referential constrain (see Table 1). We can find them by investigating 
nouns in the existing specifications of metrics. 

Step 3: Table 1 presents classes of the ORTTM metamodel that correspond to some 
classes of the ORSQL metamodel. Firstly, some elements of the ORSQL metamodel 
have more than one corresponding element in the ORTTM metamodel. Base table has 
two corresponding classes in the ORTTM metamodel – Real relational variable (Real 
relvar) and Relational value (Relation). ORTTM clearly distinguishes the concepts 
"value" and "variable". A variable has at any moment one value, but it is possible to 
change this value. In ORSQL, the concept "table" means "table value" as well as "table 
variable". The next definition is an example of that: "A table is a collection of rows 
having one or more columns." [10] It is an example of construct overload [20] in 
ORSQL because a construct in ORSQL corresponds to several not-overlapping 
constructs in ORTTM. Date and Darwen [16] write that referential constraints apply to 
relvars. Therefore, we decide that the corresponding class to Base table is in this case 
Real relvar. 

Step 4: We identified the concept "real relvar" during the step 2. Date and Darwen 
[16] write: "Referential constraints are usually thought of as applying to real relvars 
only. In the Manifesto, by contrast, we regard them as applying to virtual relvars as 
well." Real relvar and Virtual relvar are subclasses of Relvar in the ORTTM 
metamodel. Therefore, in this case we can use class Relvar instead of class Real 
relvar. 

Step 5: Now we can create specifications of two candidate metrics for ORTTM by 
replacing ORSQL concepts in the specifications with ORTTM concepts. The 
specification consists of an informal natural language specification and a specification 
that is written in OCL. The level of precision of the specifications is analogous to [9]. 

 NRC (Number of Referential Constraints): Number of referential constraints where 
a relvar is the referencing relvar. 

Relvar:: NRC(): Integer= 
self.referentialConstraintNumber() 

 RD (Referential Degree): Number of referential constraints where a relvar is the 
referencing relvar divided by the number of attributes of the same relvar. 
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Relvar:: RD(): Real= self.NRC() /(self.allAttributes() 
-> size()) 

We created initialisms NRC and RD based on the names "Number of Referential 
Constraints" and "Referential Degree", respectively. 

We also note that we can translate some metrics that are not intended to database 
design, in order to find candidate database design metrics. For example, Habela [31] 
presents a metamodel of an object-oriented database system. Date [15] explains that 
classes in object-oriented systems correspond to scalar data types in ORTTM databases. 
An attribute in a class corresponds to a component of a possible representation of a 
scalar type. A method of a class corresponds to an operator that has been defined in an 
ORTTM database. Therefore, it is possible to translate some OO design metrics [1] to 
candidate ORTTM database design metrics. For example, Number of Attributes (NOA) 
[1] becomes to Number of components in a possible representation of a given type 
and Number of Methods in a Class (NOM) becomes to Number of read-only 
operators, the return value of which has a given type. 

3.3 On Evaluating the Extent of Sets of Database Design Metrics 

We could create a set of metrics for ORTTM by translating all the metrics in MORSQL. 
We denote this set as MORTTM. In this section, we evaluate the extent of the metrics in 
MORSQL and MORTTM based on the formula (1) (see Section 2.1.2). 

The ORSQL metamodel contains 110 classes [19]. Table 1 refers directly to 11 
classes of the metamodel. These classes have additional 20 different subclasses. 
Therefore, the extent of MORSQL is:  E(MORSQL)=((11+20)*100)/110=28.2%. As you 
can see, more than two thirds of ORSQL constructs are not covered by these metrics. 

UML [18] allows us to use packages in order to group model elements and manage 
complexity. According to definition (see Section 3), a data model has four 
components. Eessaar [19, 22] proposes to create four corresponding packages in order 
to manage the complexity of a metamodel of a data model that is presented by using 
UML: Data types, Data structures, Data operators, and Data integrity.  

Ideally, each metamodel element should belong to exactly one of these packages. 
However, Eessaar [19, 22] has found 3 classes of the ORSQL metamodel that cannot be 
classified to any of these packages. Table 2 presents the extent of MORSQL in terms of 
each of these packages. It shows us, how much metrics in MORSQL pay attention to the 
different aspects of ORSQL data model. 

Table 2. The extent of MORSQL in terms of the different data model components. 

Data model 
component 

Amt. of classes and 
their subclasses in the 
mapping (a)  

Total amt. of classes in a 
package (b) [19] 

E(MORSQL) 
(a*100)/b 

Data types 11 38 28.9% 
Data structures 14 26 53.8% 
Data integrity 3 16 18.8% 
Data operators 3 27 11.1% 
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Table 2 shows us that metrics in MORSQL pay attention mostly to the structural part 
of ORSQL. This is in line with the claims of the authors of metrics in MORSQL, who see 
these metrics as structural metrics. The biggest advantage of OR data models is 
possibility to create new types and operators [15]. However, existing ORSQL metrics 
should pay more attention to types and operators. We can say this because Table 1 
does not refer to classes of the ORSQL metamodel that specify language elements like 
constructed data types, distinct types, and regular SQL-invoked functions. Table 
CHECK constraints, viewed tables, and user-defined functions / stored procedures 
with no overloading are examples of mandatory SQL features [10] that are not 
covered by the existing metrics according to Table 1. Type constructors, domains, 
triggers, and sequence generators are examples of optional SQL features [10] that are 
not covered by the existing metrics according to Table 1. On the other hand, a metric 
in MORSQL takes into account typed tables and structured types that are optional SQL 
features [10]. As you can see, there is not one-to-one correspondence between the 
core of SQL and the existing metrics that belong to MORSQL. 

Next, we calculate the extent of MORTTM based on the ORTTM metamodel in order to 
evaluate MORTTM. We assume that MORTTM covers the following classes (and their 
subclasses): Relvar, User-defined scalar type, Relvar attribute, Built-in scalar type, 
Attribute, Read-only operator, Update operator, Referential constraint, Database. 
These 9 classes have 29 subclasses. The ORTTM metamodel contains 95 classes [19].  

Therefore, the extent of MORTTM is: E(MORTTM)=((9+29)*100)/95=40%. This extent 
is bigger compared to the extent of MORSQL.  

A possible reason could be that ORSQL violates the orthogonality principle more 
than ORTTM [16, 19, 22]. Date and Darwen [16] write that the orthogonality principle 
means that a deliberate attempt has been made to avoid arbitrary restrictions in 
combinations of different language constructs. For example, ORSQL permits foreign 
key constraints only in base tables but ORTTM in all relvars (including virtual). 
Therefore, MORTTM metrics are calculated based on bigger amount of different types of 
database objects compared to MORSQL. 

It could be argued that some constructs of a data model cannot be used or misused 
in a way that affects the overall quality of database design and therefore 
corresponding metrics are not needed. However, why when to develop standards and 
systems that specify and allow us to create entities that are unnecessary and not very 
useful? Most of the current database design metrics that are proposed by researchers 
are simple counts that are not very precisely described. It rather seems that small 
E(M) values point to the need to continue development of ORSQL and ORTTM metrics.  

4 Conclusions 

In the paper, we investigated how to use metamodels of languages in order to evaluate 
and improve specifications of existing software metrics and to design candidate 
metrics.  

We proposed a metamodel-based derivation method of candidate metrics and new 
candidate metric E(M) that allows us to evaluate completeness of sets of metrics. The 
metamodel-based derivation method allows us to reuse existing metrics by translating 
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them so that they are possibly usable in a new context. Actual usefulness of these new 
candidate metrics must be found out based on careful evaluation. The evaluation 
procedure was not in the scope of the paper. The proposed method is not intended to 
replace existing methods of metrics development but should complement them. 
Currently it is too early to say whether its use will become common practice. 

We demonstrated the usefulness of the proposed method based on database design 
metrics. The paper considered two object-relational data model approaches – 
SQL:2003 (ORSQL) and The Third Manifesto (ORTTM) as the examples. The analysis 
of some existing ORSQL design metrics revealed problems in the wording of them. We 
demonstrated how to translate some existing ORSQL metrics in order to create 
candidate metrics for evaluating ORTTM database design. In the proposed case study 
the languages (data models) are relatively similar to each other. There would be more 
discrepancies between metamodels if the languages are more different. It will allow 
us to translate fewer metrics and will reduce possibility of automatic metric 
translation. 

We also found that the completeness of an existing set of ORSQL metrics is small 
(E(M)≈28%). These metrics together cover only small part of all possible ORSQL 
constructs. Closer investigation showed that these metrics do not pay enough attention 
to different kinds of data types and routines and therefore design of new metrics must 
continue.  

Future work will include development of more ORTTM database design metrics and 
further evaluation of E(M). 
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