
Extending Software Architecting Processes
with Decision-making Activities1

Rafael Capilla, Francisco Nava

Department of Computer Science, Universidad Rey Juan Carlos,
c/ Tulipán s/n, 28933, Madrid, Spain

H{rafael.capilla, francisco.nava}@urjc.esH

Abstract. The traditional perspective on software architecture has paid much
attention to architecting as a development process aimed at creating the
architecture of a software system, as well as the documentation used to
communicate the architecture to the stakeholders by means of several
architectural views. Recently, the software architecture research community has
faced the need to record, manage, and document the design decisions and the
rationale that lead to such architecture. Because architectures are the result of a
set of design decisions, this design rationale must be properly recorded and
managed as a complementary process to the modelling activity. In this paper we
detail different types of decision-making activities aimed at creating and using
design decisions and how these can be supported with tool support.

Keywords: Software architecture, Architecture design decisions, Architectural
knowledge, Architecting activity, Maintenance, Evolution.

1. Introduction

Software architectures have been successfully used in the past decades as the
central cornerstone for describing the main functional parts of a software system [2],
and the interests of different stakeholders are usually represented in the architecture
by means of different architectural views [12] [17]. The more traditional perspective
on software architecture [2] has paid much attention to modeling and documenting
tasks while they have neglected the rationale that led to such designs. Recently, this
point of view is changing to include the creation and use of architectural knowledge
(AK) as a first class entity that should be recorded. As all architectures are the result
of a set of design decisions [3], the impact and benefits of recording this AK seems to
be promising for maintenance and evolution activities. Hence, as software systems
evolve, the decisions made during the life of the system should evolve accordingly to
the changes performed on the system and to new customer needs. Therefore, a
continuous decision-making process happens to meet the goals specified in the
requirements.

1 This work is partially funded by the PILOH project of the Spanish Ministry of Education and

Research programme under grant number URJC-CM-2006-CET-0603.

 Rafael Capilla, Francisco Nava

Recently, the software architecture community has recognized the need to record,

manage, and document explicitly the rationale that lead to the creation of any
software architecture. Architecture design decisions become now more important as
they bridge the gap between requirements and architectural products. Thus, also
traceability in maintenance activities can benefit from this approach.

In this paper we focus on those processes needed to deal with design decisions as a
complementary product of the architecting activity. Also, we describe how some of
these processes are supported by ADDSS, a web-based tool for recording, managing,
and documenting design decisions. The structure of the paper is as follows. Section 2
discusses the representation of design decisions in software architecture. Section 3
deals with the processes that affect the creation and use of AK. Section 4 describes
which of the processes mentioned in Section 3 are supported in the ADDSS approach.
Section 5 provides some conclusions and outlines possible future work.

2. Representing and Creating Architectural Design Decisions

In the early 90s, Perry and Wolf [15] mentioned the rationale and principles that
guide the design and evolution of software architectures. This rationale is used in the
reasoning activity as the underlying reasons that motivate the selection of a particular
architecture. These ideas have been detailed in [6] to state the need for documenting
explicitly architectural design decisions, but not the processes that lead to them.
Nevertheless, prior to the definition of the activities that should take place in the
creation of such architectural knowledge (AK), it seems necessary to know which
kind of information we should represent as part of the design rationale. Design
rationale is the justification behind decisions, and different authors have addressed the
problem to reflect design decisions as part of the architecture documentation [8].
Tyree and Akerman [19] provide a template list of items for characterizing
architectural design decisions. In [18] the authors mention the need for documenting
design decisions, because documenting architectural descriptions often based on a
component & connector view is not enough. One of the reasons to store this AK
comes from the need to carry out highly-cost maintenance processes motivated by
architecture erosion or from non existing designs because design decisions were never
recorded. Others [16] focus on the explicit representation of assumptions as a way to
make explicit the tacit knowledge which is often implicit in the architect’s mind. In
[5], the authors propose a list of attributes which classifies design decisions into
mandatory and optional attributes that can be tailored for each particular organization,
as well as a set of attributes specific for describing the evolution of architectures. A
meta-model combines the characterization of design decisions with the processes used
to manage such knowledge. Similarly, the architecture-centric concern analysis
(ACCA) method [21] uses a meta-model to capture architectural design decisions and
linking them to software requirements and architectural concerns. The approaches
mentioned before highlight the relevance for characterizing the architectural
knowledge, but the processes that lead to it are only slightly mentioned.

Extending Software Architecting Processes
with Decision-making Activities

2.1 Lifecycle for AK Creation

In addition to the AK representation, creating and using AK has to be integrated
under the “natural” lifecycle of the more traditional architecting and engineering
activities. To date, most software architects have seen architectures as a “product”
that has to be maintained and evolved as requirements change. According to [3] [14],
architects are changing their more traditional perspective by considering architectural
knowledge as a product, which should be seen as first class co-product of the
architecting activity in order to avoid knowledge vaporization. In addition,
architectural knowledge as a process [14] “deals with the processes that create and
use such AK during the software development lifecycle”. Use cases, methods for
recording and discovering knowledge, tools and services for supporting the usage of
AK fall on this category. In this new scenario, the stakeholders involved in the
development of any software architecture may act as “producers” and “consumers” of
this AK. According to the classification defined in [14], architecting and sharing
activities belong to the producer side while learning and assessment belong to the
consumer side. These activities have been roughly described in [14] but they need
some refinement in order to understand the detailed processes concerning to the
creation of AK. Our main contribution in this paper focuses on a more detailed list of
the processes and sub-processes that happen during the decision-making activity, as a
refinement of the main ones described in [14], such as we outline in next section.

3. Activities for Recording and Using Architectural Knowledge

The activities concerning with the creation of AK are described in table 1. AK.
Hence, before a decision is made, a reasoning activity may take place [13]. This
reasoning process is based on the rationale and the motivation that guides a decision.
The rationale often relies on assumptions made as well as on the analysis of the pros
and the cons (i.e.: the implications) of each particular decision. Moreover, we have to
take into account the existence of constraints for the decisions as well as the
dependencies that may appear between current and previous decisions. Once a
decision is made, we should give a concrete status (e.g.: pending, approved, rejected,
obsolete) and store it in a readable form for subsequent use. Often, before a choice is
selected, several alternatives can be considered. The evaluation of these alternatives
means to deal with new decisions and sometimes search for codified AK. In addition,
evaluation and assessment activities may happen and used to evaluate between
different candidate solutions. Also, depending on the specific phase or project
milestone, not all the existing AK may be needed at the same during the decision
making activity. For instance, we can store a minimum set of attributes to characterize
a design decision during the initial development phase, but a subsequent testing or
maintenance activity may need extra attributes (e.g.: responsible, status). In practice,
as much of these attributes are stored during the creation of AK more comprehensible
would be the decisions made. For each main category of the processes defined in [14]
(marked with an asterisk in the tables) we have detailed the set of activities and sub-
activities that we believe belong to each category.

 Rafael Capilla, Francisco Nava

ARCHITECTING (*): Creates and stores AK
Activity Sub-activities level 1 Sub-activities level 1

Make decision

Reasoning
(rationale, motivation)
Select the best alternative

Make assumptions
Analyze implications
Constraint and dependency
analysis
Evaluate AK
Validate before storing

Characterize decision Assign status and other
relevant items

Store and document
decisions

Evaluate AK Reuse AK
Evaluate alternatives

Search, Discovery
Assessment / Learn

Once an amount of decisions has been stored, this AK can be shared with others.

The processes that fall in this category are defined in table 2. In many cases, the
boundary between producers and consumers for sharing activities is not clear in many
cases. Producers share available knowledge to other stakeholders. AK producers may
act also as consumers of codified knowledge. Moreover, architects may share AK
with other architects, all of them participating in the development process. For
instance, during architecting a well-known pattern can be shared to other architects to
discuss its applicability as a suitable design solution. In other cases, once a set of
design decisions are made and the first version of the architecture is built, a
subsequent maintenance process might need to share some of the decisions made with
others interested in learning from previous experiences. From our point of view,
knowledge sharing can be a more passive task when the stakeholders review existing
AK or even when they query a knowledge base. A more pro-active approach can take
place if we want to publish knowledge to others that act as subscribers of such AK
(e.g.: use of RSS contents for distributed teams). Active publishing-subscribing
strategies as well as discussion groups can provide a more dynamic usage of codified
knowledge. Moreover, brainstorming meetings can be organized to share and
communicate this knowledge. In this case, knowledge sharing requires the
participation of at least two or more stakeholders to achieve the communication goal,
while a review activity can be done by a single stakeholder that learns from available
knowledge.

SHARING (*): Make AK available to others
Activity Sub-activities level 1 Sub-activities level 2

Review AK Analyze documents or existing
AK stored

Search, Discovery

Communicate AK Subscribe to AK
Organize meetings

Pull/ Push (RSS)
Discuss / explain

Table 1. Activities for creating architectural design decisions

Table 2. Knowledge sharing activities

Extending Software Architecting Processes
with Decision-making Activities

Complementary to AK producers, knowledge consumers include assessing and
learning activities, as shown in tables 3 and 4. Assessment provides the guidelines and
recommendations for selecting the best or the optimal decisions among several. The
expertise of the architects and the results from evaluating different alternatives usually
drive these assessment activities. Table 3 shows different assessment activities and
sub-activities to assess before or after decisions are made. Sometimes, assessing about
decisions needs from a previous learning activity in order to perform the right
assessment. In such scenario we could perform assessment during architecting to
select the best decision or during a learning activity to teach about future decisions, as
architects can learn from right and wrong experiences. Assessing about AK can be
used to know the viability of future decisions and provide further recommendations.

ASSESSING (*): Recommends the selection of a decision
Activity Sub-activities level 1 Sub-activities level 2

Evaluate

Evaluate impact of implications
Constraint analysis
Evaluate impact of quality
attributes

Analysis of alternatives
Simulation
Impact analysis

Review Check for completeness and
correctness of AK

Validate Check decisions against
requirements and architectural
products
Check the integrity of the
dependencies between decisions

Traceability

Recommend Communicate to stakeholders the
results of the assessment activity

The last activity concerns to learning tasks. Architects become more expert

consumers of AK as they learn from past experiences. Learning improves also the
career of architects from beginners to more expert ones. As a result, future
architecting activities are expected to be performed better that initially. As shown in
table 4, some learning activities include the evaluation of stored AK as a way to learn
which of the decisions made were right or wrong, or to detect inconsistencies in the
decision model.

LEARNING (*): Understand why decisions were made
Activity Sub-activities level 1 Sub-activities level 2

Evaluate stored AK Compare the decisions to
products and requirements
Detect wrong decisions or
inconsistent AK

Follow trace links
Search-Reuse AK

Training Teaching about past decisions
and experiences

Search-Reuse AK
Assessment / Learn

Table 3. Assessment activities with architectural knowledge

Table 4. Learning activities from previous architectural knowledge

 Rafael Capilla, Francisco Nava

From our point of view, assessment and learning are often intertwined to
understand the choices made. The aim of training activities is to teach about past
experiences, but some search could be done to retrieve the decisions made that will be
used in learning activities. Some of the sub-activities defined in the tables described
before are interrelated or even duplicated because certain tasks in the producer side
are enacted in the consumer side and vice-versa. Figure 1 describes the relationships
between the activities defined in the tables and different users can participate either as
consumers and producers, depending on their specific roles.

4. Making AK Explicit with Tool Support

Previous efforts [10] analyzed tool support for design decisions in software
architecture. Current technology for supporting such AK is still young and immature,
but recent proposals are rapidly gaining popularity to introduce design decisions
within the architecting process. Some of the tools that have been recently proposed to
store and use design decisions are the following.

Archium (Hhttp://www.archium.netH) is a research prototype [9] for supporting
design decisions as first class entities. Archium defines a meta-model which is
composed of three sub-models: an architectural model, a design decision model, and
a composition model to compose design fragments (an architectural fragment defining
a collection of architectural entities). Archium is also a component language which
extends Java for describing components, connectors, and design decisions with tool
support. Archium integrates an architectural description language (ADL) with Java to
describe the elements from a component & connector view but making explicit the

Figure 1. Activities for producing and consuming architectural knowledge

Extending Software Architecting Processes
with Decision-making Activities

architectural design decisions and its rationale [11]. Archium supports the trace from
requirements to decisions and is able to check which of these requirements are
addressed by one or several decisions. Archium provides visualization facilities for
the decisions made using a dependency graph, which can be used to assess about the
consequences of the decisions.

PAKME [1] is a web-based architecture knowledge management tool for providing
knowledge management (KM) for software architecture development. PAKME has
been built on the top of Hipergate, an open source groupware platform which includes
collaborative features, project management facilities and online collaboration tools for
decentralized teams. At present, PAKME consists of five components: the user
interface implemented with JSP and HTML pages, the KM component which
provides the services necessary to store and update AK, the search component which
defines three different searching mechanisms (i.e.: keywords, logical operators, and
navigation) for retrieving artefacts, the reporting component which provides services
for representing AK and describing the relationships between different architectural
artefacts, and the repository management which offers the services needed to
maintain the data (currently implemented in PostgreSQL). PAKME uses different
templates for capturing and representing the knowledge and the rationale associated to
architectural design decisions.

The Architecture Design Decision Support System (ADDSS), available at,
Hhttp://triana.escet.urjc.es/ADDSSH) [4] is an open web-based tool developed in PHP,
HTML and MySQL, and focuses on recording, managing and documenting
architectural design decisions under an iterative development process. ADDSS
follows the natural way in which architects usually work, that is, creating the
architecture under successive iteration for which one or several decisions are made.
The design decisions are stored in plain text in MySQL databases. For each set of
decisions, an image of the architecture can be uploaded as a thumbnail image.
ADDSS does not directly cooperate with other modelling or requirements tools, but it
allows uploading images exported with architecture modelling tools. In ADDSS,
decisions are motivated by the requirements already stored in the tool. Also, basic
dependencies can be established between a decision and previous ones, as a way to
create a network of decisions. The result of the decision-making process can be easily
visualized and the user can navigate and browse both the resulting architectures and
the decisions made. Design decisions in ADDSS decisions can be based on the
selection of well-known patterns already stored and a free text description is used to
explain the decision made. Finally, PDF documents containing the design rationale of
the architecture can be automatically generated using the fpdf library for PHP.

4.1 New Features in ADDSS 2.0

The need to count with adequate tool to support new features for characterizing
AK, led to evolve the first version of ADDSS. Therefore, we have recently released
ADDSS 2.0 with the following additional features respect to the previous version.

 Rafael Capilla, Francisco Nava

• Visualization capabilities improved: In ADDSS 2.0, up to 5 architectures are
visualized per row showing the thumbnail images of the architectures with the
same width, so users can now browse more easily the architectures across the
iterations. Figure 2 shows an example of the iterations list.

• Status of the decisions: A status can be assigned to each decision (e.g.:

pending, rejected, approved, obsolete), so the architect can know which is the
current status of that decision in the project.

• Date of each decision can be added.
• Support for alternatives decisions: Decisions can be marked as alternative

decisions until the final decision is made (one or more decisions could be the
best ones).

• Tagged requirements as they have been used by a decision. Therefore, the
architect knows at every time the amount of requirements that have been
addressed during the architecting activity (see Figure 3).

Figure 2. Iterations list shown the architecture products with ADDSS 2.0

Extending Software Architecting Processes
with Decision-making Activities

• Category of the decision: A category attribute discriminate between main,

alternative, and derived decisions. A derived decision has a parent decision.
• PDF documentation improved: The documentation generated by ADDSS 2.0

details the relationships between requirements, decisions and architectures to
follow more easily the trace links. PDF documents describe explicitly the
chain of the links between different decisions, so we can easily know which
decisions depend from other decisions.

• User interface improved (e.g.: menu options, colours).
• Support for different stakeholder roles.
• Pattern classification into different categories: Pattern search is now more

easy and intuitive for the architect.
• Support for different architectural views: Now we provide support to define

different architectural views and make decisions for each single view.
• Knowledge search: In addition to browsing patterns and navigating across the

decisions made, a query module extracts relevant information about the
decisions made following the links between requirements, decisions, and
architectures. For instance, we can extract the requirements and the
architectures affected by a particular decision, or we could even know the
decisions that affect a particular architecture product.

4.2 Decision-making Process with ADDSS 2.0

According to the activities described in tables 1 to 4, this section describes which
of these are implemented in ADDSS 2.0. Table 5 shows in yellow the activities
currently supported by ADDSS 2.0. Those activities marked with “+” can be
supported by ADDSS and they have been added with respect to the initial
classification of section 3 as a refinement of similar tasks. Also, those processes
marked inside a dotted box are not directly supported by ADDSS 2.0 (we don’t have
an explicit attribute to record such information or process implemented to provide
some degree of automatic support), but the result of these activities can be stored as
part of the description of the decision as a free text description. The remainder
activities are not supported by the tool. The tool provides a semi-automatic support to
manage the tacit knowledge and make it explicit to users. The explanation of the
activities of table 5 supported by ADDSS 2.0 is as follows. During the architecting
process, ADDSS 2.0 records the decisions and assigns to them a status as well as
other items like the date and the responsible of the decision. The architect can tag a
decision as alternative, derived, or main (the selected decision). This reasoning
process implies to consider the pros and the cons of any decision, as well as
constraints and dependencies between decisions. The reuse of existing AK is limited
by this moment to design patterns previously stored. Reusing previous decisions can
be done by examining the documentation generated by the tool. The evaluation of the
alternatives is externally done but the results are stored in ADDSS in the form as

Figure 3. A design decision with its date, status, the requirements that
motivated the decision; and a dependency link to a previous decision

 Rafael Capilla, Francisco Nava

approved or rejected decisions. Users can navigate through past decisions or even
query the database to extract trace information between decisions, requirements and
architectural products.

Decision-making activities supported by ADDSS 2.0
Activity Sub-activities level 1 Sub-activities level 2

ARCHITECTING (*): Creates and stores AK
Make decision

Reasoning
(rationale, motivation)
Select the best alternative

Constraint and dependency
analysis

Characterize decision Assign status and other
relevant items

Store and document
decisions

Evaluate AK Reuse AK

Search, Discovery
Navigate through DD (+)
Query DD (+)
Assessment / Learn

SHARING (*): Make AK available to others
Review AK Analyze documents or existing

AK stored
Search, Discovery
Navigate through DD (+)
Query DD (+)

Communicate AK Subscribe to AK
Organize meetings

Pull/ Push (RSS)
Discuss / explain

ASSESSING (*): Recommends the selection of a decision
Evaluate

Evaluate impact of
implications
Constraint analysis
Evaluate impact of quality
attributes

Analysis of alternatives

Review Check for completeness and
correctness of AK

Validate

Check decisions against
requirements and architectural
products
Check the integrity of the
dependencies between
decisions

Traceability

Recommend Communicate to stakeholders
the results of the assessment
activity

LEARNING (*): Understand why decisions were made
Evaluate stored AK Compare the decisions to

products and requirements
Detect wrong decisions or
inconsistent AK

Follow trace links
Search-Reuse AK
Navigate through DD (+)
Query DD (+)

Table 5. Decision-making activities which are automatic or manually supported by
ADDSS 2.0 to record and document relevant architectural knowledge

Make assumptions
Evaluate AK
Analyze implications
Validate before storing

Simulation
Impact analysis

Evaluate alternatives

Extending Software Architecting Processes
with Decision-making Activities

Training Teaching about past decisions

and experiences
Search-Reuse AK
Assessment / Learn

Sharing activities could be partially supported in ADDSS 2.0 by the analysis of
existing PDF documentation or stored patterns as well as codified architectures and
decisions.

Assessment activities can be supported using the traceability mechanism to check
requirements against decisions and validate the decisions made. Also, the results of an
evaluation of the alternatives can be stored using the status attribute, but no support is
provided to carry out the evaluation process in itself. The basic dependency model
supported by ADDSS serves to establish links between requirements and architectures
which becomes useful for maintenance and evolution activities.

Finally, learning activities can be only carried out through out the evaluation of the
decisions that have been recorded. We can compare the decisions made against the
requirements to know how many of these have been addressed, and also trace such
requirements to the architectural products developed in the process. The
documentation generated by the tool shows the chain of the links between decisions
as a way to track manually root causes or even known the implications in the
architecture when requirements changes.

Otherwise, inconsistencies or wrong decisions may cause to remove a decision or
to mark this as wrong. One key aspect not currently supported happens when we
remove a decision. ADDSS does not warn about the consequences of removing a
decision, which may cause a broken link in the dependency network. Detecting wrong
and inconsistent knowledge is still a challenge to face.

4.3 Impact on Traditional Architecting Activities

Software architecting is considered a formal software engineering approach aimed
to create and maintain the architecture of a software system over time. Complex and
less complex approaches in combination with other software engineering practices are
often used to achieve a balance between the more formal activity of well established
methods and the agility required to meet the project schedule. In close relationship to
this, the introduction of a complementary and concurrent activity like the creation and
use of architectural design decisions with specific tool support changes the traditional
way in which software architects do their job. By making explicit the process that
records the tacit knowledge residing in the architect’s mind, we clearly overload the
effort spent by architects in the traditional modeling activity. Recording the design
decisions introduces an extra effort in architecting, but a significant reduction should
be expected during the system maintenance and evolution, as software architects will
be able to replay past decisions as well as to avoid other maintenance tasks like
architecture recovery or reverse engineering processes. With ADDSS 2.0 we have
tried to balance the processes aimed to store and use architectural knowledge with
respect to the more traditional architecting activity. Because ADDSS 2.0 is not
integrated with other modeling tools like Rationale Rose, decisions can be stored in
parallel at the same time the designers use these modeling tools to depict the
architecture. In figure 4 we represent the influence of design decisions in the

 Rafael Capilla, Francisco Nava

potential overhead and reduction effort in architecture development and maintenance
phases.

Initially, architects spend a certain effort in creating the architecture during several

project iterations (It), and some additional effort has to be made to create the design
decisions (DD) including evaluation, assessment, pattern usage, etc. During any
maintenance activity, new decisions have to be made while others can be reused
(hexagons in figure 4). For instance, the architecture of iteration It6 is the result of a
reused decision and a new one. Hence, the effort spent in re-architecting the system is
expected to be lower than if decisions were never recorded. Computing this effort is
quite important to estimate how much effort can be saved.

5. Conclusions and Future Work

As mentioned in [20], “creating and maintaining this rationale is very time-
consuming”. At present, we have no empirical data concerning the overhead
associated with recording and using architectural design decisions. Because ADDSS
2.0 has just been released, we only have the results from a previous evaluation done
with ADDSS 1.0, in which 22 master students participated in the evaluation of a
small-medium size project. The students were organized in teams of two persons and
they spent around 20 hours to record the decisions of a small virtual reality system
which has been modeled using Rational Rose and MagicDraw. Because ADDSS 1.0
has limited features (e.g. no support for decision status or alternative decisions)
compared to version 2.0, the main results from the evaluation forms and interviews
with the team members can be summarized as follows. Most of the teams perceived
ADDSS as easy to learn and use, and they have praised ADDSS for understandability.

Figure 4. Effort overview extending the traditional architecting activity with explicit
decision-making processes for recording and using architectural design decisions

Extending Software Architecting Processes
with Decision-making Activities

Also, depending on experience of the teams, 4 teams spent around 20 hours while 3
teams spent between 7 and 10 hours, and 4 teams took less than 7 hours using the
tool. The average time spent by the teams on recording the design decisions was about
10 hours (it does not comprise the traditional modeling activities). Finally, the
average scores of the evaluation of ADDSS by the teams ranged between 5 and 10
points in a scale from 0 to 10, except the learning effort that was around 4 points.
With respect to the traditional approach, the teams perceived they needed some extra
effort to record and maintain the decisions stored in ADDSS 1.0, but we didn’t
perform cross-comparison creating the same architecture without using ADDSS.

At present, we have performed just one experiment to estimate the overhead
associated with recording design decisions. For the next months we expect to have
some additional measurable data using ADDSS 2.0 to evaluate the improvements
made and estimate the savings when reusing architectural design decisions. Also, we
wan to analyze the barriers and the effort needed as we change the traditional way of
architecting when recording decisions in parallel with modeling tasks. Because
ADDSS tries to bridge the gap between products and requirements, the maintenance
phase can benefit from our approach. Moreover, integration with other popular
software engineering tools could reduce the effort in capturing decisions.

Finally, the documentation generated extends the traditional architectural
documentation and provides valuable information for different stakeholders who want
to learn how the architecture was created. Such information crosscuts the information
from other architectural views, such as mentioned in the “decision view” [7], which
should be seen as a complementary view to the other traditional ones. ADDSS uses
plain text in database fields and PDF documents to store and present the design
decisions. However, it is planned to export this information to XML documents in
order to facilitate the information exchange with other platforms and tools.

References

1. Babar, M. A. and Gorton, I. A Tool for Managing Software Architecture Knowledge.
Proceedings of the 2nd Workshop on Sharing and Reusing Architectural Knowledge, ICSE
Workshops, (2007).

2. Bass, L., Clements P. and Kazman R. Software Architecture in Practice, Addison-Wesley,
2nd edition, (2003).

3. Bosch, J. Software Architecture: The Next Step, Proceedings of the 1st European Workshop
on Software Architecture (EWSA 2004), Springer-Verlag, LNCS 3047, pp. 194-199 (2004).

4. Capilla, R., Nava, F., Pérez, S. and Dueñas, J.C. A Web-based Tool for Managing
Architectural Design Decisions, Proceedings of the 1st Workshop on Sharing and Reusing
Architectural Knowledge, ACM Digital Library, Software Engineering Notes 31 (5) (2006).

5. Capilla, R., Nava, F..and Dueñas, J.C. Modeling and Documenting the Evolution of
Architectural Design Decisions, Proceedings of the 2nd Workshop on Sharing and Reusing
Architectural Knowledge, ICSE Workshops, (2007).

6. Clements, P., Bachman, F., Bass, L., Garlan, D., Ivers, J., Little, R., Nord, R. and Stafford, J.
Documenting Software Architectures. Views and Beyond, Addison-Wesley (2003).

7. Dueñas, J.C. and Capilla, R. The Decision View of Software Architecture, Proceedings of
the 2nd European Workshop on Software Architecture (EWSA 2005), Springer-Verlag,
LNCS 3047, pp. 222-230 (2005).

 Rafael Capilla, Francisco Nava

8. Dutoit A., McCall, R., Mistrik, I. and Paech B. (Eds). Rationale Management in Software
Engineering, Springer-Verlag (2006).

9. Jansen, A. and Bosch, J. Software Architecture as a Set of Architectural Design Decisions,
5th IEEE/IFIP Working Conference on Software Architecture, pp. 109-118, (2005).

10. Jansen, A. and Bosch, J. Evaluation of Tool Support for Architectural Evolution, 19th
International Conference on Automated Software Engineering (ASE’04), pp. 375-378,
(2004).

11. Jansen, A., van der Ven, J., Avgeriou, P. and Hammer, D.K. Tool Support for Architectural
Decisions, 6th Working IEEE / IFIP Conference on Software Architecture (WICSA 2007),
pp. 4, (2007).

12. Kruchten P. Architectural Blueprints. The “4+1” View Model of Software Architecture,
IEEE Software 12 (6), pp.42-50 (1995).

13. Kruchten, P., Lago, P., and van Vliet, H., T. Building up and Reasoning About
Architectural Knowledge, QoSA2006, LNCS, pp. 43-58 (2006).

14. Lago, P. and Avgeriou, P. First Workshop on Sharing and Reusing Architectural
Knowledge, ACM SIGSOFT Software Engineering Notes, 3(5), 32-36.

15. Perry, D.E. and Wolf, A.L. "Foundations for the Study of Software Architecture", Software
Engineering Notes, ACM SIGSOFT, October 1992, pp. 40-52.

16. Roeller, R., Lago, P., van Vliet, H., 2006. Recovering Architectural Assumptions. The
Journal of Systems and Software 79, 552-573.

17. Rozanski, N. and Woods. E. Software Systems Architecture: Working with Stakeholders
Using viewpoints and Perspectives, Addison-Wesley (2005).

18. Tang, A., Babar, M.A., Gorton, I. and Han, J.A. A Survey of the Use and Documentation of
Architecture Design Rationale, 5th IEEE/IFIP Working Conference on Software
Architecture, (2005).

19. Tyree, J. and Akerman, A. Architecture Decisions: Demystifying Architecture. IEEE
Software, vol. 22, no 2, pp. 19-27, (2005).

20. van der Ven J.S., Jansen, A.G., Nijhuis, J.A.G., and Bosch, J. Design Decisions: The Bridge
between the Rationale and Architecture. In Rationale Management in Software Engineering,
pp. 329-346, Springer-Verlag (2006).

21. Wang, A., Sherdil, K. and Madhavji, N.H. ACCA: An Architecture-centric Concern
Analysis Method, 5th IEEE/IFIP Working Conference on Software Architecture, (2005).

