Extending Softwar e Ar chitecting Processes
with Decision-making Activities

Rafael Capilla, Francisco Nava

Department of Computer Science, Universidad Rey Qaatos,
¢/ Tulipan s/n, 28933, Madrid, Spain
{rafael.capilla, francisco.nava}@urjc.es

Abstract. The traditional perspective on software architextoas paid much

attention to architecting as a development procassed at creating the

architecture of a software system, as well as theughentation used to

communicate the architecture to the stakeholders nmimans of several

architectural views. Recently, the software architecresearch community has
faced the need to record, manage, and documertteign decisions and the
rationale that lead to such architecture. Becaud@tactures are the result of a
set of design decisions, this design rationale nhesproperly recorded and
managed as a complementary process to the modatiingty. In this paper we

detail different types of decision-making activitieimed at creating and using
design decisions and how these can be supportbdauit support.

Keywords: Software architecture, Architecture design decisjorchitectural
knowledge, Architecting activity, Maintenance, Ewabn.

1. Introduction

Software architectures have been successfully usetie past decades as the
central cornerstone for describing the main fumaligarts of a software system [2],
and the interests of different stakeholders arallysuepresented in the architecture
by means of different architectural views [12] [1The more traditional perspective
on software architecture [2] has paid much attentm modeling and documenting
tasks while they have neglected the rationale ldthto such designs. Recently, this
point of view is changing to include the creatiordaise of architectural knowledge
(AK) as a first class entity that should be recdrdés all architectures are the result
of a set of design decisions [3], the impact amikfits of recording this AK seems to
be promising for maintenance and evolution ac@sitiHence, as software systems
evolve, the decisions made during the life of th&tesm should evolve accordingly to
the changes performed on the system and to neworoastneeds. Therefore, a
continuous decision-making process happens to nieetgoals specified in the
requirements.

1 This work is partially funded by the PILOH projaxftthe Spanish Ministry of Education and
Research programme under grant number URJC-CM-200668683 -

Rafael Capilla, Francisco Nava

Recently, the software architecture community le®gnized the need to record,
manage, and document explicitly the rationale tleaid to the creation of any
software architecture. Architecture design decsibecome now more important as
they bridge the gap between requirements and aeothial products. Thus, also
traceability in maintenance activities can berfeditn this approach.

In this paper we focus on those processes neediéshtawith design decisions as a
complementary product of the architecting activityso, we describe how some of
these processes are supported by ADDSS, a web-badldfdr recording, managing,
and documenting design decisions. The structutbeopaper is as follows. Section 2
discusses the representation of design decisiors®fiware architecture. Section 3
deals with the processes that affect the creatimhuse of AK. Section 4 describes
which of the processes mentioned in Section 3@parted in the ADDSS approach.
Section 5 provides some conclusions and outlinssipke future work.

2. Representing and Creating Ar chitectural Design Decisions

In the early 90s, Perry and Wolf [15] mentiortbé rationale and principles that
guide the design and evolution of software archites. This rationale is used in the
reasoning activity as the underlying reasons thattvate the selection of a particular
architecture. These ideas have been detailed ito[6late the need for documenting
explicitly architectural design decisions, but ribe processes that lead to them.
Nevertheless, prior to the definition of the adies that should take place in the
creation of such architectural knowledge (AK), éems necessary to know which
kind of information we should represent as parttlegd design rationale. Design
rationale is the justification behind decisions] aifferent authors have addressed the
problem to reflect design decisions as part of dhehitecture documentation [8].
Tyree and Akerman [19] provide a template list ¢€ms for characterizing
architectural design decisions. In [18] the authoention the need for documenting
design decisions, because documenting architectl@striptions often based on a
component & connector view is not enough. One ef thasons to store this AK
comes from the need to carry out highly-cost maiatee processes motivated by
architecture erosion or from non existing desigasalnse design decisions were never
recorded. Others [16] focus on the explicit repnéstion of assumptions as a way to
make explicit the tacit knowledge which is ofterpiiait in the architect’s mind. In
[5], the authors propose a list of attributes whathssifies design decisions into
mandatory and optional attributes that can bereddor each particular organization,
as well as a set of attributes specific for desegilihe evolution of architectures. A
meta-model combines the characterization of dedégisions with the processes used
to manage such knowledge. Similarly, the architestientric concern analysis
(ACCA) method [21] uses a meta-model to capturditectural design decisions and
linking them to software requirements and architedt concerns. The approaches
mentioned before highlight the relevance for chemd@ing the architectural
knowledge, but the processes that lead to it ageshightly mentioned.

Extending Softwar e Ar chitecting Processes
with Decision-making Activities

2.1 Lifecyclefor AK Creation

In addition to the AK representation, creating arsihg AK has to be integrated
under the “natural” lifecycle of the more traditadnarchitecting and engineering
activities. To date, most software architects hagen architectures as a “product”
that has to be maintained and evolved as requirenofiange. According to [3] [14],
architects are changing their more traditional pective by consideringrchitectural
knowledge as a product, which should be seen as first class co-producthef
architecting activity in order to avoid knowledgeaporization. In addition,
architectural knowledge as a process [14] “deals with the processes that create and
use such AK during the software development lifégycUse cases, methods for
recording and discovering knowledge, tools andisesvfor supporting the usage of
AK fall on this category. In this new scenario, tekeholders involved in the
development of any software architecture may a¢pasiucers” and “consumers” of
this AK. According to the classification defined [h4], architecting and sharing
activities belong to the producer side whidarning and assessment belong to the
consumer side. These activities have been rougbdgribed in [14] but they need
some refinement in order to understand the detgilestesses concerning to the
creation of AK. Our main contribution in this pagecuses on a more detailed list of
the processes and sub-processes that happen theidgcision-making activity, as a
refinement of the main ones described in [14], sagkve outline in next section.

3. Activitiesfor Recording and Using Ar chitectural Knowledge

The activities concerning with the creation of Akealescribed in table 1. AK.
Hence, before a decision is made, a reasoningitgctivay take place [13]. This
reasoning process is based on the rationale anchdkigation that guides a decision.
The rationale often relies on assumptions madeedisas on the analysis of the pros
and the cons (i.e.: the implications) of each patér decision. Moreover, we have to
take into account the existence of constraints tfer decisions as well as the
dependencies that may appear between current amdops decisions. Once a
decision is made, we should give a concrete s{atgs: pending, approved, rejected,
obsolete) and store it in a readable form for sgbset use. Often, before a choice is
selected, several alternatives can be consideites.eValuation of these alternatives
means to deal with new decisions and sometimestséar codified AK. In addition,
evaluation and assessment activities may happenuaed to evaluate between
different candidate solutions. Also, depending twe tpecific phase or project
milestone, not all the existing AK may be neededhat same during the decision
making activity. For instance, we can store a minimset of attributes to characterize
a design decision during the initial developmenageh but a subsequent testing or
maintenance activity may need extra attributes..(eegponsible, status). In practice,
as much of these attributes are stored duringribtion of AK more comprehensible
would be the decisions made. For each main catexfahe processes defined in [14]
(marked with an asterisk in the tables) we havaildet the set of activities and sub-
activities that we believe belong to each category.

Rafael Capilla, Francisco Nava

Table 1. Activities for creating architectural design decits

ARCHITECTING (*): Creates and stores AK

Activity Sub-activities level 1 Sub-activities level 1
Make decision Reasoning Make assumptions
(rationale, motivation) Analyze implications
Select the best alternative Constraint and dependency
analysis
Evaluate AK
Validate before storing
Characterize decision Assign status and other
relevant items
Store and document
decisions
Evaluate AK Reuse AK Search, Discovery

Evaluate alternatives Assessment / Learn

Once an amount of decisions has been stored, Kisah be shared with others.
The processes that fall in this category are ddfimetable 2. In many cases, the
boundary between producers and consumers for ghaciivities is not clear in many
cases. Producers share available knowledge to sthieeholders. AK producers may
act also as consumers of codified knowledge. Mageoarchitects may share AK
with other architects, all of them participating ithe development process. For
instance, during architecting a well-known pattean be shared to other architects to
discuss its applicability as a suitable design témiu In other cases, once a set of
design decisions are made and the first versiorthef architecture is built, a
subsequent maintenance process might need to shaee of the decisions made with
others interested in learning from previous expems. From our point of view,
knowledge sharing can be a more passive task wieenstakeholders review existing
AK or even when they query a knowledge base. A mooeactive approach can take
place if we want to publish knowledge to otherd thet as subscribers of such AK
(e.g.: use of RSS contents for distributed teamg}tive publishing-subscribing
strategies as well as discussion groups can pravitiere dynamic usage of codified
knowledge. Moreover, brainstorming meetings can doganized to share and
communicate this knowledge. In this case, knowledd®ring requires the
participation of at least two or more stakeholderachieve the communication goal,
while a review activity can be done by a singl&kstlder that learns from available
knowledge.

Table 2. Knowledge sharing activities

SHARING (*): Make AK available to others

Activity Sub-activities level 1 Sub-activities level 2
Review AK Analyze documents or existing | Search, Discovery
AK stored
Communicate AK Subscribe to AK Pull/ Push (RSS)
Organize meetings Discuss / explain

Extending Softwar e Ar chitecting Processes
with Decision-making Activities

Complementary to AK producers, knowledge consunieciide assessing and
learning activities, as shown in tables 3 and 4e&sment provides the guidelines and
recommendations for selecting the best or the @ttitecisions among several. The
expertise of the architects and the results froeduating different alternatives usually
drive these assessment activities. Table 3 shofferelit assessment activities and
sub-activities to assess before or after decisilvasnade. Sometimes, assessing about
decisions needs from a previous learning activityorder to perform the right
assessment. In such scenario we could perform sasses during architecting to
select the best decision or during a learning #gtte teach about future decisions, as
architects can learn from right and wrong expemgsndssessing about AK can be
used to know the viability of future decisions gndvide further recommendations.

Table 3. Assessment activities with architecturadwledge

ASSESSING (*): Recommends the selection of a decision

Activity Sub-activities level 1 Sub-activities level 2

Evaluate Evaluate impact of implications Analysis of alternatives
Constraint analysis Simulation

Evaluate impact of quality | Impact analysis
attributes

Review Check for completeness and
correctness of AK

Validate Check decisions against | Traceability
requirements and architectural
products

Check the integrity of the
dependencies between decisions

Recommend Communicate to stakeholders the
results of the assessment activity

The last activity concerns to learning tasks. Atextts become more expert
consumers of AK as they learn from past experiencearning improves also the
career of architects from beginners to more exmerés. As a result, future
architecting activities are expected to be perfatihbetter that initially. As shown in
table 4, some learning activities include the eatitun of stored AK as a way to learn
which of the decisions made were right or wrongtadetect inconsistencies in the
decision model.

Table 4. Learning activities from previous architeal knowledge

LEARNING (*): Understand why decisions were made

Activity Sub-activities level 1 Sub-activities level 2
Evaluate stored AK Compare the decisions to | Follow trace links
products and requirements Search-Reuse AK

Detect wrong decisions or
inconsistent AK

Training Teaching about past decisions | Search-Reuse AK
and experiences Assessment / Learn

Rafael Capilla, Francisco Nava

From our point of view, assessment and learning aften intertwined to
understand the choices made. The aim of traininiyitkes is to teach about past
experiences, but some search could be done tevetiiie decisions made that will be
used in learning activities. Some of the sub-atitisidefined in the tables described
before are interrelated or even duplicated becaasain tasks in the producer side
are enacted in the consumer side and vice-vergard-iL describes the relationships
between the activities defined in the tables affémint users can participate either as
consumers and producers, depending on their speciés.

Producer Side
Review AK

/,‘<8haring / \
oy T Communicﬁ-
t Architecting E——t (
| / %=/ \\
Evaluate
Training Recommend

Search AK Tl Learmning

Assessment

Degign Recisions

Evaluate & O
Simulate S m 8

Asessment Consumer Side

Figure 1. Activities for producing and consumingtatectural knowledge

4. Making AK Explicit with Tool Support

Previous efforts [10] analyzed tool support for igesdecisions in software
architecture. Current technology for supportingtsA& is still young and immature,
but recent proposals are rapidly gaining populatityintroduce design decisions
within the architecting process. Some of the toloéd have been recently proposed to
store and use design decisions are the following.

Archium (http://www.archium.nét is a research prototype [9] for supporting
design decisions as first class entities. Archiuefings a meta-model which is
composed of three sub-modedst architectural model, a design decision model, and
a composition model to compose design fragments (an architectural feagrdefining
a collection of architectural entities). Archiumatso a component language which
extends Java for describing components, connedcoid,design decisions with tool
support. Archium integrates an architectural desicm language (ADL) with Java to
describe the elements from a component & connedéw but making explicit the

Extending Softwar e Ar chitecting Processes
with Decision-making Activities

architectural design decisions and its rationald.[Archium supports the trace from
requirements to decisions and is able to check lwlit these requirements are
addressed by one or several decisions. Archiumigeswisualization facilities for
the decisions made using a dependency graph, whictbe used to assess about the
consequences of the decisions.

PAKME [1] is a web-based architecture knowledge aggment tool for providing
knowledge management (KM) for software architectdeselopment. PAKME has
been built on the top of Hipergate, an open sogroapware platform which includes
collaborative features, project management faediind online collaboration tools for
decentralized teams. At present, PAKME consistsfied components: theuser
interface implemented with JSP and HTML pages, tK& component which
provides the services necessary to store and updigtéhe search component which
defines three different searching mechanisms Ee&ywords, logical operators, and
navigation) for retrieving artefacts, theporting component which provides services
for representing AK and describing the relationshigtween different architectural
artefacts, and theepository management which offers the services needed to
maintain the data (currently implemented in PoS@k). PAKME uses different
templates for capturing and representing the kndgéeand the rationale associated to
architectural design decisions.

The Architecture Design Decision Support System D&3), available at,
http://triana.escet.urjc.es/ADD$$4] is an open web-based tool developed in PHP,
HTML and MySQL, and focuses on recording, managiagd documenting
architectural design decisions under an iteratievetbpment process. ADDSS
follows the natural way in which architects usualkork, that is, creating the
architecture under successive iteration for whiok or several decisions are made.
The design decisions are stored in plain text inSQY. databases. For each set of
decisions, an image of the architecture can beagigld as a thumbnail image.
ADDSS does not directly cooperate with other madglbr requirements tools, but it
allows uploading images exported with architectomedelling tools. In ADDSS,
decisions are motivated by the requirements alrestdyed in the tool. Also, basic
dependencies can be established between a deaisibprevious ones, as a way to
create a network of decisions. The result of theisiten-making process can be easily
visualized and the user can navigate and browde thet resulting architectures and
the decisions made. Design decisions in ADDSS aetsscan be based on the
selection of well-known patterns already stored arfcee text description is used to
explain the decision made. Finally, PDF documeatgaining the design rationale of
the architecture can be automatically generatetgusiefpdf library for PHP.

4.1 New Featuresin ADDSS 2.0

The need to count with adequate tool to support features for characterizing
AK, led to evolve the first version of ADDSS. Thine, we have recently released
ADDSS 2.0 with the following additional featurespect to the previous version.

Rafael Capilla, Francisco Nava

e Visualization capabilitiesimproved: In ADDSS 2.0, up to 5 architectures are
visualized per row showing the thumbnail imagethefarchitectures with the
same width, so users can now browse more easilgritfétectures across the
iterations. Figure 2 shows an example of the itenatlist.

2 http:/itriana.escet. urjc.es/ADDSS/ADDSS_codefindex.php - Microsoft Internet Explorer

Archiva Edicién Ver Favoritos Herramientas Ayuda "
Qavss -) - [x] (@] @D DOostsaueds Slpravoos €2 2+ 1L & B @ i 5
Direceion |&] hitpij/triana.sscet . uric.es/ADDSS(ADDSS _codsii ~ | B3 Ir & Coogle [Gl+ ~ oS B - 154 bloqueads

'—l'j Architecture Design Decision Support System

Projects Architectures et ations Patterns

welcome rafael capilla

Loggut
New lteration View /Mo dify Delete Repoit
Iteration List
Projects | VB-Church v|=
Architectures [Virtual church architecture | [&]
View Static]

& Listo @B Internst
72 Inicio [s & Finai-t3-Capila - Micr., | T oo BT

FIYuic L. 1LCrauuvlid 1L DIUVWIT UIT alLHICLLUIguUyauLd Wil AV OO 4.V

e Status of the decisions. A status can be assigned to each decision (e.g.:
pending, rejected, approved, obsolete), so thataotlcan know which is the
current status of that decision in the project.

« Date of each decision can be added.

e Support for alternatives decisions: Decisions can be marked as alternative
decisions until the final decision is made (onemare decisions could be the
best ones).

e Tagged requirements as they have been used by a decision. Therefoee, t
architect knows at every time the amount of requests that have been
addressed during the architecting activity (seeifeéi@).

a

(<) < e % = I eow 3
Gireccicn [@] hitp: fftriana, cacet wric.oaADDSS/ADDSS_codoli ~ | B3 1r & i Coogle[iC- Sl b S B~ | B 1ese bloqueados 3> (@ Configuracian =
-—l:i Architecture Design Decision Support System
Prolects | Architectures | lerations | Patreins

walnnme rafael canilla
Logout

Modify decision: YR Church Virtual church architecture Iteration 1

Type of Pattern

pete [03042008

Respuinsi
Desecri ption =
=8|

Req

(=) FR7: Stopping tho tour

- HWRL: Graphic card

- NER1: e

Back Save

&) ® Intornct

72 Inicio [o - Micr S 2 2 » = EEEF &L 5%=—LF i

Extending Softwar e Ar chitecting Processes
with Decision-making Activities

e Category of the decision: A category attribute discriminate between main,
alternat|ve and derlved deC|S|ons A derived dembas a parent decision.

Figure 3. A deS|gn deC|S|on W|th its date, statllma requirements tr 20

motivated the decision; and a dependency linkgeceaious decision ‘e

cnain oT tNe IINKS petween aifferent aecisionNs Weo can easlly know wnich
decisions depend from other decisions.

e User interfaceimproved (e.g.: menu options, colours).

e Support for different stakeholder roles.

e Pattern classification into different categories. Pattern search is now more
easy and intuitive for the architect.

e Support for different architectural views: Now we provide support to define
different architectural views and make decisionsefach single view.

« Knowledge search: In addition to browsing patterns and navigationgpas the
decisions made, a query module extracts relevafurnration about the
decisions made following the links between requeats, decisions, and
architectures. For instance, we can extract theuireopents and the
architectures affected by a particular decisionwer could even know the
decisions that affect a particular architecturedpua.

4.2 Decision-making Processwith ADDSS 2.0

According to the activities described in table 14t this section describes which
of these are implemented in ADDSS 2.0. Table 5 showyellow the activities
currently supported by ADDSS 2.0. Those activitimsrked with “+” can be
supported by ADDSS and they have been added wisipent to the initial
classification of section 3 as a refinement of Emiasks. Also, those processes
marked inside a dotted box are not directly sumablly ADDSS 2.0 (we don't have
an explicit attribute to record such information process implemented to provide
some degree of automatic support), but the resutease activities can be stored as
part of the description of the decision as a freet description. The remainder
activities are not supported by the tool. The fmalvides a semi-automatic support to
manage the tacit knowledge and make it expliciusers. The explanation of the
activities of table 5 supported by ADDSS 2.0 isfa@®ws. During the architecting
process, ADDSS 2.0 records the decisions and assigthem a status as well as
other items like the date and the responsible efdécision. The architect can tag a
decision as alternative, derived, or main (the cteté decision). This reasoning
process implies to consider the pros and the cdnang decision, as well as
constraints and dependencies between decisionstelise of existing AK is limited
by this moment to design patterns previously stoRelising previous decisions can
be done by examining the documentation generatatiebtool. The evaluation of the
alternatives is externally done but the results sioged in ADDSS in the form as

Rafael Capilla, Francisco Nava

approved or rejected decisions. Users can navigpeigh past decisions or even
query the database to extract trace informatiowéen decisions, requirements and

PPN A R TR |

Table 5. Decision-making activities which are auddimor manually supported by
ADDSS 2.0 to record and document relevant architatknowledge

i~ A A

Decision-making activities supported by ADDSS 2.0 |

Activity | Sub-activities level 1 | Sub-activities level 2

ARCHITECTING (*): Creates and stores AK

Make decision Reasoning Constraint and dependency
(rationale, motivation) analysis
Select the best alternative

Make assumptions
Evaluate AK
Analyze implications

1
1
1
|
1
! Validate before storing

Characterize decision Assign status and other

relevant items

Store and document

decisions

Evaluate AK Reuse AK Search, Discovery
T TTTTTTTmm oo o e ! Navigate through DD (+)
! Evaluate alternatives ' Query DD (+)
""""""""""" ' Assessment / Learn

SHARING (*): Make AK available to others
Review AK Analyze documents or existing Search, Discovery

AK stored Navigate through DD (+)
Query DD (+)
Communicate AK Subscribe to AK Pull/ Push (RSS)

Organize meetings Discuss / explain

ASSESSING (*): Recommends the selection of a decision

Evaluate Evaluate impact of | Analysis of alternatives
implications ' Simulation |
Constraint analysis ' |mpact analysis '
Evaluate impact of quality |1 '
attributes |77 TTTTTmmmmmoo
Review Check for completeness and
correctness of AK
Validate Check decisions against | Traceability
requirements and architectural
products
Check the integrity of the
dependencies between
decisions
Recommend Communicate to stakeholders

the results of the assessment
activity

LEARNING (*): Understand why decisions were made

Evaluate stored AK Compare the decisions to | Follow trace links

products and requirements
Detect wrong decisions or
inconsistent AK

Search-Reuse AK
Navigate through DD (+)

Query DD (+)

Extending Softwar e Ar chitecting Processes
with Decision-making Activities

Training Teaching about past decisions | Search-Reuse AK
and experiences Assessment / Learn

Sharing activities could be partially supportedABDSS 2.0 by the analysis of
existing PDF documentation or stored patterns db asecodified architectures and
decisions.

Assessment activities can be supported using #uedbility mechanism to check
requirements against decisions and validate thisides made. Also, the results of an
evaluation of the alternatives can be stored ugiagstatus attribute, but no support is
provided to carry out the evaluation process iglfitsThe basic dependency model
supported by ADDSS serves to establish links batweguirements and architectures
which becomes useful for maintenance and evolwativities.

Finally, learning activities can be only carried through out the evaluation of the
decisions that have been recorded. We can compardedcisions made against the
requirements to know how many of these have bedneaded, and also trace such
requirements to the architectural products develoge the process. The
documentation generated by the tool shows the abfaihe links between decisions
as a way to track manually root causes or even kndwve implications in the
architecture when requirements changes.

Otherwise, inconsistencies or wrong decisions nayse to remove a decision or
to mark this as wrong. One key aspect not currestigported happens when we
remove a decision. ADDSS does not warn about thesesuences of removing a
decision, which may cause a broken link in the ddpacy network. Detecting wrong
and inconsistent knowledge is still a challengtate.

4.3 Impact on Traditional Architecting Activities

Software architecting is considered a formal soferengineering approach aimed
to create and maintain the architecture of a soévegstem over time. Complex and
less complex approaches in combination with otbéiinare engineering practices are
often used to achieve a balance between the mamafactivity of well established
methods and the agility required to meet the ptaggebedule. In close relationship to
this, the introduction of a complementary and corent activity like the creation and
use of architectural design decisions with spe¢da support changes the traditional
way in which software architects do their job. Bwking explicit the process that
records the tacit knowledge residing in the arclidgemind, we clearly overload the
effort spent by architects in the traditional madglactivity. Recording the design
decisions introduces an extra effort in architegtinut a significant reduction should
be expected during the system maintenance andtemlas software architects will
be able to replay past decisions as well as todawtiier maintenance tasks like
architecture recovery or reverse engineering pseesWith ADDSS 2.0 we have
tried to balance the processes aimed to store aadarchitectural knowledge with
respect to the more traditional architecting atfiviBecause ADDSS 2.0 is not
integrated with other modeling tools like RationBese, decisions can be stored in
parallel at the same time the designers use thes#elmg tools to depict the
architecture. In figure 4 we represent the infoeerof design decisions in the

Rafael Capilla, Francisco Nava

potential overhead and reduction effort in architex development and maintenance
phases.

| DD | | DD | ‘ DD ‘ Do New decisions
F

Effort creating
and reusing AK /\ Reusad AK
Effort in [[éﬂ %] [%] [ED 'Ei

architecting Architectural products
1t t2 It3 it4 Its it6
Development phase Maintenance phase

Figure 4. Effort overview extending the traditiorakhitecting activity with explic
decision-making processes for recording and usidgjitectural design decisions

Initially, architects spend a certain effort in &tiag the architecture during several
project iterations (It), and some additional effoais to be made to create the design
decisions (DD) including evaluation, assessmentiepa usage, etc. During any
maintenance activity, new decisions have to be makide others can be reused
(hexagons in figure 4). For instance, the architecbf iteration It6 is the result of a
reused decision and a new one. Hence, the efferitsp re-architecting the system is
expected to be lower than if decisions were negeonded. Computing this effort is
quite important to estimate how much effort carséeed.

5. Conclusions and Future Work

As mentioned in [20], “eating and maintaining this rationale is very time-
consuming”. At present, we have no empirical data concernthg overhead
associated with recording and using architectuesigh decisions. Because ADDSS
2.0 has just been released, we only have the sesalh a previous evaluation done
with ADDSS 1.0, in which 22 master students pgutted in the evaluation of a
small-medium size project. The students were omgahin teams of two persons and
they spent around 20 hours to record the decisidras small virtual reality system
which has been modeled using Rational Rose anddDagiv. Because ADDSS 1.0
has limited features (e.g. no support for decisstaitus or alternative decisions)
compared to version 2.0, the main results fromebhaluation forms and interviews
with the team members can be summarized as follMest of the teams perceived
ADDSS as easy to learn and use, and they haveedral®DSS for understandability.

Extending Softwar e Ar chitecting Processes
with Decision-making Activities

Also, depending on experience of the teams, 4 tegpast around 20 hours while 3
teams spent between 7 and 10 hours, and 4 tearkdem® than 7 hours using the
tool. The average time spent by the teams on raaptbe design decisions was about
10 hours (it does not comprise the traditional nfiageactivities). Finally, the
average scores of the evaluation of ADDSS by thenteranged between 5 and 10
points in a scale from 0 to 10, except the learreffgrt that was around 4 points.
With respect to the traditional approach, the teparseived they needed some extra
effort to record and maintain the decisions stoiedADDSS 1.0, but we didn’t
perform cross-comparison creating the same ar¢hreavithout using ADDSS.

At present, we have performed just one experimenedtimate the overhead
associated with recording design decisions. Fornéwd months we expect to have
some additional measurable data using ADDSS 2.8viduate the improvements
made and estimate the savings when reusing artthis¢cesign decisions. Also, we
wan to analyze the barriers and the effort neededeachange the traditional way of
architecting when recording decisions in parallathwmodeling tasks. Because
ADDSS tries to bridge the gap between productsragdirements, the maintenance
phase can benefit from our approach. Moreover,giateon with other popular
software engineering tools could reduce the effodapturing decisions.

Finally, the documentation generated extends theditional architectural
documentation and provides valuable informationdifferent stakeholders who want
to learn how the architecture was created. Sudrrimdtion crosscuts the information
from other architectural views, such as mentiomethe “decision view” [7], which
should be seen as a complementary view to the tthditional ones. ADDSS uses
plain text in database fields and PDF documentstéoe and present the design
decisions. However, it is planned to export thiimation to XML documents in
order to facilitate the information exchange wither platforms and tools.

References

1. Babar, M. A. and Gorton, I. A Tool for ManagingfSvare Architecture Knowledge.
Proceedings of the"®Workshop on Sharing and Reusing Architectural Kemigk, ICSE
Workshops, (2007).

2. Bass, L., Clements P. and Kazman R. Software Asctoite in Practice, Addison-Wesley,
2" edition, (2003).

3. Bosch, J. Software Architecture: The Next Stapc@edings of the®1European Workshop
on Software Architecture (EWSA 2004), Springer-¥4grILNCS 3047, pp. 194-199 (2004).

4. Capilla, R., Nava, F., Pérez, S. and Duefias, J.GNeb-based Tool for Managing
Architectural Design Decisions, Proceedings of tfféNorkshop on Sharing and Reusing
Architectural Knowledge, ACM Digital Library, Softwa Engineering Notes 31 (5) (2006).

5. Capilla, R., Nava, F..and Duefias, J.C. Modeling Brad@umenting the Evolution of
Architectural Design Decisions, Proceedings of 2ffeWorkshop on Sharing and Reusing
Architectural Knowledge, ICSE Workshops, (2007).

6. Clements, P., Bachman, F., Bass, L., Garlan, Brs)\., Little, R., Nord, R. and Stafford, J.
Documenting Software Architectures. Views and Beydkatlison-Wesley (2003).

7. Duefias, J.C. and Capilla, R. The Decision View afv@re Architecture, Proceedings of
the 29 European Workshop on Software Architecture (EWSI5), Springer-Verlag,
LNCS 3047, pp. 222-230 (2005).

Rafael Capilla, Francisco Nava

8. Dutoit A., McCall, R., Mistrik, I. and Paech B. (§d Rationale Management in Software
Engineering, Springer-Verlag (2006).

9. Jansen, A. and Bosch, J. Software Architectura 8st of Architectural Design Decisions,
5 IEEE/IFIP Working Conference on Software Architeret pp. 109-118, (2005).

10. Jansen, A. and Bosch, J. Evaluation of Tool Supfor Architectural Evolution, 19
International Conference on Automated Software Begjing (ASE'04), pp. 375-378,
(2004).

11. Jansen, A., van der Ven, J., Avgeriou, P. aachider, D.K. Tool Support for Architectural
Decisions, & Working IEEE / IFIP Conference on Software Architee (WICSA 2007),
pp. 4, (2007).

12. Kruchten P. Architectural Blueprints. The “4+W¥few Model of Software Architecture,
IEEE Software 12 (6), pp.42-50 (1995).

13. Kruchten, P., Lago, P., and van Vliet, H., Tuilding up and Reasoning About
Architectural Knowledge, QoSA2006, LNCS, pp. 43-36806).

14. Lago, P. and Avgeriou, P. First Workshop on ri8Bigaand Reusing Architectural
Knowledge, ACM SIGSOFT Software Engineering Not&s),332-36.

15. Perry, D.E. and Wolf, A.L. "Foundations for tBridy of Software Architecture", Software
Engineering Notes, ACM SIGSOFT, October 1992, pp520

16. Roeller, R., Lago, P., van Vliet, H., 2006. Remronwg Architectural Assumptions. The
Journal of Systems and Software 79, 552-573.

17. Rozanski, N. and Woods. E. Software Systemsifacture: Working with Stakeholders
Using viewpoints and Perspectives, Addison-Wesk&0¥5).

18. Tang, A., Babar, M.A., Gorton, |. and Han, JAASurvey of the Use and Documentation of
Architecture Design Rationale, 5 IEEE/IFIP Working Conference on Software
Architecture, (2005).

19. Tyree, J. and Akerman, A. Architecture DecisioDemystifying Architecture. IEEE
Software, vol. 22, no 2, pp. 19-27, (2005).

20. van der Ven J.S., Jansen, A.G., Nijhuis, J.£a6d Bosch, J. Design Decisions: The Bridge
between the Rationale and Architecture. In RatioM@eagement in Software Engineering,
pp. 329-346, Springer-Verlag (2006).

21. Wang, A., Sherdil, K. and Madhavji, N.H. ACCA:nAArchitecture-centric Concern
Analysis Method, % IEEE/IFIP Working Conference on Software Architeet(2005).

