
Agile Software Development at Scale

Scott W. Ambler

Practice Leader Agile Development, IBM Rational
scott_ambler@ca.ibm.com

Abstract: Since 2001 agile software development approaches are being adopted
across a wide range of organizations and are now being applied at scale. There
are eight factors to consider – team size, geographical distribution, entrenched
culture, system complexity, legacy systems, regulatory compliance,
organizational distribution, governance and enterprise focus – when scaling
agile. Luckily a collection of techniques and strategies exist which scale agile
approaches, including considering the full development lifecycle, Agile Model
Driven Development (AMDD), continuous independent testing, adopting
proven strategies, agile database techniques, and lean development governance.
It is possible to scale agile approaches, but you will need to look beyond the
advice provided by the “agile in the small” literature.

Introduction

Agile software development is being adopted by both the majority of organizations, a
recent survey [1] shows that 69% of organizations are taking agile approaches on one
or more projects, and by a wide range of organizations. The same survey also
indicated that organizations are attempting large agile projects, several respondents
indicated that they were not only doing but successful with agile project teams of over
200 people, and many indicated that they were applying agile in distributed
environments. Agile project teams also appear to have higher rates of success than do
traditional teams [2] indicating that agile approaches are likely here to stay.

Agile techniques have clearly been proven in simple settings and we’re seeing that
many organizations are now applying agile at scale. In this paper I explore the
factors surrounding apply agile techniques at scale, large or distribute teams are just
two of the many issues which agile teams now face, and overview a collection of
techniques which I’ve applied successfully in practice.

Scaling Factors

When you read some of the agile literature it sounds rather naïve at times. Although
we would all love nothing more than to work with small, co-located, closely-knit
teams of highly-skilled professionals who are building brand new systems it rarely
seems to be the case in practice. Instead one or more “scaling factors” seems to ruin

2 Scott W. Ambler

this perfect scenario for us. When you think about scaling agile approaches the first
factors that you consider are team size and geographical distribution [3], and although
these are clearly important scaling factors they’re not the only ones. At IBM Rational
we have found that when applying agile strategies at scale you are likely to run into
one or more of the following complexity factors:
1. Team size. Large teams will be organized differently than small teams, and they'll

work differently too. Strategies that work for small co-located teams won’t be
sufficient for teams of several hundred people.

2. Geographical distribution. Some members of a team, including stakeholders, may
be in different locations. Even being in different cubicles within the same building
can erect barriers to communication, let alone being in different cities or even on
different continents.

3. Entrenched culture. Most agile teams need to work within the scope of a larger
organization, and that larger organization isn't always perfectly agile. The existing
people, processes, and policies aren’t always ideal. Hopefully that will change in
time, but we still need to get the job done right now.

4. System complexity. The more complex the system the greater the need for a viable
architectural strategy. An interesting feature of the Rational Unified Process (RUP)
[4] is that its Elaboration phase's primary goal is to prove the architecture via the
creation of an end-to-end, working skeleton of the system. This risk-reduction
technique, described later in this paper, is clearly a concept which Extreme
Programming (XP) [5] and Scrum [6] teams can clearly benefit from.

5. Legacy systems. It can be very difficult to leverage existing code and data sources
due to quality problems. The code may not be well written, documented, or even
have tests in place, yet that doesn't mean that your agile team should rewrite
everything from scratch. Some legacy data sources are questionable at best, or the
owners of those data sources difficult to work with, yet that doesn't given an agile
team license to create yet another database.

6. Regulatory compliance. Regulations, including the Sarbanes-Oxley act, BASEL-II,
and FDA statutes can increase the documentation and process burden on your
projects. Complying with these regulations while still remaining as agile as
possible can be a challenge.

7. Organizational distribution. When a team is made up of people working for
different divisions, or from different companies (such as contractors, partners, or
consultants), then management complexity rises.

8. Degree of governance. If you have one or more IT projects then you have an IT
governance process in place. How formal it is, how explicit it is, and how effective
it is will be up to you. Agile/lean approaches to governance are based on
collaborative approaches which enable teams to do the right thing, as opposed to
traditional approaches which implement command-and-control strategies [7].
More on this later.

9. Enterprise focus. It is possible to address enterprise issues, including enterprise
architecture, portfolio management, and reuse within an agile environment. The
Enterprise Unified Process (EUP) extends evolutionary processes such as RUP or
XP to bring an enterprise focus to your IT department [8].

Agile Software Development at Scale 3

The point is that agile is relative, that different environments will require different
strategies to scale agile approaches effectively. This implies that you need to have a
collection of techniques at your disposal.

Strategies for Scaling Agile Approaches

It is not only possible to scale agile software development approaches, the strategies
to do so already exist. These strategies are:
• Consider the full system lifecycle
• Agile Model Driven Development (AMDD)
• Continuous independent testing
• Risk and value-driven development
• Agile database techniques
• Lean development governance

Consider the Full System Lifecycle

Figure 1 depicts a system development lifecycle (SDLC) which shows the phases
and major activities involved with the development and release into production of a
system following an agile approach [9]. There are four phases to this SDLC, taking
their name from the phases of the Unified Process [4, 8]:
• Inception. This is the initial phase of the project where you gain initial funding,

perform initial requirements and architecture envisioning, obtain initial resources,
and set up your environment. The goal is to define a firm foundation for your
project team. This phase is also referred to as Iteration 0, Sprint 0, and Warm Up
by various agile methods.

• Elaboration & Construction. During this phase you develop working software
which meets the needs of your stakeholders. This phase is also referred to as
Development, Construction, and Implementation by various agile methods.

• Transition. During this phase you do the work required to successfully deploy
your system into production. This includes finalizing testing, finalizing
documentation, baselining your project work products, training end users, training
operations and support staff, and running pilot programs as necessary. This phase
is also referred to as Release, Deployment, or End Game by various agile methods.

• Production. During this phase, typically the majority of the system lifecycle, you
operate and support the system and your end users (hopefully) use it. This phase is
also referred to as Maintenance and Support by some agile methods.

4 Scott W. Ambler

Figure 1. The Agile System Development Lifecycle (SDLC).

There are several reasons why it is important to adopt the lifecycle of Figure 1.

First, too many agile teams focus on the construction aspects of the SDLC without
taking into account the complexities of initiating a project, deploying into production,
or even running the system once it is in production. The risks addressed by these
phases are critical regardless of scale, but increase in importance in proportion to the
rise in complexity resulting from the scaling factors mentioned earlier. Second, the
lifecycle explicitly includes important scaling techniques such as initial requirements
and architecture envisioning as well as continuous independent testing.

Agile Model Driven Development (AMDD)

As the name implies, Agile Model Driven Development (AMDD) is the agile version
of Model Driven Development (MDD). MDD is an approach to software
development where extensive models are created before source code is written. With
traditional MDD a serial approach to development is often taken where
comprehensive models are created early in the lifecycle. With AMDD you create
agile models which are just barely good enough for the current situation at hand to
that drive your overall development efforts. Figure 2 depicts the AMDD lifecycle for
a project.

Agile Software Development at Scale 5

Figure 2. The Agile Model Driven Development (AMDD) lifecycle for a project.

As you can see in Figure 2 there are four critical modeling and specification
activities:

1. Envisioning. The envisioning effort is typically performed during the first week
of a project, the goal of which is to identify the scope of your system and a likely
architecture for addressing it. To do this you will do both high-level requirements
and high-level architecture modeling. The goal isn't to write detailed specifications
but instead to explore the requirements and come to an overall strategy for your
project. For short projects (perhaps several weeks in length) you may do this work
in the first few hours and for long projects (perhaps on the order of twelve or more
months) you may decide to invest two weeks in this effort due to the risks inherent
in over modeling.

2. Iteration modeling. At the beginning of each Construction iteration the team must
plan out the work that they will do that iteration, and an often neglected aspect of
this effort is the required modeling activities implied by the technique. Agile
teams implement requirements in priority order, as you can see with the work item
stack of Figure 1, pulling an iteration's worth of work off the top of the stack. To

6 Scott W. Ambler

do this you must be able to accurately estimate the work required for each
requirement, then based on your previous iteration's velocity (a measure of how
much work you accomplished) you pick that much work off the stack. To estimate
a work item effectively you will need to think through how you intend to
implement it, and very often you’ll model (often using inclusive tools such as
whiteboards or paper) to do so.

3. Model storming. Model storming is just in time (JIT) modeling: you identify an
issue which you need to resolve, you quickly grab a few team mates who can help
you, the group explores the issue, and then everyone continues on as before. These
“model storming sessions” are typically impromptu events, one project team
member will ask another to model with them, typically lasting for five to ten
minutes (it’s rare to model storm for more than thirty minutes). The people get
together, gather around a shared modeling tool (e.g. the whiteboard), explore the
issue until they're satisfied that they understand it, then they continue on (often
coding). Extreme programmers (XPers) would call modeling storming sessions
stand-up design sessions or customer Q&A sessions.

4. Test-driven development (TDD). TDD is a technique where you write a single test
and then just enough production code to fulfill that test [11]. Not only are you
validating your software to the extent of your understanding of the stakeholder’s
intent up to that point, you are also specifying your software on a JIT basis. In
short, with TDD agile teams capture detailed specifications in the form of
executable tests instead of static documents or models.

Sinaalto and Abrahamsson [12] found that TDD may produce less complex code

but that the overall package structure may be difficult to change and maintain. In
other words, they found that although TDD is effective for "design in the small" that
it is not effective for "design in the large." AMDD enables you to scale TDD through
initial envisioning of the requirements and architecture as well as just-in-time (JIT)
modeling at the beginning and during construction iterations.

AMDD also helps to scale agile software development when the team is large

and/or distributed and when “the team” is the entire IT effort at the enterprise level.
Figure 3 shows an agile approach to architecture at the program and enterprise levels
[13, 14]. The architecture owners, the agile term for architects, develop the initial
architecture vision through some initial modeling. They then become active
participants on development teams, often taking on the role of architecture owner or
technical team lead, and thereby help the team implement their part of the overall
architecture. They take issues, and what they’ve learned from their experience on the
project teams, back to the architecture team on a regular basis (at least weekly) to
evolve the architecture artifacts appropriately.

Agile Software Development at Scale 7

Figure 3. An agile approach to program/enterprise architecture.

Continuous Independent Testing

Although AMDD scales the specification aspects of TDD, it does nothing for the
validation aspects. TDD is in effect an approach to confirmatory testing where you
validate the system to the level of your understanding of the requirements. This is the
equivalent of "smoke testing" or testing against the specification – while important, it
isn't the whole validation picture. The fundamental challenge with confirmatory
testing, and hence TDD, is that it assumes that stakeholders understand and can
describe their requirements. Although iterative approaches increase the chance of this
there are no guarantees. A second assumption of TDD is that developers have the
skills to write and run the tests, skills that can be gained over time but which they may
not have today.

The implication is that you need to add independent, investigative testing practices
into your software process [15]. The goal of investigative testing is to explore issues
that your stakeholders may not have thought of, such as usability issues, system
integration issues, production performance issues, security issues, and a multitude of
others. Agile teams, particularly those working at scale, often having a small
independent test team working in parallel with them, as you can see depicted in
Figure 1. The development team deploys the current working build into the testing
sandbox, an environment which attempts to simulate the production environment.
This deployment effort occurs at least once an iteration, although minimally I suggest
doing so at least once a week if not nightly (assuming your daily build was
successful).

8 Scott W. Ambler

The independent testers don't need a lot of details: The only documentation that
they might need is a list of changes since the last deployment so that they know what
to focus on first, because most likely new defects would have been introduced in the
implementation of the changes. They will use complex, and often expensive, tools to
do their jobs and will usually be very highly skilled people.

When the testers find a potential problem, it might be what they believe is missing
functionality or it might be something that doesn't appear to work properly, which
they write up as a "change story." Change stories are basically the agile form of a
defect report or enhancement request. The development team treats change stories
like requirements—they estimate the effort to address the requirement and ask their
project stakeholder(s) to prioritize it accordingly. Then, when the change story makes
it to the top of their prioritized work-item list, they address it at that point in time.
Any potential defect found via independent investigative testing becomes a known
issue that is then specified and validated via TDD. Because TDD is performed in an
automated manner to support regression testing, the implication is that the
investigative testers do not need to be as concerned about automating their own
efforts, but instead can focus on the high-value activity of defect detection.

Risk and Value-Driven Development

The explicit phases of the Unified Process (UP) and their milestones are important
strategies for scaling agile software development to meet the real-world needs of
modern organizations. The UP lifecycle is risk and value driven [16]. What this
means is that UP project teams actively strive to reduce both business and technical
risk early in the lifecycle while delivering concrete feedback throughout the entire
lifecycle in the form of working software. Where agile processes such as XP and
Scrum are clearly value driven, they can be enhanced to address risk more effectively.
This is particularly important at scale due to the increased risk associated with the
greater complexity of such projects.

Each UP phase addresses a different kind of risk:
1. Inception. This phase focuses on addressing business risk by having you drive to

scope concurrence amongst your stakeholders. Most projects have a wide range of
stakeholders, and if they don't agree to the scope of the project and recognize that
others have conflicting or higher priority needs you project risks getting mired in
political infighting.

2. Elaboration. The goal of this phase is to address technical risk by proving the
architecture through code. You do this by building and end-to-end skeleton of your
system which implements the highest-risk requirements. These high-risk
requirements are often the high-business-value ones anyway, so you usually need
to do very little reorganization of your work items stack to achieve this goal.

3. Construction. This phase focuses on implementation risk, addressing it through the
creation of working software each iteration. This phase is where you put the flesh
onto the skeleton.

4. Transition. The goal of this phase is to address deployment risk. There is usually a
lot more to deploying software than simply copying a few files onto a server, as I

Agile Software Development at Scale 9

indicated above. Deployment is often a complex and difficult task, one which you
often need good guidance to succeed at.

5. Production. The goal of this phase is to address operational risk. Once a system is
deployed your end-users will work with it, your operations staff will keep it up and
running, and your support staff will help end users to be effective. You need
effective processes in place to achieve these goals.

The first four phases end with a milestone review, which could be as simple as a

short meeting, where you meet with prime stakeholders who will make a "go/no-go"
decision regarding your system. They should consider whether the project still makes
sense, perhaps the situation has changed, and that you're addressing the project risks
appropriately. This is important for "agile in the small" but also for "agile in the large"
because at scale your risks are often much greater. These milestone reviews enable
you to lower project risk. Although agile teams appear to have a higher success rate
than traditional teams, some agile projects are still considered failures [2]. The point
is that it behooves us to actively monitor development projects to determine if they're
on track, and if not either help them to get back on track or cancel them as soon as we
possibly can.

Agile Database Techniques

Data is an important aspect of any business application, and to a greater extent of
your organization’s assets as a whole. Just as your application logic can be developed
in an agile manner, so can your data-oriented assets [13]. To scale agile effectively,
all members of the team must work in an agile manner, including data professionals.
The following techniques enable data professionals to be active members of agile
teams:

1. Database refactoring. A database refactoring is a simple change to a database

schema that improves its design while retaining both its behavioral and
informational semantics [17]. A database schema includes both structural aspects
such as table and view definitions as well as functional aspects such as stored
procedures and triggers. A database refactoring is conceptually more difficult than
a code refactoring; code refactorings only need to maintain behavioral semantics
while database refactorings also must maintain informational semantics. The
process of database refactoring is the act of applying database refactorings in order
to evolve an existing database schema, either to support evolutionary/agile
development or to fix existing database schema problems.

2. Database testing. Databases often persist mission-critical data which is updated by
many applications and potentially thousands if not millions of end users.
Furthermore, they implement important functionality in the form of database
methods (stored procedures, stored functions, and/or triggers) and database objects
(e.g. Java or C# instances). The best way to ensure the continuing quality of these
assets, at least from a technical point of view, is to have a full regression test suite
which you can run on a regular basis.

10 Scott W. Ambler

3. Continuous database integration. Continuous integration is a development practice
where developers integrate their work frequently, at least daily, where the
integration is verified by an automated build. The build includes regression testing
and possibly static analysis of the code. Continuous database integration is the act
of performing continuous integration on your database assets. Database builds
may include the creation of the database schema from scratch, something that you
would only do for development and test databases, as well as database regression
testing and potential static analysis of the database contents. Continuous
integration reduces the average amount of time between injecting a defect and
finding it, improving your opportunities to address database and data quality
problems before they get out of control.

4. Agile data modeling. Agile data modeling is the act of exploring data-oriented
structures in an iterative, incremental, and highly collaborative manner. Your data
assets should be modeled, via an AMDD approach, along with all other aspects of
what you are developing.

Lean Development Governance

Governance is critical to the success of any IT department, and it is particularly
important at scale. Effective governance isn’t about command and control, instead
the focus is on enabling the right behaviors and practices through collaborative and
supportive techniques. It is far more effective to motivate people to do the right thing
than it is to try to force them to do so. Per Kroll and myself have identified a
collection of practices that define a lean approach to governing software development
projects [7]. These practices are:

1. Adapt the Process. Because teams vary in size, distribution, purpose, criticality,
need for oversight, and member skillset you must tailor the process to meet a
team’s exact needs. Repeatable results, not repeatable processes, should be your
true goal.

2. Align HR Policies With IT Values. Hiring, retaining, and promoting technical staff
requires different strategies compared to non-technical staff.

3. Align Stakeholder Policies With IT Values. Your stakeholders may not understand
the implications of the decisions that they make, for example that requiring an
“accurate” estimate at the beginning of a project can dramatically increase project
risk instead of decrease it as intended.

4. Align Team Structure With Architecture. The organization of your project team
should reflect the desired architectural structure of the system you are building to
streamline the activities of the team.

5. Business-Driven Project Pipeline. Invest in the projects that are well-aligned to the
business direction, return definable value, and match well with the priorities of the
enterprise.

6. Continuous Improvement. Strive to identify and act on lessons learned throughout
the project, not just at the end.
Embedded Compliance. It is better to build compliance into your day-to-day

Agile Software Development at Scale 11

process, instead of having a separate compliance process that often results in
unnecessary overhead.

7. Continuous Project Monitoring. Automated metrics gathering enables you to
monitor projects and thereby identify potential issues so that you can collaborate
closely with the project team to resolve problems early.

8. Flexible Architectures. Architectures that are service-oriented, component-based,
or object-oriented and implement common architectural and design patterns lend
themselves to greater levels of consistency, reuse, enhanceability, and adaptability.

9. Integrated Lifecycle Environment. Automate as much of the “drudge work”, such
as metrics gathering and system build, as possible. Your tools and processes should
fit together effectively throughout the lifecycle.

10.Iterative Development. An iterative approach to software delivery allows
progressive development and disclosure of software components, with a reduction
of overall failure risk, and provides an ability to make fine-grained adjustment and
correction with minimal lost time for rework.

11.Pragmatic Governance Body. Effective governance bodies focus on enabling
development teams in a cost-effective and timely manner. They typically have a
small core staff with a majority of members being representatives from the
governed organizations.

12.Promote Self-Organizing Teams. The best people for planning work are the ones
who are going to do it.

13.Risk-Based Milestones. You want to mitigate the risks of your project, in
particular business and technical risks, early in the lifecycle. You do this by having
throughout your project several milestones that teams work toward.

14.Scenario-Driven Development. By taking a scenario-driven approach, you can
understand how people will actually use your system, thereby enabling you to
build something that meets their actual needs. The whole cannot be defined
without understanding the parts, and the parts cannot be defined in detail without
understanding the whole.

15.Simple and Relevant Metrics. You should automate metrics collection as much as
possible, minimize the number of metrics collected, and know why you’re
collecting them.

16.Staged Program Delivery. Programs, collections of related projects, should be
rolled out in increments over time. Instead of holding back a release to wait for a
subproject, each individual subprojects must sign up to predetermined release date.
If the subproject misses it skips to the next release, minimizing the impact to the
customers of the program.

17.Valued Corporate Assets. Guidance, such as programming guidelines or database
design conventions, and reusable assets such as frameworks and components, will
be adopted if they are perceived to add value to developers. You want to make it as
easy as possible for developers to comply to, and more importantly take advantage
of, your corporate IT infrastructure.

12 Scott W. Ambler

Conclusion

It is definitely possible to scale Agile software development to meet the real-world
complexities faced by modern organizations. Based on my experiences, I believe that
over the next few years we'll discover that agile approaches scale better than
traditional approaches. Many people have already discovered this, and have adopted
some or all of the strategies outlined in this paper, but as an industry I believe that
there isn't yet sufficient evidence to state this as more than opinion. Time will tell.

References

1. Ambler, S.W. (2008). Dr. Dobb’s Journal Agile Adoption Survey 2008.
www.ambysoft.com/surveys/agileFebruary2008.html. Accessed on March 22 2008.

2. Ambler, S.W. (2007). Dr. Dobb’s Journal Project Success Rates Survey 2007.
www.ambysoft.com/surveys/success2007.html. Accessed on March 22 2008.

3. Eckstein, J. (2004). Agile Software Development in the Large: Diving into the Deep.
New York: Dorset House Publishing.

4. Kruchten, P. (2004). The Rational Unified Process: An Introduction (3rd ed.).
Reading, MA: Addison Wesley Longman.

5. Beck, K. (2000). Extreme Programming Explained—Embrace Change. Reading,
MA: Addison Wesley Longman.

6. Schwaber, K. (2007). The Enterprise and Scrum. Redmond: Microsoft Press.
7. Kroll, P. and Ambler, S.W. (2007). Lean Development Governance.

https://www14.software.ibm.com/webapp/iwm/web/preLogin.do?lang=en_US&sourc
e=swg-ldg. Accessed on March 22 2008.

8. Ambler, S.W. , Nalbone, J. and Vizdos, M. J. (2005). The Enterprise Unified Process:
Extending the Rational Unified Process. Upper Saddle River, NJ: Pearson Education.

9. Ambler, S.W. (2005). The Agile System Development Lifecycle (SDLC).
http://www.ambysoft.com/essays/agileLifecycle.html . Accessed on March 22 2008.

10. Ambler, S.W. (2003) Agile Model Driven Development (AMDD).
www.agilemodeling.com/essays/amdd.htm. Accessed on March 22 2008.

11. Astels D. (2003). Test Driven Development: A Practical Guide. Upper Saddle River,
NJ: Prentice Hall.

12. Sinaalto, M. and Abrahamsson, P. (2007). Does Test Driven Development Improve
the Program Code? Alarming Results from a Comparative Case Study. CEE-SET
2007 Conference Proceedings.

13. Ambler, S. W. (2003). Agile Database Techniques: Effective Strategies for the Agile
Software Developer. New York: Wiley.

14. McGovern, J., Ambler, S.W., Stevens, M.E., Linn, J., Sharan, V, & Jo, E.K. (2004).
The Practical Guide to Enterprise Architecture. Upper Saddle River, NJ: Prentice
Hall PTR.

15. Ambler, S.W. (2007). Agile Testing Strategies. Dr. Dobb’s Journal, January 2007.
www.ddj.com/development-tools/196603549. Accessed on March 22 2008.

16. Kroll, P. and MacIsaac, B. (2006). Agility and Discipline Made Easy: Practices from
OpenUP and RUP. Reading, MA: Addison Wesley Longman.

17. Ambler, S.W. and Sadalage, P.J. (2006). Refactoring Databases: Evolutionary
Database Design. Boston: Addison Wesley.

Agile Software Development at Scale 13

Bio

Scott W. Ambler is Practice Leader Agile Development with IBM Rational. Scott has a Master
of Information Science from the University of Toronto and is author of several books
including Agile Modeling, Agile Database Techniques, and Refactoring Databases. Scott
helps organizations around the world to improve their software processes. He is a Senior
Contributing Editor with Dr. Dobb’s Journal (www.ddj.com) and writes about strategies for
scaling software development at www.ibm.com/developerworks/blogs/page/ambler .

