Agile Softwar e Development at Scale

Scott W. Ambler

Practice Leader Agile Development, IBM Rational
scott_ambler@ca.ibm.com

Abstract: Since 2001 agile software development@gghes are being adopted
across a wide range of organizations and are navg lapplied at scale. There
are eight factors to consider — team size, geoggapdtistribution, entrenched
culture, system complexity, legacy systems, regwat compliance,
organizational distribution, governance and entsepfocus — when scaling
agile. Luckily a collection of techniques and tgies exist which scale agile
approaches, including considering the full develeptriifecycle, Agile Model
Driven Development (AMDD), continuous independemisting, adopting
proven strategies, agile database techniques eamddevelopment governance.
It is possible to scale agile approaches, but ydunsed to look beyond the
advice provided by the “agile in the small” litares.

I ntroduction

Agile software development is being adopted by kibéhmajority of organizations, a
recent survey [1] shows that 69% of organizatiaestaking agile approaches on one
or more projects, and by a wide range of orgaromati The same survey also
indicated that organizations are attempting largie gprojects, several respondents
indicated that they were not only doing but sucitésgith agile project teams of over
200 people, and many indicated that they were applagile in distributed
environments. Agile project teams also appear t@ tégher rates of success than do
traditional teams [2] indicating that agile apprioas are likely here to stay.

Agile techniques have clearly been proven in sinseltings and we’re seeing that
many organizations are now applying agile at scalén this paper | explore the
factors surrounding apply agile techniques at sdatge or distribute teams are just
two of the many issues which agile teams now facel overview a collection of
techniques which I've applied successfully in picet

Scaling Factors

When you read some of the agile literature it ssuradher naive at times. Although
we would all love nothing more than to work with ain co-located, closely-knit

teams of highly-skilled professionals who are boiddbrand new systems it rarely
seems to be the case in practice. Instead on®m¥ “scaling factors” seems to ruin

2 Scott W. Ambler

this perfect scenario for us. When you think dalsmaling agile approaches the first

factors that you consider are team size and gebmgapdistribution [3], and although

these are clearly important scaling factors thegwethe only ones. At IBM Rational
we have found that when applying agile strategtescale you are likely to run into
one or more of the following complexity factors:

1. Team size. Large teams will be organized diffdyethan small teams, and they'l
work differently too. Strategies that work for dmeo-located teams won'’t be
sufficient for teams of several hundred people.

2. Geographical distribution. Some members of atéacluding stakeholders, may
be in different locations. Even being in differenbicles within the same building
can erect barriers to communication, let alone dp@indifferent cities or even on
different continents.

3. Entrenched culture. Most agile teams need tdk wgthin the scope of a larger
organization, and that larger organization isnitagls perfectly agile. The existing
people, processes, and policies aren't always .idelapefully that will change in
time, but we still need to get the job done rigbwvn

4. System complexity. The more complex the systargreater the need for a viable
architectural strategy. An interesting featureh&f Rational Unified Process (RUP)
[4] is that its Elaboration phase's primary goaloigrove the architecture via the
creation of an end-to-end, working skeleton of flystem. This risk-reduction
technique, described later in this paper, is cjealconcept which Extreme
Programming (XP) [5] and Scrum [6] teams can ciebéenefit from.

5. Legacy systems. It can be very difficult to lege existing code and data sources
due to quality problems. The code may not be weiiten, documented, or even
have tests in place, yet that doesn't mean that ggile team should rewrite
everything from scratch. Some legacy data sourcesj@estionable at best, or the
owners of those data sources difficult to work witht that doesn't given an agile
team license to create yet another database.

6. Regulatory compliance. Regulations, including 8arbanes-Oxley act, BASEL-II,
and FDA statutes can increase the documentationpamcess burden on your
projects. Complying with these regulations whildll stemaining as agile as
possible can be a challenge.

7. Organizational distribution. When a team is mage of people working for
different divisions, or from different companiesu¢h as contractors, partners, or
consultants), then management complexity rises.

8. Degree of governance. If you have one or mor@rtjects then you have an IT
governance process in place. How formal it is, leoylicit it is, and how effective
it is will be up to you. Agile/lean approaches tovgrnance are based on
collaborative approaches which enable teams tchdaight thing, as opposed to
traditional approaches which implement command-@ntrol strategies [7].
More on this later.

9. Enterprise focus. It is possible to addreserenise issues, including enterprise
architecture, portfolio management, and reuse wittn agile environment. The
Enterprise Unified Process (EUP) extends evolutipqmaocesses such as RUP or
XP to bring an enterprise focus to your IT departnjg].

Agile Software Development at Scale 3

The point is that agile is relative, that differemtvironments will require different
strategies to scale agile approaches effectivélyis implies that you need to have a
collection of techniques at your disposal.

Strategiesfor Scaling Agile Approaches

It is not only possible to scale agile software alepment approaches, the strategies
to do so already exist. These strategies are:

» Consider the full system lifecycle

» Agile Model Driven Development (AMDD)

» Continuous independent testing

» Risk and value-driven development

» Agile database techniques

» Lean development governance

Consider the Full System Lifecycle

Figure 1 depicts a system development lifecycleL(SPwhich shows the phases
and major activities involved with the development release into production of a
system following an agile approach [9]. There fang phases to this SDLC, taking
their name from the phases of the Unified Procés8]f
» Inception. This is the initial phase of the projediere you gain initial funding,

perform initial requirements and architecture eiovisg, obtain initial resources,

and set up your environment. The goal is to definfirm foundation for your
project team. This phase is also referred toexatibn 0, Sprint 0, and Warm Up
by various agile methods.

» Elaboration & Construction. During this phase ydevelop working software
which meets the needs of your stakeholders. Thase is also referred to as
Development, Construction, and Implementation byous agile methods.

» Transition. During this phase you do the work fegfito successfully deploy
your system into production. This includes finaliy testing, finalizing
documentation, baselining your project work produttaining end users, training
operations and support staff, and running pilogpams as necessary. This phase
is also referred to as Release, Deployment, or(antie by various agile methods.

» Production. During this phase, typically the mayoof the system lifecycle, you
operate and support the system and your end usepefllly) use it. This phase is
also referred to as Maintenance and Support by smite methods.

4 Scott W. Ambler

Agile System Stories
Development Lifecycle /s\ Daily Stand-U
aily Stand-Up

Ingpen: Meeting:

« — —Share status and
identify potential
issues

Initial
Architectural Iteration
Vision

lteration review &
retrospective: Demo
p ! system to stakeholders Release
Highest-Priority . == == Working i . Working Operate and
— = — —sosten”
Work ltems ~ == = Sysem f”d 93:’?‘“’”:‘_‘"9 > system info —grem® support system in
lteration for next iteration, an production production
Work ltems learn from your
experiences

Planning session to

select work items Funding &
for current iteration Feedback
and to identify work

tasks Enhancement requests
and defect reports

Envision initial
requirements
and architecture, ‘—inmzl,
Obtain project sungrFequlremen
and resources

000MG00N0IN

2l
£

Tnception T Efaboration & Construction Transition [Production]

[
Figure 1. The Agile System Development Lifecycl®(E).

There are several reasons why it is important wpadhe lifecycle of Figure 1.
First, too many agile teams focus on the constuctispects of the SDLC without
taking into account the complexities of initiatiagoroject, deploying into production,
or even running the system once it is in productidrhe risks addressed by these
phases are critical regardless of scale, but iser@aimportance in proportion to the
rise in complexity resulting from the scaling fastanentioned earlier. Second, the
lifecycle explicitly includes important scaling teuques such as initial requirements
and architecture envisioning as well as continindependent testing.

Agile Modéel Driven Development (AMDD)

As the name implies, Agile Model Driven Developm@MDD) is the agile version
of Model Driven Development (MDD). MDD is an appoba to software
development where extensive models are createddbsfmrce code is written. With
traditional MDD a serial approach to development dfien taken where
comprehensive models are created early in theylifec With AMDD you create
agile models which are just barely good enoughtlier current situation at hand to
that drive your overall development efforts. Figg@ depicts the AMDD lifecycle for
a project.

Agile Software Development at Scale 5

Initial Requirements Initial Architectural
Envisioning - - Envisioning
(days) (days)

Inception : Envisioning

Iteration Modeling B
(hours)

i Reviews
Model Storming E (optional)
(minutes) : i
i All lterations
{hours)
Test Driven
Development (TDD)
(hours)

lteration 1: Development

‘ Iteration 2: Development

l Iteration n: Development
Figure 2. The Agile Model Driven Development (AMDUfecycle for a project.

As you can see in Figure 2 there are four criticeddeling and specification
activities:

. Envisioning. The envisioning effort is typigaperformed during the first week
of a project, the goal of which is to identify teeope of your system and a likely
architecture for addressing it. To do this you @@ both high-level requirements
and high-level architecture modeling. The goaltignwrite detailed specifications
but instead to explore the requirements and comentoverall strategy for your
project. For short projects (perhaps several waekength) you may do this work
in the first few hours and for long projects (pgrba@n the order of twelve or more
months) you may decide to invest two weeks in ¢ifiisrt due to the risks inherent
in over modeling.

. Iteration modeling. At the beginning of eaabnStruction iteration the team must
plan out the work that they will do that iteratiand an often neglected aspect of
this effort is the required modeling activities ilied by the technique. Agile
teams implement requirements in priority ordery@s can see with the work item
stack of Figure 1, pulling an iteration's worthvedrk off the top of the stack. To

6 Scott W. Ambler

do this you must be able to accurately estimate wioek required for each
requirement, then based on your previous iteraioelocity (a measure of how
much work you accomplished) you pick that much waffkthe stack. To estimate
a work item effectively you will need to think thrgh how you intend to
implement it, and very often you'll model (oftening inclusive tools such as
whiteboards or paper) to do so.

3. Model storming. Model storming is just in tifidT) modeling: you identify an
issue which you need to resolve, you quickly grdbvateam mates who can help
you, the group explores the issue, and then evergontinues on as before. These
“model storming sessions” are typically impromptuelts, one project team
member will ask another to model with them, tydicdhsting for five to ten
minutes (it's rare to model storm for more thantthminutes). The people get
together, gather around a shared modeling tool {eegwhiteboard), explore the
issue until they're satisfied that they understanthen they continue on (often
coding). Extreme programmers (XPers) would call elimgy storming sessions
stand-up design sessions or customer Q&A sessions.

4. Test-driven development (TDD). TDD is a techugigvhere you write a single test
and then just enough production code to fulfillttbest [11]. Not only are you
validating your software to the extent of your urstiending of the stakeholder’s
intent up to that point, you are also specifyingitysoftware on a JIT basis. In
short, with TDD agile teams capture detailed speatibns in the form of
executable tests instead of static documents oetsaod

Sinaalto and Abrahamsson [12] found that TDD maydpce less complex code
but that the overall package structure may beaddiffito change and maintain. In
other words, they found that although TDD is effeeffor "design in the small" that
it is not effective for "design in the large." AMD&nables you to scale TDD through
initial envisioning of the requirements and arctiitee as well as just-in-time (JIT)
modeling at the beginning and during constructierations.

AMDD also helps to scale agile software developmehen the team is large
and/or distributed and when “the team” is the enklr effort at the enterprise level.
Figure 3 shows an agile approach to architectutkeaprogram and enterprise levels
[13, 14]. The architecture owners, the agile tdomarchitects, develop the initial
architecture vision through some initial modelingThey then become active
participants on development teams, often takinghenrole of architecture owner or
technical team lead, and thereby help the teamemeht their part of the overall
architecture. They take issues, and what theygaenled from their experience on the
project teams, back to the architecture team oegalar basis (at least weekly) to
evolve the architecture artifacts appropriately.

Agile Software Development at Scale 7

Feedback
- " Communicate Update
EWIS'.OH loitial _chjels‘_._ Architecture / Architecture
Architecture Vision
to Stakeholders Models Work Products
Vision
Feedback
Models,
Vision Models,
Vision
Waork With
Developers

Architecture work products evolve and are
fleshed out over time

Figure 3. An agile approach to program/enterprisaitecture.

Continuous I ndependent Testing

Although AMDD scales the specification aspects &DT it does nothing for the
validation aspects. TDD is in effect an approazitdnfirmatory testing where you
validate the system to the level of your understamdf the requirements. This is the
equivalent of "smoke testing" or testing against $pecification — while important, it
isn't the whole validation picture. The fundamenthillenge with confirmatory
testing, and hence TDD, is that it assumes thd&ehtdders understand and can
describe their requirements. Although iterativerapphes increase the chance of this
there are no guarantees. A second assumption of iEDBat developers have the
skills to write and run the tests, skills that dengained over time but which they may
not have today.

The implication is that you need to add independengstigative testing practices
into your software process [15]. The goal of inigadive testing is to explore issues
that your stakeholders may not have thought ofhsae usability issues, system
integration issues, production performance isssesyrity issues, and a multitude of
others. Agile teams, particularly those working saale, often having a small
independent test team working in parallel with thexa you can see depicted in
Figure 1. The development team deploys the cumamking build into the testing
sandbox, an environment which attempts to simutlh& production environment.
This deployment effort occurs at least once amifien, although minimally | suggest
doing so at least once a week if not nightly (asegmyour daily build was
successful).

8 Scott W. Ambler

The independent testers don't need a lot of defBile only documentation that
they might need is a list of changes since thedaptoyment so that they know what
to focus on first, because most likely new defeatsild have been introduced in the
implementation of the changes. They will use compéand often expensive, tools to
do their jobs and will usually be very highly skill people.

When the testers find a potential problem, it migatwhat they believe is missing
functionality or it might be something that doespipear to work properly, which
they write up as a "change story." Change stoniesbasically the agile form of a
defect report or enhancement request. The develupteam treats change stories
like requirements—they estimate the effort to addirhe requirement and ask their
project stakeholder(s) to prioritize it accordinglhen, when the change story makes
it to the top of their prioritized work-item listhey address it at that point in time.
Any potential defect found via independent invesiige testing becomes a known
issue that is then specified and validated via TBBcause TDD is performed in an
automated manner to support regression testing, ithgication is that the
investigative testers do not need to be as condeal®ut automating their own
efforts, but instead can focus on the high-valu&vigg of defect detection.

Risk and Value-Driven Development

The explicit phases of the Unified Process (UP) drair milestones are important
strategies for scaling agile software developmentmeet the real-world needs of
modern organizations. The UP lifecycle is risk aradue driven [16]. What this
means is that UP project teams actively striveettuce both business and technical
risk early in the lifecycle while delivering conteefeedback throughout the entire
lifecycle in the form of working software. Whergile processes such as XP and
Scrum are clearly value driven, they can be enliatwaddress risk more effectively.
This is particularly important at scale due to thereased risk associated with the
greater complexity of such projects.
Each UP phase addresses a different kind of risk:

1. Inception. This phase focuses on addressingéssirisk by having you drive to
scope concurrence amongst your stakeholders. Moggbs have a wide range of
stakeholders, and if they don't agree to the sodpke project and recognize that
others have conflicting or higher priority needsiymroject risks getting mired in
political infighting.

2. Elaboration. The goal of this phase is to addteshnical risk by proving the
architecture through code. You do this by buildamgl end-to-end skeleton of your
system which implements the highest-risk requiremenThese high-risk
requirements are often the high-business-value angway, so you usually need
to do very little reorganization of your work itersisck to achieve this goal.

3. Construction. This phase focuses on implememtatsk, addressing it through the
creation of working software each iteration. Thiepe is where you put the flesh
onto the skeleton.

4. Transition. The goal of this phase is to addoegdoyment risk. There is usually a
lot more to deploying software than simply copymdew files onto a server, as |

Agile Software Development at Scale 9

indicated above. Deployment is often a complex diffctult task, one which you
often need good guidance to succeed at.

5. Production. The goal of this phase is to addogerational risk. Once a system is
deployed your end-users will work with it, your ogons staff will keep it up and
running, and your support staff will help end ustrsbe effective. You need
effective processes in place to achieve these goals

The first four phases end with a milestone revietvich could be as simple as a
short meeting, where you meet with prime stakehslaééo will make a "go/no-go"
decision regarding your system. They should comsidether the project still makes
sense, perhaps the situation has changed, angiah'a¢ addressing the project risks
appropriately. This is important for "agile in thmall" but also for "agile in the large"
because at scale your risks are often much gredtkese milestone reviews enable
you to lower project risk. Although agile teams @apto have a higher success rate
than traditional teams, some agile projects atecstnsidered failures [2]. The point
is that it behooves us to actively monitor develepimprojects to determine if they're
on track, and if not either help them to get bagkrack or cancel them as soon as we
possibly can.

Agile Database Techniques

Data is an important aspect of any business apjgitaand to a greater extent of
your organization’s assets as a whole. Just asamplication logic can be developed
in an agile manner, so can your data-oriented £1$$8f. To scale agile effectively,
all members of the team must work in an agile mgnneluding data professionals.
The following techniques enable data professiotalfe active members of agile
teams:

1. Database refactoring. A database refactoring @mple change to a database
schema that improves its design while retaininghbdts behavioral and
informational semantics [17]. A database schembudtes both structural aspects
such as table and view definitions as well as fionel aspects such as stored
procedures and triggers. A database refactoriegriseptually more difficult than
a code refactoring; code refactorings only needhéintain behavioral semantics
while database refactorings also must maintainrinédional semantics. The
process of database refactoring is the act of applyatabase refactorings in order
to evolve an existing database schema, either fpast evolutionary/agile
development or to fix existing database schemalenah

2. Database testing. Databases often persist missitical data which is updated by
many applications and potentially thousands if moeilions of end users.
Furthermore, they implement important functionality the form of database
methods (stored procedures, stored functions, atdggers) and database objects
(e.g. Java or C# instances). The best way to erteercontinuing quality of these
assets, at least from a technical point of viewpikave a full regression test suite
which you can run on a regular basis.

10 Scott W. Ambler

3. Continuous database integration. Continuowsgnation is a development practice
where developers integrate their work frequently, least daily, where the
integration is verified by an automated build. Theld includes regression testing
and possibly static analysis of the code. Contiisudatabase integration is the act
of performing continuous integration on your datsbhassets. Database builds
may include the creation of the database schenma $yatch, something that you
would only do for development and test databasesyeadl as database regression
testing and potential static analysis of the dagabaontents. Continuous
integration reduces the average amount of time detwinjecting a defect and
finding it, improving your opportunities to addredatabase and data quality
problems before they get out of control.

4. Agile data modeling. Agile data modeling is thet of exploring data-oriented
structures in an iterative, incremental, and higtdifaborative manner. Your data
assets should be modeled, via an AMDD approachgaldth all other aspects of
what you are developing.

Lean Development Gover nance

Governance is critical to the success of any ITadmpent, and it is particularly
important at scale. Effective governance isn'tutbmommand and control, instead
the focus is on enabling the right behaviors arattzes through collaborative and
supportive techniques. It is far more effectivartotivate people to do the right thing
than it is to try to force them to do so. Per IKand myself have identified a
collection of practices that define a lean appraacgoverning software development
projects [7]. These practices are:

1. Adapt the Process. Because teams vary in sigiibdtion, purpose, criticality,
need for oversight, and member skillset you musortahe process to meet a
team’s exact needs. Repeatable results, nottedpegrocesses, should be your
true goal.

2. Align HR Policies With IT Values. Hiring, retaig, and promoting technical staff
requires different strategies compared to non-teahstaff.

3. Align Stakeholder Policies With IT Values. Yatakeholders may not understand
the implications of the decisions that they malka, dxample that requiring an
“accurate” estimate at the beginning of a projeat dramatically increase project
risk instead of decrease it as intended.

4. Align Team Structure With Architecture. The angation of your project team
should reflect the desired architectural structfréhe system you are building to
streamline the activities of the team.

5. Business-Driven Project Pipeline. Invest in phejects that are well-aligned to the
business direction, return definable value, ancchatell with the priorities of the
enterprise.

6. Continuous Improvement. Strive to identify amd @n lessons learned throughout
the project, not just at the end.

Embedded Compliance. It is better to build commé@rinto your day-to-day

Agile Software Development at Scale 11

process, instead of having a separate complianceegs that often results in
unnecessary overhead.

7. Continuous Project Monitoring. Automated metrigathering enables you to
monitor projects and thereby identify potentialuiss so that you can collaborate
closely with the project team to resolve problemdye

8. Flexible Architectures. Architectures that assvie-oriented, component-based,
or object-oriented and implement common architettand design patterns lend
themselves to greater levels of consistency, rearggnceability, and adaptability.

9. Integrated Lifecycle Environment. Automate aschmof the “drudge work”, such
as metrics gathering and system build, as possiloler tools and processes should
fit together effectively throughout the lifecycle.

10.Iterative Development. An iterative approach goftware delivery allows
progressive development and disclosure of softwareponents, with a reduction
of overall failure risk, and provides an abilityteake fine-grained adjustment and
correction with minimal lost time for rework.

11.Pragmatic Governance Body. Effective governabodies focus on enabling
development teams in a cost-effective and timelyymea. They typically have a
small core staff with a majority of members beirgpresentatives from the
governed organizations.

12.Promote Self-Organizing Teams. The best peapl@lnning work are the ones
who are going to do it.

13.Risk-Based Milestones. You want to mitigate tlieks of your project, in
particular business and technical risks, earljhalifecycle. You do this by having
throughout your project several milestones thantework toward.

14.Scenario-Driven Development. By taking a scendriven approach, you can
understand how people will actually use your systémereby enabling you to
build something that meets their actual needs. Whele cannot be defined
without understanding the parts, and the parts @aba defined in detail without
understanding the whole.

15.Simple and Relevant Metrics. You should automagérics collection as much as
possible, minimize the number of metrics collectashd know why you're
collecting them.

16.Staged Program Delivery. Programs, collectiohsetated projects, should be
rolled out in increments over time. Instead of lmjdback a release to wait for a
subproject, each individual subprojects must signoupredetermined release date.
If the subproject misses it skips to the next mdeaminimizing the impact to the
customers of the program.

17.Valued Corporate Assets. Guidance, such as gmoging guidelines or database
design conventions, and reusable assets suchrasviiarks and components, will
be adopted if they are perceived to add value weldpers. You want to make it as
easy as possible for developers to comply to, aocerimportantly take advantage
of, your corporate IT infrastructure.

12 Scott W. Ambler

Conclusion

It is definitely possible to scale Agile softwarevélopment to meet the real-world
complexities faced by modern organizations. Basetg experiences, | believe that
over the next few years we'll discover that agifgpraaches scale better than
traditional approaches. Many people have alreashyoglered this, and have adopted
some or all of the strategies outlined in this papet as an industry | believe that
there isn't yet sufficient evidence to state tisisrmre than opinion. Time will tell.

References

1. Ambler, S.W. (2008). Dr. Dobb’s Journal Agileddption Survey 2008.
www.ambysoft.com/surveys/agileFebruary2008.httcessed on March 22 2008.

2. Ambler, S.W. (2007). Dr. Dobb’s Journal Projedticcess Rates Survey 2007.
www.ambysoft.com/surveys/success2007.hthekcessed on March 22 2008.

3. Eckstein, J. (2004). Agile Software Developmarthe Large: Diving into the Deep.
New York: Dorset House Publishing.

4. Kruchten, P. (2004). The Rational Unified Proce&s Introduction (3rd ed.).
Reading, MA: Addison Wesley Longman.

5. Beck, K. (2000). Extreme Programming Explained—bEame Change. Reading,
MA: Addison Wesley Longman.

6. Schwaber, K. (2007). The Enterprise and ScrRedmond: Microsoft Press.

7. Kroll, P. and Ambler, S.W. (2007). Lean Develgnnh Governance.
https://www14.software.ibm.com/webapp/iwm/web/prgirodo?lang=en_US&sourc
e=swg-ldg Accessed on March 22 2008.

8. Ambler, S.W., Nalbone, J. and Vizdos, M. JOZ0 The Enterprise Unified Process:
Extending the Rational Unified Process. Upper SaRilter, NJ: Pearson Education.

9. Ambler, S.W. (2005). The Agile System Developidnfecycle (SDLC).
http://www.ambysoft.com/essays/agileLifecycle.htmAccessed on March 22 2008.

10. Ambler, S.W. (2003) Agile Model Driven Developnt (AMDD).
www.agilemodeling.com/essays/amdd.htrAccessed on March 22 2008.

11. Astels D. (2003). Test Driven Development: Adical Guide. Upper Saddle River,
NJ: Prentice Hall.

12. Sinaalto, M. and Abrahamsson, P. (2007). Dass Driven DevelopmeZt Improve
the Program Code? Alarming Results from a Compardliase Study. CEE-SET
2007 Conference Proceedings.

13. Ambler, S. W. (2003). Agile Database Techniqiigfective Strategies for the Agile
Software Developer. New York: Wiley.

14. McGovern, J., Ambler, S.W., Stevens, M.E., Lidn Sharan, V, & Jo, E.K. (2004).
The Practical Guide to Enterprise Architecture. pelpSaddle River, NJ: Prentice
Hall PTR.

15. Ambler, S.W. (2007). Agile Testing StrategiBs. Dobb’s Journal, January 2007.
www.ddj.com/development-tools/19660354Accessed on March 22 2008.

16. Kroll, P. and Maclsaac, B. (2006). Agility abDécipline Made Easy: Practices from
OpenUP and RUP. Reading, MA: Addison Wesley Longman.

17. Ambler, S.W. and Sadalage, P.J. (2006). RafagtoDatabases: Evolutionary

Database Design. Boston: Addison Wesley.

Agile Software Development at Scale 13

Bio

Scott W. Ambler is Practice Leader Agile Developmeith IBM Rational. Scott has a Master
of Information Science from the University of Totonand is author of several books
including Agile Modeling, Agile Database Techniquasd Refactoring Databases. Scott
helps organizations around the world to improvertkeftware processes. He is a Senior
Contributing Editor with Dr. Dobb’s Journalvw.ddj.con) and writes about strategies for
scaling software developmentwaivw.ibm.com/developerworks/blogs/page/ambler

