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Abstract. For the first time, technology exists to monitor the biological
state of an organism at multiple levels. It is now possible to detect which
genes are activated or deactivated when exposed to a chemical com-
pound; to measure how these changes in gene expression cause the con-
centrations of cell metabolites to increase or decrease; to record whether
these changes influence the over-all health of the organism. By integrat-
ing all this information, it may be possible not only to explain how a
person’s genetic make-up might enhance her susceptibility to disease,
but also to anticipate how drug therapy might affect that individual in
a particularized manner.
But two related uncertainties obscure the path forward in using these
advances to make regulatory decisions. These uncertainties relate to the
unsettled notion of the term “evidence” — both from a scientific and legal
perspective. From a scientific perspective, as models based on genomic
information are developed using multiple datasets and multiple studies,
the weight of scientific evidence will need to be established not only on
long established protocols involving p-values, but will increasingly de-
pend on still evolving Bayesian measures of evidentiary value. From a
legal perspective, new legislation for the Food and Drug Administra-
tion has only recently made it possible to consider information beyond
randomized, clinical trials when evaluating drug safety. More generally,
regulatory agencies are mandated to issue laws based on a “rational ba-
sis,” which courts have construed to mean that a rule must be based,
at least partially, on the scientific evidence. It is far from certain how
judges will evaluate the use of genomic information if and when these
rules are challenged in court.
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In 2000, in an event announcing that one of biology’s long-standing challenges
— the sequencing of the human genome — had finally been scaled, then US
President Bill Clinton issued a bold prognostication: “It will revolutionize the
diagnosis, prevention and treatment of most, if not all, human diseases” [3]. A
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decade later, while most biologists agree that mapping the human genome has
revolutionized science, some also admit that it has increased — not diminished
— the complexity of biological science by orders of magnitude. The complexity
arises not because more genes have been discovered than had been previously
anticipated. Indeed, before the Human Genome Project, biologists estimated
that the genome might contain about 100,000 genes. The current estimate is
that the human genome contains just a fraction of that — about 21,000 [7].
Rather, the challenge of interpreting genomic information lies in understanding
the network of events through which genes are regulated.

The traditional model through which genes were thought to be expressed —
that in response to environmental signals, one gene codes for one protein that
may metabolize one or a few cellular functions — is insufficient to describe the
full panoply of cellular behavior. The problem is that metabolic pathways, the
series of cell-mediated chemical reactions necessary to maintain life, rarely pro-
ceed in a linear fashion. If a gene that triggers a series of reactions is deactivated,
there still may be multiple other genes to ensure that the reactions continue to
occur. In the words of Cell Biologist Tony Pawson, “When we started out, the
idea was that signalling pathways were fairly simple and linear. Now, we appre-
ciate that the signalling information in cells is organized through networks of
information rather than simple discrete pathways. It’s infinitely more complex”
[7].

1 “Hairballs” as a Metaphor for Systems Biology

To do full justice to this complexity, Lander [11] suggests that the double helix
— that icon of 20th century biology — should be replaced by the hairball as a
metaphor for genomic science (see Fig. 1). A ubiquitous visualization tool for
genomic data, the hairball consists of “nodes” (representing genes, proteins, or
metabolites) and “edges” (which represent the associations among the nodes).
A particular node may be the focus of a researcher’s entire program. In 1977 for
example, Andrew Schally, Roger Guillemin, and Rosalyn Sussman Yalow shared
the Nobel Prize in Medicine for their investigations into a biologically significant
“node” showing a connection between the nervous and endocrine systems [24].
Their work demonstrated that hormones secreted by an organism’s hypotha-
lamus could trigger the release of other hormones from its pituitary and go-
nadal glands. Elucidating biology’s nodes — such as this so-called hypothalamus-
pituitary-gonadal axis — is necessary to understand how an organism operates.
But to the systems biologist intent on using genomic information in a quantita-
tive way, the focal point of understanding is the hairball, i.e. the computational,
systems-oriented model of how nodes relate to and function within a broader net-
work of other nodes. And so, for example, Basu [2] in research funded by the US
Environmental Protection Agency (EPA) proposes modeling how environmen-
tal toxicants disrupt fish reproduction and ultimately diminish fish populations
by way of perturbations to the hypothalamus-pituitary-gonadal axis. That is,
they will model how knowledge about the nodes describing the hypothalamus,
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Fig. 1. The “hairball” of systems biology, consisting of “nodes” (representing genes,
proteins, or metabolites) and “edges” (which represent the associations among the
nodes). Original figure in color provided by Nicolas Simonis and Marc Vidal (see [5]).

pituitary, and gonadal glands interact within a hairball to ultimately impact a
resource protected by a regulatory agency’s statutory mandate.

A report issued under the aegis of the National Academy of Sciences, Toxic-
ity Testing in the 21st Century: a Vision and a Strategy [16], laid out a path for
explaining the etiology of environmental disease by using the tools of genomic sci-
ence. In that report, the Academy proposed that toxicity testing should become
less reliant on whole animal tests and eventually rely instead on systems-oriented,
computational models, which can be used to screen large numbers of chemicals,
based on information from in vitro assays and in vivo biomarkers. Technology
exists to monitor the biological state of an organism at multiple levels. It is now
possible to detect which genes are activated or deactivated when exposed to a
chemical compound; to measure how these changes in gene expression cause the
concentrations of cell metabolites to increase or decrease; and to record whether
these changes influence the over-all health of the organism. By integrating all
this information, it may be possible not only to explain how a person’s genetic
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make-up might enhance her susceptibility to disease, but to also anticipate how
drug therapy might affect that individual in a particularized manner. One of the
scientific leaders of the human genome project put it this way: “All biological
science works by collecting the complexity and recognizing it is part of a limited
repertoire of events. What’s exciting about the genome is it’s gotten us the big
picture and allowed us to see the simplicity” [4].

2 Three Enabling Technologies for Genomic Information

Rusyn and Daston [20] highlight three interconnected, technological breakthroughs
that have been accelerating developments in genomic science: continuing progress
in computational power; advances in quickly and efficiently producing data
streams with high information content; and novel biostatistical methods that
take advantage of the previous two breakthroughs. More than 45 years ago, In-
tel’s former Chief Executive Officer, Gordon Moore, first reported the observa-
tion that has come to be popularly referred to as “Moore’s Law”: the number of
transistors that can be placed on an integrated circuit doubles every 18 months,
even as the cost of producing these transistors has diminished over time [14]. In
turn, the rapid increase in the cost-effectiveness of computing power has fueled
the speed and economic efficiencies with which the genome can be sequenced.
The National Institutes of Health’s National Human Genome Research Institute
has tracked data on the costs of sequencing a human-sized genome during the
ten years since the genome was first mapped [15]. These costs have tracked and,
since 2007, even exceeded the progress of Moore’s Law (see Fig. 2). Similarly,
computing power and the use of robotics have made it possible to test thou-
sands of chemicals in plates containing hundreds of wells in order to evaluate a
biological response — binding to a receptor site in a cell; producing a particu-
lar enzyme; transcribing a gene. These so-called “high-throughput technologies”
have generated considerable data about an organism’s reaction to chemical ex-
posure.

By itself, this profusion of biological information would be nothing more
than unrelated terabytes of data. Complemented with the appropriate analytical
methods, the data can yield important insights into the human response to
synthetic chemicals. The modeling objective for the systems biologist is the usual
one for any modeler, which is to solve for (using the standard regression model):

Y = Xβ + ε, (1)

where Y is the n-vector of the categorical biological response in which the mod-
eler is interested; X is the [n × p]-matrix of predictors; β is the p-vector of
parameters relating biological response to the predictors; and ε is the n-vector
error term.

For modelers in genomic science, the high dimension of genomic information
raises several challenges. Because high-throughput technologies can monitor for
multiple biological and chemical attributes simultaneously, these modelers typi-
cally confront a situation in which the [n× p]-matrix of predictors, X, is “short



Uncertainties using Genomic Information 5

Fig. 2. Costs of sequencing the human genome. Figure from http://genome.gov/

SequencingCosts.

and wide,” i.e. the number of predictors far exceed the sample size, p >> n
[25]. At the same time, the biological attributes monitored by high-throughput
technologies may often be co-regulated by the same genes or may be involved in
metabolic pathways that are correlated [10].

Fortunately for the modeler, the basic tenets of biology suggest that assuming
an underlying structure can approximate biological data is not only analytically
convenient, but also reasonable, plausible, and empirical. Natural selection, the
key mechanism through which evolution selects biological traits that enable sur-
vival, imposes constraints on an organism’s physical attributes. This is evidenced
most clearly by cellular pathways that are conserved over long timescales and
among widely disparate organisms [12]. The National Academy’s report, Toxicity
Testing in the 21st Century, defines a “toxicity pathway” as a cellular response
that, when sufficiently perturbed, is expected to result in an adverse health ef-
fect [16]. Implicit in this definition is the notion that an organism’s response to
a toxic compound is the result of perturbation away from a stable, homeostatic
system of cellular behavior that has evolved over time.

Bayesian methods are particularly well-suited for generating models of ge-
nomic information. The Bayesian approach is grounded in the view that because
intractable uncertainties obscure any model’s objective truth, one can only ex-
press the degree to which one believes in a model’s truthfulness. If one can

http://genome.gov/SequencingCosts
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assume that these models conform to probability distributions and to certain
axioms, then any initial, hypothesized model can accommodate emergent evi-
dence according to the following relationship:

Posterior model ∼ Likelihood × Prior model.

Hierarchical Bayesian modeling, based on the notion that computational
functions and probabilistic relationships can capture the underlying structure
of data organized into discrete levels, conform to information about biological
pathways that occur across multiple scales of biological information — from gene
to cell to tissue to organ to the whole organism [13]. Additionally, several public
databases are available that store data on genomic information, such as the Gene
Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG)
[23]. Using hierarchical Bayes, the modeler can merge the datasets available at
these repositories in order to improve statistical power, while accounting for
sources of variability inherent in the experimental protocols used to generate
each dataset [1].

3 Example: a Multinomial Probit Model for Genomic
Information

As an example of how Bayesian methods can be used to develop computational
models of biological information, Sha et al. [21] investigated the use of gene
expression data in predicting rheumatoid arthritis, an autoimmune disease char-
acterized by chronic inflammation and destruction of cartilage and bone in the
joints. To glean useful insights from their data, the researchers used a multino-
mial probit (MNP) model. Like the more familiar multinomial logit model, the
MNP is used to estimate how categorical, unordered response variables might be
functionally related to explanatory variables. The MNP model is more appro-
priate in modeling genomic information because, unlike the multinomial logit,
it allows for the possibility that the categories of response variables are not
independent. The MNP model allows for dependence among these categories
by estimating the variance-covariance matrix that quantifies any co-variability
among them [27]. While this approach had long-standing theoretical appeal, ap-
plications of the MNP model were restricted by the computational complexities
in fitting them. However, recent advances now implement a Markov Chain Monte
Carlo (MCMC) method in order to estimate the MNP posterior model by taking
random walks through the given data set [8].

In an MNP model, the response variable, Yi , is modeled in terms of a latent
variable Wi = (Wi1, . . . ,Wi,p−1), where

Wi = Xiβ + εi εi ∼ N(0, Σ), for i = 1, . . . , n, (2)



Uncertainties using Genomic Information 7

and Σ is a p− 1 × p− 1 variance-covariance matrix. The response variable, Yi,
is then modeled using the latent variable Wi, as

Yi(Wi) =

{
0 if max(Wi) < 0
j if max(Wi) = Wij > 0

for i = 1, . . . , n and j = 1, . . . , p− 1,

(3)
where max(Wi) is the largest element of the vector Wi and Yi equal to 0 corre-
sponds to an arbitrarily chosen base category.

In Sha et al.’s study [21], patients afflicted with rheumatoid arthritis were
differentiated by whether they were in early or late stages of the disease, as mea-
sured by erythrocyte sedimentation, the rate of red blood cell sedimentation that
is commonly used as an indicator of inflammation. As well, gene expression data
for major functional categories were derived for these patients. Applying their
MNP model, the investigators noted that genes regulating two sets of biological
pathways were associated with patients afflicted with the late stages of rheuma-
toid arthritis — those regulating aspects of the cytoskeleton (i.e. the system of
filaments that provide cells with their structure and shape) and those influencing
cytokines (i.e., molecules that participate in regulating immune responses and
inflammatory reactions).

It bears highlighting that in applying MCMC to estimate the MNP model,
the quantification of uncertainty pervades the entire model estimation process.
That is, the objective of model fitting is not merely to estimate the model pa-
rameters, but rather to estimate the entire probability distributions underlying
the system being modeled.

Baragatti [1] extended this basic, single-level model to a hierarchical model
with a categorical, binary response variable. Her study focused on the estrogen
receptor status of a patient, a clinically measured indicator of breast cancer.
The data were drawn from three different datasets and therefore, a hierarchi-
cal model of fixed and random effects were used. The former corresponded to
gene expression measurements, while the latter corresponded to the variability
introduced by using the different datasets.

4 Weight of Evidence and Meta-analysis

In their review of highly cited studies that have used in vitro and in vivo bi-
ological information in order to predict disease risk, Ioannidis and Panagiotou
[9] suggest that the associations uncovered in these studies generally tend to
be exaggerated, when compared to larger studies and subsequent meta-analysis.
The authors attribute these false positives and spurious results partially to pub-
lication bias, i.e., the original researchers report only the data which indicate
statistically significant results. To guard against misleading results, Zeggini and
Ioannidis [26] propose the greater use of meta-analysis in genomic studies, for
which a Bayesian framework provides an intuitive framework.

Once again, fixed and random effects models serve as a useful approach.
When using these models in meta-analysis, one assumes that a common, fixed
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Fig. 3. Evidence is often the precursor to obligations, rights and responsibilities estab-
lished by law, necessitating a decision that influences risk. But just as evidence leads
to legal rights and obligations that constrain regulatory decisions, so too does the law
constrain how evidence is established, sometimes in ways that are inconsistent with
scientific best practices.

effect underlies every single study in the meta-analysis; i.e., if each study was
infinitely large, there would be no heterogeneity between studies. However, no
study is infinitely large and therefore one must assume that individual studies
exert random effects. These random effects have some mean value and some
measurement of variability stemming from between-study differences.

By meta-analyzing genomic studies, one increases sample size as well as the
variation in genomic data, thereby enhancing the power to detect true associ-
ations. The weight of evidence for genomic information accumulates over time.
Previous, individual studies form the prior belief. With each additional study, es-
timates are updated to form the posterior belief in a way that takes into account
all available evidence.

5 Linking Genomic Information to Regulatory Decisions
with Evidence

While high-throughput technologies, the proliferation of genomic information,
and evolving analytical techniques will continue to spur the scientific commu-
nity’s understanding of the cellular basis for disease, an important issue that
remains uncertain is how these advances will be used to make regulatory deci-
sions. The issue arises because, as a matter of administrative law, governmental
agencies must issue regulations that have a “rational basis,” which the courts
have taken to mean that a regulation, among other things, must be based on
the scientific evidence [17]. Some threshold of evidentiary burden must be satis-
fied before the evidence triggers legal obligations, rights or responsibilities that
thereby necessitate a decision influencing risk (see Fig. 3). But just as scientific
evidence constrains regulatory decisions, so too does the law constrain the way
that evidence is established, sometimes in ways that are inconsistent with best
scientific practices.

An example of how the law on scientific evidence can hamper the use of
science for regulatory decisions is provided by the controversy surrounding the
Food and Drug Administration’s approval of the painkilling drug, Vioxx. Vioxx
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works by suppressing enzymes regulating the body’s production of compounds
associated with inflammation. Unfortunately, these compounds also play a role
in maintaining the cardiovascular system [6]. Even before FDA’s approval of
Vioxx, there had been evidence indicating that inhibiting these enzymes may
elevate blood pressure, may thicken artery walls, and may increase blood clots
— all of which affect the risk of heart disease [19]. Two complications obfuscated
the drug’s risks. First, each single piece of evidence of risk — taken alone — did
not dispositively evince a hazard [6]. Second, current research indicates that the
response to Vioxx within a population is subject to genetic variation [22].

But in 1962, Congress mandated that FDA must assess whether a drug was
effective for its intended use based on “substantial evidence” from “adequate
and well-controlled investigations.” The agency interpreted this statute to mean
that a regulatory decision on drug effectiveness must be based on randomized,
replicated, controlled, clinical trials (RCTs). Controlled means a clinical trial is
designed so that ideally, treatment and control groups are identical in every way
but one, which is in the levels of treatment being tested. Ergo, any variability
among these groups is attributed solely to the treatment. In reality, it is difficult
to eliminate extraneous sources of variability. Therefore, one randomizes how
treatments are assigned to the various groups so that, ideally, the effects of any
extraneous sources of variability cancel out. Finally, to ensure that experimental
results do not occur through sheer happenstance, one replicates or repeats the
experiment several times. But as stated earlier, it was because of the variable
response to Vioxx within the population that the risks of the drug were not fully
appreciated. In order to maintain the homogeneous conditions necessitated by
an RCT, the drug manufacturers left out data pertaining to those who would
have been at greatest risk — an older demographic with previous history of
heart disease. Given FDA’s enshrinement of RCTs as the gold standard for
substantial evidence supporting claims of drug safety, it is not difficult to see
why false negatives — as in the Vioxx case — were inevitable.

Shortly after Vioxx was taken off the market, the National Academy of Sci-
ence’s Institute of Medicine (IOM) issued a report clearly stating what others
had been saying for some time: that FDA’s practices were unlikely to detect
rare but serious drug risks [18]. Before drug approval by the FDA, RCTs simply
do not have the statistical power to generate the information needed to assess
risks that arise when the general population is exposed to a drug. After drug
approval by the FDA, FDA did not possess the statutory authorities needed
to implement a nation-wide system to continue gathering this information. The
IOM report advocated assessing safety over a drug’s life-cycle, in which data
were to be continuously gathered from multiple sources for ongoing analyses.

In 2007, Congress passed the Food and Drug Administration Act, which cor-
rected the FDA’s over-reliance on RCTs and statistical p-value tests to evaluate
drug safety. First, Congress directed FDA to establish a network of data sys-
tems to integrate any and all information that can be used to evaluate drug risks.
Second, it provided FDA with new, extensive authorities to require continuous
submission of risk information from drug companies.
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Given the newness of the FDA Act of 2007, as well as the unprecedented use
of genomic information to inform regulatory decisions, it remains to be seen how
courts will rule when these decisions are challenged based on a lack of “rational
basis.”

6 Conclusion

For the first time, technology exists to monitor the biological state of an or-
ganism at multiple levels. It is now possible to detect which genes are activated
or deactivated when exposed to a chemical compound; to measure how these
changes in gene expression cause the concentrations of cell metabolites to in-
crease or decrease; to record whether these changes influence the over-all health
of the organism. By integrating all this information, it may be possible not only
to explain how a person’s genetic make-up might enhance her susceptibility to
disease, but also to anticipate how drug therapy might affect that individual in
a particularized manner.

But two related uncertainties obscure the path forward in using these ad-
vances to make regulatory decisions. These uncertainties relate to the unsettled
notion of the term “evidence” — both from a scientific and legal perspective.
From a scientific perspective, as models based on genomic information are de-
veloped using multiple datasets and multiple studies, the weight of scientific
evidence will need to be established not only on long established protocols in-
volving p-values, but will increasingly depend on still evolving Bayesian measures
of evidentiary value. From a legal perspective, new legislation for the Food and
Drug Administration has only recently made it possible to consider information
beyond randomized, clinical trials when evaluating drug safety. More generally,
regulatory agencies are mandated to issue laws based on a “rational basis,” which
courts have construed to mean that a rule must be based, at least partially, on
the scientific evidence. It is far from certain how judges will evaluate the use of
genomic information if and when these rules are challenged in court.
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DISCUSSION

Speaker: Pasky Pascual

Brian Smith : You expressed the issue of injury-in-fact versus probability of
the event as a concern with legal issues. Why is cost not a part of the issue, or
why is it not discussed?

Pasky Pascual : The only reason why I did not specifically discuss the issue of
cost was because of time constraints. As a matter of law, each major regulation
that is issued must first undergo a cost-benefit analysis which is then submitted
to the White House’s Office of Management and Budget. So, when issuing a
regulatory decision that is based on genomic information, an agency must also
be able to estimate the monetary value of the costs and the benefits associated
with a particular public health or environmental law.

Maurice Cox : My understanding of your main thesis is as follows. Scientific
evidence is out there, usually in the form of data. You explain your assumptions
and the statistical or computational model you are using. Then, if you have
done your job properly, you should be able to convince the court. But, the court
might question the validity of that data in terms of its reliability and consistency.
I would welcome your comments.

Pasky Pascual : That’s quite right. But part of the problem lies in the fact
that the courts may not have the appropriate scientific training to evaluate the
scientific evidence with which it is presented. As a matter of law, the courts will
be deferential to agencies, particularly in areas that fall within agency’s technical
expertise and competence. But when a decision is challenged, the courts will
subject the “rational basis,” which includes the scientific basis, of an agency
to a critical review. These reviews are necessarily ad hoc and depend on the
particularities of the case. But few guidelines, if any, exist to assist the court in
conducting this review.

Jeffrey Fong : Does the EPA have a policy statement on the minimum reli-
ability of informatics data that is acceptable? If not, does the speaker have a
personal opinion on this question?

Pasky Pascual : My personal opinion is that rather than have a standard score
of reliability that then determines acceptability, I would find transparency of
the informatics data and the analysis through which the data are used to derive
inferences to be more useful. If I were to tell you, for example, that a particular
dataset is 99% reliable, what would that mean? Perhaps it is unavoidable that
people will demand some kind of seal of approval for a dataset or model that is
used to make a decision, but I would want to make sure that the process through
which this evaluation occurs is also communicated.

Tony O’Hagan : This is a conference on uncertainty quantification. You’ve
talked a lot about the law. My understanding is that these two things don’t go
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together. Lawyers hate uncertainty, unless they can use it as a weapon against
someone foolish enough to admit uncertainty. They hate uncertainty quantifica-
tion even more. For instance, you pointed out that the law would much prefer
anecdotal evidence of actual harm to scientific reasoning of probabilistic harm.
What do you feel can be done about this?

Pasky Pascual : I agree that the law tends to operate on binary terms — you
comply with a rule or you don’t; a drug is safe to market or it is not. So the
legal decisions that ultimately get made based on scientific evidence do tend to
eschew uncertainty. But at least within a regulatory context, these decisions do
consider the uncertainties of science. For example, when EPA issues a regulation
these days, it will generally conduct formal uncertainty analyses in order to
better understand sources of uncertainty in the science. It may be something
as simple as conducting Monte Carlo draws in order to derive a distribution
of outputs from a model, rather than a single estimate. So quantification of
uncertainty occurs at that phase of rule development. The decision itself may
be binary — the Agency regulates or does not regulate a compound — but the
analysis that enters into the decision is not. Moreover, when EPA does conduct
formal uncertainty analyses when it proposes a rule, these analyses are generally
discussed in the documents that accompany the issuance of a rule.

William Oberkampf : Given the strong aversion to uncertainty in the legal
and judicial system, how will the EPA deal with more sophisticated uncertainty
quantification methods in the future?

Pasky Pascual : My personal opinion is that uncertainty quantification is not
going to go away. We will see more, rather than less, of it. It is in the best
interest of regulatory agencies to be transparent in their analyses. Transparency
is what leads to more defensible decisions. And part of analytical transparency
is transparency about sources of uncertainties — both epistemic and alleatory.

Antonio Possolo : In relation with your stated goal of replacing in vivo animal
experimentation with studies of differential gene expression: in 2005, colleagues
and I published an article in Toxicological Sciences suggesting that studies of
differential gene expression in vitro, using live rat and human liver cells, was an
effective proxy for studies involving live animals, and also much more expeditious
(days, including microarray processing and data analysis, versus the years that it
takes for malignancy indications to express themselves), induced by PCBs. Why
is it taking the EPA so long to put these and similar scientific, peer-reviewed
results to widespread use?

Pasky Pascual : Part of it lies in the complexity of the organism. As we
are realizing more and more, metabolic pathways rarely proceed in a linear
fashion. For example, if we know that a gene that triggers a series of reactions is
deactivated, there still may be other genes to ensure that the reactions will occur.
So, the ways that a gene may relate to the manifestation of an observed harm is
organized through networks of information rather than simple discrete pathways.
And figuring what those networks are and how they operate is extremely hard,
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I think. Also, it’s still not clear, to me anyway, what the evidentiary threshold
has to be, before we can say — in a way that is legally defensible — that the
behavior of this particular set of biomarkers are a reliable indicator that the
likelihood of harm is increased to a level that warrants regulatory action.
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