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Abstract. The Grid-Enabled Computational Electromagnetics project 
(GECEM) has developed a portal for performing electromagnetics simulations. 
The portal is based on the GridSphere portal framework and uses JSR168-
compliant portlets to access remote web services. The GECEM portal supports 
an execution pipeline that starts with an input geometry which is processed to 
generate surface and volume computational meshes, which in turn are input to 
a computational electromagnetics (CEM) simulation. The CEM simulation 
produces the final output file which consists of a vector of values at each mesh 
point. A distributed collaborative visualization tool has been integrated into the 
portal to view the CEM simulation results. This paper discusses how the 
GECEM portal can be extended into a more general portal for a certain class 
of scientific computation. A model of a scientific portal will be presented in 
which abstract workflows are built out of workflow patterns. The resulting 
workflows are then embedded into the portal for use by end-users. A 
virtualized data store may be used to support checkpointing and archiving. 

1 Introduction 

This paper describes the Grid-Enabled Computational Electromagnetics (GECEM) 
project, and discusses its main research outcomes and the lessons learned from the 
project. In particular, a model is proposed for the composition and use of distributed 
service-based applications that addresses the perceived and stated needs of scientific 
end-users who have little or no expertise in portals and service-oriented 
infrastructure.  
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The GECEM project was funded mainly by the UK’s Department of Trade and 
Industry as part of its contribution to the e-Science Core Programme1, with 
additional contributions coming from the project’s industrial partners, BAE 
SYSTEMS and Hewlett-Packard ([1]-[3]). The other collaborating partners were 
Cardiff University, the University of Wales Swansea, the Welsh e-Science Centre, 
and the Singapore Institute of High Performance Computing. The project was 
completed at the end of 2005, and ran for 27 months. Further details may be found in 
the project final report2. 

The overarching objective of the GECEM project was to apply Grid technologies 
to enable large-scale scientific and engineering research across a globally-distributed 
extended enterprise in which the partners only partially trust each other. Subsidiary 
project objectives included the exploration of secure code sharing and computation 
capability; the grid-enablement of legacy codes by exposing them as web services; 
and, the development of a GECEM portal as an integrated user interface to the 
underlying GECEM services and tools. Computational electromagnetics was chosen 
as the target application area because of the particular interests and expertise of the 
project partners, however, the same approach and techniques used in the GECEM 
project could be applied equally well to other areas, such as computational fluid 
dynamics and structural mechanics. 

The remainder of this paper is arranged as follows. Section 2 presents an 
overview of the GECEM application and the Grid infrastructure on which it runs. In 
Section 3, issues relating to trust and security in the GECEM project are discussed, 
and the GECEM portal is described in detail in Section 4. In Section 5 the lessons 
learned from the GECEM project are enumerated, and a model of a scientific portal 
is presented in which abstract workflows are built out of workflow patterns that can 
then be embedded into the portal for use by end-users. Related work is discussed in 
Section 6. Ideas for future work and a summary of the main points of the paper are 
presented in Section 7. 

2   GECEM Grid and Application 

The GECEM application can be viewed as a workflow, or execution pipeline, with 
four main stages (see Fig. 1): 

1. Creation of the surface mesh from a specification of the geometry of the object 
to be modelled. This takes as input a file describing the geometry of the 
problem, typically generated by a CAD system, and outputs a file describing 
the resultant surface mesh. 

2. Creation of the volume mesh based on the surface mesh file generated in step 
1. This outputs a file containing the volume mesh. 

3. Solution of the computational electromagnetics (CEM) simulation. This takes 
as input the surface and volume mesh files generated in steps 1 and 2, and 
outputs a file representing the solution. 

4. Perform collaborative visualization of the output file.  
 

1 http://www.epsrc.ac.uk/ResearchFunding/Programmes/e-Science/default.htm 
2 http://www.wesc.ac.uk/projectsite/gecem/doc/GECEM%20Final%20Report.pdf 
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Fig. 1. The GECEM execution pipeline. 

 
In addition to the main dataflows represented by arrows in Fig. 1, each stage in 

the workflow takes a small number of additional control inputs stored in files. In the 
GECEM project the objects to be modelled are typically quite complex, such as 
aircraft and ships. 

The first three stages in the workflow perform the three main numerical tasks – 
the input geometry is converted into surface and volume meshes which are then used 
to carry out the CEM simulation. Each of these stages is performed by a separate 
executable legacy code written in Fortran. This code is called from a C wrapper 
which in turn is wrapped as a Java program using the Java Native Interface (JNI). 
This is then deployed as a service within an Apache Tomcat container. 

A demonstration based on the Globus Toolkit 2, showing the transfer of files 
between the different stages in the GECEM workflow and the execution of the 
GECEM services, was given at the UK e-Science All Hands Meeting in September 
2003. This showed the basic functionality of the GECEM virtual organisation, and 
was subsequently developed into the GECEM portal, discussed in Section 4, based 
on the Globus Toolkit 3.2. The collaborative visualization capability, which is shown 
as the final stage of the GECEM workflow in Fig. 1, was added in the last few 
months of the project. This uses the Resource-Aware Visualization Environment 
(RAVE) which is an infrastructure based on web services for supporting 
collaborative visualization in a distributed environment. 

The first two stages of the GECEM pipeline are performed by the Surface Mesh 
Generation Service and the Volume Mesh Generation Service, the executable code 
for which resides permanently on particular hosts. However the CEM simulation step 
of the pipeline is performed under the control of the CEM Migration Service. 
Invocation of the CEM Migration Service causes the CEM executable to be migrated 
to a selected target machine, together with the user-specified input files. The code 
then executes, its output is sent to a user-specified location, and the code on the 
target machine is then deleted, along with any associated datasets. The CEM 
Migration Service is discussed further in Section 3. 

Grid infrastructure compatible with the Open Grid Services Architecture (OGSA) 
was used to establish a virtual organization across the project participants. This 
infrastructure provided for the authorization and authentication of users, the 
exchange of data files between sites, and the remote execution of applications. In the 
GECEM Grid the services for surface and volume mesh generation and CEM 
migration were located on machines at the University of Wales Swansea (UWS). The 
services for supporting collaborative visualization using RAVE were hosted at the 
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Welsh e-Science Centre (WeSC). The CEM Migration Service offered a choice for 
migrating the simulation code from UWS either to a machine at Cardiff University, 
or to a machine at the Singapore Institute of High Performance Computing (IHPC). 

 A typical use case of the GECEM Grid is shown in Fig. 2 in which a geometry 
file created by designers at BAE SYSTEMS is input to the mesh generation services 
at UWS. The resulting surface and volume meshes are then passed to the CEM 
Migration Service (also at UWS) which migrates the executable code and input files 
to a machine at WeSC. After the CEM simulation code has executed at WeSC the 
results are then examined in a collaborative visualization session. 

 
Fig. 2. Typical use case for the GECEM Grid. The dashed arrows emanating from the RAVE 
system represent the collaborative visualization of the CEM simulation output.  

3   Trust and Security in the GECEM Grid 

The GECEM Grid represents a type of extended enterprise in which the partners only 
partially trust each other, which places constraints on how resources are shared. For 
example, designers at BAE SYSTEMS may be prepared to share geometry files but 
not the software systems that create these files. UWS may allow authorized users to 
access their codes as web services, but may not want to permit users to logon to their 
machines to execute the codes directly from the command line. Similarly, the owners 
of the high performance machines at WeSC and IHPC may not wish to permanently 
host the CEM simulation code, but may allow it to reside on their machines on a 
short-term basis. In many extended enterprises it is this type of partial trust that 
mandates a distributed solution, since if there were complete trust between all 
partners all the software and data could be placed at a single location. 
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Authentication of users of the GECEM Grid is based on e-Science certificates. 
These are X.509 certificates issued by the UK e-Science certificate authority. Since 
the services accessed through the GECEM portal are based on GT3.2, the portal 
makes use of the Grid Security Infrastructure (GSI) for the authentication of users, 
services, and resources3. GSI also provides for “single sign-on” to Grid resources and 
the delegation of credentials. Single sign-on refers to the ability of a user to perform 
a single action of authentication (such as entering a password) to access the 
distributed resources that he or she is authorized to use. Delegation is a mechanism 
whereby a user or service can delegate a subset of their access rights to another 
service. 

The GECEM portal uses the MyProxy online credential repository [4] managed 
by the Grid Operations Support Centre of the UK e-Science programme4. The 
MyProxy Upload Tool, developed in the CCLRC DataPortal project, is used to 
upload a user's proxy credentials to the MyProxy repository. The user can choose 
how long they wish their credentials to be kept in the repository and how long any 
proxies generated are valid. The user also needs to choose a username and MyProxy 
pass phrase, which is subsequently used to log into the portal, effectively giving 
single sign-on access to the GECEM resources. GridFTP is used to perform secure 
file transfers between sites in the GECEM Grid. 

The GECEM project explored the concept of the secure migration of applications 
in which an executable code is securely migrated to a remote computer, its execution 
is initiated and its progress monitored, and then it is deleted on completion, returning 
the output to the user. The intent is to leave no permanent trace of the application 
executable or its input and output files on the machine where the application is 
executed, and to ensure that no third parties (including system administrators) can 
access or interfere with the application or files during the migrate/execute/return 
cycle. Current computer architectures and operating systems allow system 
administrators complete control over the operating system kernel. Hence the system 
administrator can spy on and interfere with any application. Researchers in the area 
of secure remote execution are investigating the concept of “platform virtualization” 
in which a Virtual Machine Monitor (VMM) runs at the lowest level of the software 
architecture, below the operating system kernel, thereby preventing the operating 
system from having direct access to the machine hardware [5]. Virtualization allows 
the same compute hardware to run multiple operating systems simultaneously, with 
the VMM providing each operating system with an abstraction of the real machine 
hardware called a Virtual Machine (VM). The VMM ensures that each operating 
system running on top of a VM is kept separate, and acts as a control point restricting 
what an operating system can do with the hardware resources of the system. Thus, if 
a “guest” application is run atop its own VM it will be secure from other general 
users and from the administrators of any other operating systems running on the 
system. Some future chipsets will provide support for virtualization and hardware 
physical protection facilities that will allow the secure migration and remote 
execution of applications. 

 
3 http://www.globus.org/security/  
4 http://www.grid-support.ac.uk/  
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In the case of the Surface Mesh Generation Service and Volume Mesh 
Generation Service the executable code resides permanently on particular hosts. 
However, the CEM Migration Service differs in that it causes the executable code to 
be securely migrated to a selected target machine, together with any necessary input 
data sets. The code then executes, its output is sent to a user-specified location, and 
the code on the target machine is then deleted, along with any related data sets.  This 
behaviour has many of the features required for the secure migration and remote 
execution of an application. However, the application code and files are vulnerable 
while on the remote computer – in fact, as noted above, it is currently impossible to 
ensure completely secure remote execution (or, indeed, secure local execution). 
However, the CEM Migration Service does reduce exposure to risk in remote 
application execution. 

4   The GECEM Portal 

The GECEM portal is a problem-solving environment (PSE) composed of a 
collection of JSR168-compliant portlets and services for mesh generation and CEM 
simulation.  A portlet is a pluggable user interface component used with the context 
of a portal framework. From a user’s point of view a portlet is a window in a portal 
that provides a specific service or function. A portlet processes requests and 
generates dynamic content, and the content of multiple portlets are typically 
aggregated together to form a portal web page. A portlet’s life cycle is managed by a 
portlet container. Portlet standards, such as JSR-168 and Web Services for Remote 
Portlets (WSRP), are helping to make portlet-based portals the most common way of 
presenting aggregated web content to consumers [6]. 

The GECEM portal provides the main interface through which services are 
accessed. The portal supports the composition of applications from service-based 
components, the execution and monitoring of such applications on remote resources, 
and collaborative visualization, exploration, and analysis of the application results.  
In addition, the portal also provides an interface to meshing services and supports the 
collaborative visualization of meshes. 

Two key decisions on the design of the portal were made early in the project. The 
first was to use the publicly-available open-source GridSphere5 portal framework as 
the container of the GECEM portal. The second design decision was to base the 
GECEM services on Globus Toolkit 3.2, as this was the most recent version of the 
toolkit available early in the project. GT4 was not available until close to the end of 
the project, and it was decided not to migrate the services to this version of the 
toolkit. As discussed in Section 2, the GECEM services are simply wrapped legacy 
executables. 

GridSphere 2.0.4 was used in the GECEM portal [7], together with GridPortlets 
1.1 [8]. GridSphere was deployed in the Tomcat 5.0.30 servlet container. The 
GECEM portal has a three-tier architecture, as shown in Fig. 3. The GridPortlets are 
a set of portlets, developed by the same research team that developed GridSphere, 

 
5 http://www.gridsphere.org/  
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and are used for tasks such as credential management, resource browsing, file 
browsing, and file transfer. 

The GECEM portlets in Fig.3 allow a user to set up a job as a sequence of one or 
more stages in the GECEM pipeline (see Fig. 1), with specified input and output 
files. Prior to each stage portlets are used to select the input files to be used, and the 
directory in which to store output files. These files and directories may be on any of 
the machines that are members of the GECEM virtual organisation. Services are 
discovered dynamically using a UDDI server at WeSC, and where multiple 
equivalent services are available for a particular task, perhaps employing different 
algorithms or numerical methods, the user can select from these. Service discovery 
and invocation are also controlled through GECEM portlets. 

The Resource-Aware Visualization Environment6 (RAVE) was used to provide a 
collaborative visualization capability within the GECEM portal. RAVE is a 
collaborative visualization environment that scales across visualization platforms, 
ranging from large immersive devices all the way down to hand-held PDAs [9, 10]. 
RAVE is based on web service technologies, and provides for distributed rendering 
on remote machines. The data to be rendered may reside on one machine, the 
rendering may be done on one or more other machines, and the rendered image may 
be displayed on yet another machine. In the RAVE architecture a Data Service is 
used to store and distribute the data sets to be rendered. A machine with enough 
power to render the data may use an Active Client, which reads directly from the 
Data Service and renders locally. Smaller machines, such as a laptop or PDA may 
use a Thin Client, which reads rendered frame buffers from an intermediate Render 
Service hosted on a more powerful machine. Active and Thin clients can join a 
single visualization session, enabling collaboration between users on vastly differing 
resources. 

A RAVE Portlet was developed and integrated into the GECEM portal. The 
RAVE Portlet first presents the user with a list of Data Services of choose from. 
These are discovered dynamically using a UDDI service. The user next initiates a 
collaborative visualization session, which users at other locations can also join, and 
then selects a data set to render. Next a Render Service is selected to carry out the 
rendering – this is selected from a list populated from a UDDI registry. The final step 
is to indicate whether the local client is an active or thin client – in the former case 
any render service selected in the previous step is ignored and the data set is rendered 
on the local client. The data set will then be rendered in the GECEM portal on the 
local client and on any other machines that have joined the collaborative session. 
Users can then navigate, and interact with, the data set. Two main modes of 
collaborative visualization are supported: 

1. Each user independently explores the same data set. 
2. One user acts as “leader” and all other users view the data set from the same 

location as the leader. 
Users are represented graphically in the visualization by an avatar, which can be 

seen by other users in the collaborative session. 

 
6 http://www.wesc.ac.uk/projectsite/rave/  
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Before visualization the output produced by the CEM simulation must be 
converted to a form that can be handled by RAVE. This is done within the CEM 
Migration Portlet of the GECEM portal before accessing the RAVE Portlet. 

The addition of audio communication between collaborating users was 
considered, but it was decided that the recent advent of Voice over IP (VoIP) 
services, such as SKYPE7, made it unnecessary to develop a custom solution. 

 
 
 
 
 
 

 

 

 

 
 

Fig. 3. Three-tier architecture of the GECEM portal. 

5   Lessons Learned 

The lessons learned from the GECEM project can be divided into two types: 
technical and non-technical. The non-technical lessons are quite generic and are 
mainly concerned with the management and conduct of projects with several partners 
in which there are interdependencies in the software development process and 
reliance on third-party software. In such cases it is important to avoid single points of 
failure whereby a particular problem can bring the whole project to a halt. Exposure 
to risk can be reduced by planning alternative strategies to follow if difficulties arise. 

On the technical side, portals were found to be effective in providing a high-level 
interface for scientific users that shields them from the complexities of using 
distributed resources via the Grid. Portlets make it easy to integrate heterogeneous 
resources within a unified interface that can be accessed from any Web browser. 

 
7 http://www.skype.com/ 
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The model of a distributed application model embodied in the GECEM portal 
consists of a linear workflow structure with a fixed number of nodes. Each node is a 
placeholder for a particular type of activity which is implemented by a service. Thus, 
there is a placeholder for surface meshing, a placeholder for volume meshing, and so 
on. It is the responsibility of the portal user to associate an actual service instance 
with each placeholder node in the workflow by making a selection from the services 
discovered by the UDDI portlet. The static nature of the workflow in the GECEM 
portal was found to be too restrictive by some of the portal’s users who expressed an 
interest in dynamically composing service-based applications. However, even 
limited changes, such as adding another placeholder node to the linear workflow, 
require the portal to be reconfigured and new portlets to be developed by hand. This 
requires a degree of expertise beyond that of most end-users – indeed, it should be 
the aim of the portal developer that it be easily usable by those with no expertise in 
portal technologies. The challenge, therefore, is to support some degree of 
application composition by typical scientific end-users in a portal built out of 
portlets. There are numerous tools for composing service-based applications – 
examples include Triana [11], Kepler [12], and Taverna [13]. However, these are all 
stand-alone systems that may be difficult to embed within a portal, and that would 
perhaps provide more features than many end-users require. Furthermore, 
incorporating such composition tools would introduce unnecessary software 
dependencies into the portal. A better approach is to perform the workflow 
composition tasks external to the portal as this ensures a clear separation of form (the 
structure of the workflow) from content (the actual service instances and inputs 
used), and allows a number of third-party workflow composition tools to be used to 
create the initial workflow structure. 

The approach to workflow composition advocated here is to use a tool that can 
design workflow structures out of simple workflow patterns [14, 15]. Once the 
desired workflow structure has been created, it would then be processed to create a 
new portal with the workflow embedded in it. As in the original GECEM portal, 
each node in the workflow would be a placeholder with which the user must 
associate a service instance, and inputs and outputs of the workflow would be files to 
be identified by the user. As an example, consider the workflow patterns on the left-
hand side of Fig. 4. Pattern A, having just one input and one output, can be used to 
construct linear workflow structures similar to that illustrated in Fig. 1. Pattern B has 
two inputs and one output and can be used to construct a much more general class of 
binary tree structures, as shown on the right-hand side of Fig.4. 

Pattern A 

Pattern B 
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Fig. 4. The right-hand side of the figure shows a workflow structure that can be created from 
the two workflow patterns on the left of the figure. 

The workflow structure on the right-hand side of Fig. 4 has five inputs and one 
output. Pattern B is a simple merge pattern; one could also consider a split pattern in 
which a node has one input and two outputs. Indeed, a tool that allows the user to 
specify the number of inputs and outputs of a node would provide for all the above 
patterns, and support the design of a large class of data-driven graph-structured 
workflows. Such abstract workflow structures can be expressed in almost any of the 
existing workflow description languages. 

If services are virtualized and discovered within the portal from a service registry 
such as UDDI, then there has to be a mechanism for the portal to determine which 
service implementations match a given placeholder node in a workflow structure. 
This problem of matching concrete service instances to abstract service 
specifications is currently a topic of much research (see, for example, [16-18]). The 
simplest approach is to use a service name to perform the matching, but this works 
only if all service providers agree to use the same naming scheme. Other approaches 
make use of metadata and/or ontologies to allow independently-developed services 
to be discovered and matched to placeholder nodes. Rather than use the metadata and 
ontology approaches to service matching in end-user tools, it is probably more 
effective to assume that in the future “spiders” will examine the contents of multiple 
resource registries, and use the metadata published therein to classify and name 
services in order to produce meta-registries of services [19]. In a meta-registry all 
equivalent services will be given the same unique service type which acts as a global 
name. It is then necessary to distinguish between the local name a service is given in 
a service registry and the global name it is given in the meta-registry. If a user 
associates a local name with a placeholder node then the portal would be able to 
discover all the services with the same type in the meta-registry. These services 
would then be offered to the portal user who would then select one of them, thereby 
associating a concrete service instance with the placeholder node. Alternatively the 
user might browse the meta-registry to find an appropriate service to use. 

In the original GECEM portal services are virtualized, but the files that act as 
input and output to the GECEM services are not. As discussed in Section 7, it would 
be useful to provide a virtualized file store from which to select input files in the 
portal. There is then a problem of deciding which files in the virtualized file store are 
compatible with the inputs of a particular service. The simplest solution is to identify 
different types of files by a unique file type, and to associate each input and output 
file of a service with one of these types. As in the problem of matching abstract and 
concrete services, it is possible to make use of metadata descriptions of files and 
service inputs/outputs to determine which files are compatible with a particular 
service input or output. Once again it is possible to use this metadata to associate a 
unique file type with each service input/output, and to perform this association 
independently of the workflow design tool proposed here. Thus, it can be assumed 
that in an abstract workflow it is possible to refer to services by unique service types 
and to its inputs and outputs by unique file types. 
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Once a workflow structure has been created, unique service types must be 
associated with each placeholder node. After this step the unique file type of each 
nodes inputs and outputs can be determined. Henceforth, the association of unique 
service and file types with placeholder nodes will be referred to as labeling the 
workflow. The final step is to embed the labeled workflow into the portal – this will 
be referred to as compiling the workflow. It should be noted that compiling a 
workflow does not bind abstract services to specific service instances - this is what 
the end-user does within the portal. Compiling a workflow automatically generates 
the portlets corresponding to each node in the labeled workflow. These portlets will 
be used by the end-user in the portal to specify the specific services to be used (thus, 
the portlets support discovery and binding). Compiling also configures the portal so  
these portlets are visible to the user within the portal. The compilation step can also 
ensure that the workflow is consistently labeled by checking that the unique file type 
of each node output is the same as that of the node input to which it is connected. 

Functionally the design, labeling, and compilation of a workflow, together with 
the use of the portal itself, are independent tasks that could be performed by distinct 
tools and interfaces. However, there are a number of ways in which these functions 
could be combined. For example, the design, labeling, and compilation tasks could 
be merged into a single tool. In this paper it is assumed that each of these tasks is 
performed by a separate tool, as shown in Fig. 5. Thus, if the labeling tool accepts as 
input workflow structures described in a subset of BPEL, this allows existing tools to 
be used to design the workflow. 

Fig. 5. The relationship between the design, labeling and compilation tools, and the 
portal. Also shown are some of the functions of the portal. 
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6   Related Work 

The GridSphere portal framework is used across a range of scientific disciplines to 
create portlet-based portal interfaces8. For example, the e-Physics portal developed 
by researchers at The University of Melbourne has been used to perform parameter 
sweep studies for a magneto-hydrodynamics astrophysics code, ZeusMP [20]. Unlike 
the GECEM portal, where the user is responsible for selecting between semantically 
equivalent services, in the e-Physics portal resource selection is usually done 
automatically by the Gridbus Broker [21]. This difference arises from the distinct 
modes of use for which the GECEM and e-Physics portals were designed. The 
GeneGrid portal [22] is another example of a scientific portal based on GridSphere, 
and provides access to a virtual bioinformatics laboratory that allows users to 
construct experiments by either composing new workflows or reusing workflows 
created previously. The Astrophysics Simulation Collaboratory [23] uses the 
GridSphere portal framework to manage numerical relativity simulations based on 
the Cactus Computational Toolkit [24].   

The portals mentioned in the previous paragraph all provide end-user interfaces 
for particular application domains. The P-GRADE portal supports the composition 
and execution of workflows, and is not tied to any specific application domain [25]. 
The P-GRADE portal is similar in some respects to the GECEM portal: both portals 
are based on GridSphere, both represent the input/output of data to/from a workflow 
node in terms of files, and both make use of certificates, GSI, and MyProxy servers 
in the authorization and authentication of users and resources. The P-GRADE portal 
provides a workflow editor that may be used to create new workflows and edit 
existing ones. For each node in a P-GRADE workflow the end-user must specify the 
client-side location of the binary executable, and its type (sequential, parallel MPI, or 
parallel PVM). The end-user must also select the resource that the executable is to 
run on by first choosing the particular Grid to be used and then the resource on that 
Grid. These choices are made using dropdown listboxes that are configured by the 
portal administrator. The P-GRADE portal user must also specify the location of the 
workflow’s input and output files. Thus, the P-GRADE portal differs from the 
GECEM portal in that the former does not provide access to virtualized services and 
files. In addition, the distinction between abstract and concrete workflows, discussed 
in Section 5, is not clearly made in the P-GRADE portal approach. Another 
distinction is that the P-GRADE portal uses the DAGMan workflow scheduler [26] 
to perform file transfers required to execute the workflow, and for the submission of 
jobs (representing workflow nodes) to Grid resources, whereas the GECEM portal 
handles these tasks directly by itself. 

The concept of an abstract workflow underpins the Griphyn Virtual Data System 
(VDS; formerly known as Chimera) and its portal interface, Chiron [27]. Virtual data 
is stored in a Virtual Data Catalog (VDC), and is represented and queried by an 
XML-based Virtual Data Language (VDL). When queried for a data product, the 
VDC generates an abstract workflow for creating that data. This abstract workflow 
can then be used to generate a concrete workflow by mapping requests for data and 
computation onto actual resources – a process often referred to as “planning”. The 

 
8 See http://www.gridsphere.org/gridsphere/gridsphere?cid=projects 
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Chiron portal uses the Pegasus planner [28] to generate a concrete workflow, which 
is then submitted to DAGMan for execution on the Grid. The Pegasus planner uses a 
Transformation Catalog to map the logical names of transformations (called a 
“service type” in Section 5) to physical resources and executable locations, and the 
Metadata Catalog Service and Replica Location Service for data publication and 
discovery. Pegasus can also be used independently through its own portal for 
workflow submission and management. 

The Grid Execution Management for Legacy Code Architecture (GEMLCA) 
provides an easy way to expose legacy application binary codes as OGSA-
compatible services [29]. In GECEM this was done by wrapping the original source 
code, but in GEMLCA a front-end Grid service layer handles parameter passing and 
contacts a Globus Master Managed Job Factory Service (MMJFS) to submit the 
legacy application for execution. GEMLCA has been integrated with the P-GRADE 
portal so that legacy codes and other service components can be used to create 
application workflows that can then be executed on the Grid [30]. 

7   Future Work and Conclusions 

Based on the work carried out in the GECEM project, Section 5 has introduced a set 
of tools for building a portal around a particular user-designed workflow structure 
constructed from simple workflow patterns. To achieve this, an abstract workflow is 
created by first generating a workflow structure using a design tool and then 
associating an abstract service (identified by a service type) with each node in the 
workflow using a labeling tool. The labeling tool also associates a file type with each 
service input and output. The workflow is then embedded into the portal using a 
compilation tool, the main task of which is to automatically generate the portlets 
needed to allow a portal user to select for each node in the workflow a concrete 
service that is consistent with the abstract service associated with the node, and also 
to select the input files of the workflow. Service types and file types are essentially 
names that are unique within the virtual organization using the portal.  

The approach described in Section 5 targets end-users who want to perform 
“what-if” styles of computational investigation in which the particular service that is 
bound to a node in a workflow may be selected via the portal shortly before 
workflow execution. For example, this allows a user to experiment with different 
algorithms for performing a particular task. On a longer timescale the user also wants 
to create new workflows and to create portals for their execution and management. It 
is assumed that a user will run many workflows before generating a new one, so it 
appears sensible to create the abstract workflow external to the portal. This also 
allows third-party workflow composition tools to be used, provided the compilation 
tool is able to recognize how they represent abstract workflows. It might be argued 
that, rather than having a separate portal for each workflow structure, it would be 
better to manage all the workflows to be used by a Virtual Organization through a 
single portal interface. This does not appear to raise any technical difficulties, and it 
would be quite simple to write a portlet for each workflow to integrate them into a 
single portal. 
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The portal generated through the design-label-compile process is similar to the 
GECEM portal in that it provides mechanisms for the user to specify the files to be 
input to the portal workflow and the services to be invoked. In the current GECEM 
portal services are virtualized, but not the related input and output data sets. Thus, 
users currently must identify data sets by specifying a specific file on a specific 
machine (by using portlets based on the GridPortlets file browser portlet). In future 
work a virtualized file store will allow authorized users to manage, access, and use 
data sets without needing to refer to which physical resource they are actually stored 
on. All input, intermediate, and final data products will be stored in the virtualized 
file store. This will allow a workflow to be started from any intermediate point for 
which the necessary input files are held in the virtualized file store. In addition, files 
will be annotated to support metadata-based searches of the virtualized file store. The 
metadata would include provenance information (how, why, when, and by whom the 
file was produced) and other data deemed necessary to provide a description of a file. 
In particular, the metadata should include sufficient information to distinguish files 
of different types. The simplest way to do this would be if the files were in XML 
format – then files conforming to the same XML Schema would be of the same type. 
The advantage of being able to distinguish files by their type is that it is then possible 
to match files to the inputs and outputs of services, so when the portal user is 
deciding what file to select as the input to a service, only those files of the correct 
type are presented to them. 

This paper has shown how end-users, with no expertise in Grid computing or 
portal development, can make you of simple tools to compose scientific workflows 
that can then be automatically embedded within a portal. The design, labeling, and 
compilation tools are used to specify a workflow and generate a portal that supports 
the end-user in selecting specific services and files for executing an instance of the 
workflow. The integrated view presented here of scientific workflow composition 
and portal design addresses concerns raised by end-users of the GECEM portal, and 
supports a common mode of use of distributed resources based on the input/output of 
files to/from services. Future work will investigate the use of this approach in other 
scientific application areas, such as computational fluid dynamics and structural 
mechanics. 
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