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Abstract. Advances in numerical modeling, computational hardware,
and problem solving environments have driven the growth of computa-
tional science over the past decades. Science gateways, based on service
oriented architectures and scientific workflows, provide yet another step
in democratizing access to advanced numerical and scientific tools, com-
putational resource and massive data storage, and fostering collabora-
tions. Dynamic, data-driven applications, such as those found in weather
forecasting, present interesting challenges to Science Gateways, which
are being addressed as part of the LEAD Cyberinfrastructure project.
In this article, we discuss three important data related problems faced
by such adaptive data-driven environments: managing a user’s personal
workspace and metadata on the Grid, tracking the provenance of sci-
entific workflows and data products, and continuous data mining over
observational weather data.
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1 Introduction

Science has evolved over the past several decades, from an empirical and the-
oretical approach to one that includes simulations and modeling [4]. Addition-
ally, scientific discoveries are increasingly propelled by large, inter-disciplinary
groups working across geographical boundaries [40]. For instance, projects such
as the Large Hadron Collider aim to solve grand-challenges in science through
a collaboration of over 4000 scientists from 40 countries and having access to a
central particle accelerator facility costing over US$2 billion [32].

Several advancements in scientific application and computer science have
contributed to this evolution. Numerical techniques and algorithms have im-
proved, allowing the real world to be modeled more accurately than ever before
[16]. Weather forecasting models such as WRF, short for Weather Research and
Forecasting, can now accurately predict regional mesoscale weather at resolu-
tions of 1Km grid spacing, with an accuracy of over 80%, 5 days in advance of
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the weather, by integrating data streams across dozens of physical dimensions
[20].

Similar advances in computational hardware can now be leveraged trans-
parently through Science Gateways [12] that are built on top of standards such
as the Common Component Architecture [3] and the Open Grid Services Ar-
chitecture (OGSA) [10]. Science Gateways, also known as Grids or Cyberinfras-
tructure, have democratized access to advanced numerical tools, computational
cycles, and data resources, that can be uniformly and conveniently accessed by
the average scientist through online Portal interfaces [21].

However, environmental sciences such as mesoscale meteorology pose special
challenges to these Science Gateways since they are largely triggered by events
occurring in the external environment. A common requirement that exemplifies
this is when a coarse-resolution regional weather forecasting simulation detects
a precursor signature of a tornado in a certain region, it should spawn off
another fine-resolution simulation in that specific geographical location to see
if a tornado is indeed going to form. There are three key implications of such
scientific applications that need to be addressed. One, scientific simulations
have to be designed such that their structure is dynamic. Secondly, compute
and data resources provisioned for the scientific experiments need to adapt to
such external events. And lastly, there should be the ability to manage large
volumes of data and associated metadata that are generated by various sensors
and instruments deployed globally and from the experiments themselves.

In the subsequent section, we delve deeper into the challenges posed by the
adaptive and dynamic needs of environmental sciences, and use mesoscale mete-
orology forecasting in the context of the Linked Environments for Atmospheric
Discovery (LEAD) [9] project as an example to motivate the problems. In Sec-
tion 3, we discuss the LEAD Cyberinfrastructure that we are building and the
various enabling technologies in it. In Sections 4, 5, and 6, we will look more
closely at the data management problems when dealing with terascale data,
and successively look at the myLEAD personal metadata catalog to describe
and manage user’s data, the Karma provenance framework to track scientific
data products and execution of experiments, and the Calder data mining tool
used with streaming data. Finally, in Section 7, we summarize and present our
conclusions.

2 Motivation: Mesoscale Weather Forecasting

Weather forecasting is a static process. Models ingest data generated from sen-
sors like radars, mobile meso-nets, upper-air balloons, geostationary and polar
orbiting satellites, commercial aircrafts, and surface observations, for a cer-
tain temporal and spatial range required by the forecast model. Then, analysis
and assimilation of these data sources take place by performing quality control
checks, extrapolating missing data points, and creating a 3D model grid of the
forecast region at the given resolution. This is followed by running the actual
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prediction algorithms using weather models configured by the scientists, and
mining of the data to detect abnormal weather patterns. The final step gener-
ates 2D/3D images and animations of the forecast that can be disseminated to
the scientists and end users. A typical regional prediction of this nature takes
about 4 hours to complete, depending on the size of the region and resolution
of the forecast.

The key problem with such a model is that it is completely static and the
forecast is pre-scheduled to run at certain intervals. Even if a hurricane signature
is detected during the data-mining part of the experiment, no action can be
taken till the experiment completes, the weather researcher reviews the results,
and manually configures and starts another forecast for that particular region.
The LEAD project aims to take this well-oiled static computational science
mesoscale meteorology forecasting process and tear it apart to be dynamic in
response to the environment. There are several benefits to doing this and are
supported by recent advancements in weather research.

Firstly, regional observational models have better forecast accuracy for a re-
gion than do continental models because the resolution of the latter has to be
coarser in order to even run on today’s computer systems. The solution is to
selectively nest regional forecasts within a larger continental model. Secondly,
steerable radars, notably the CASA Radars, are now being deployed. These al-
low the focus and collection of high-resolution data on narrow regions, instead
of performing 360◦ swathes all the time. These dynamically steered instruments
can be leveraged to increase the forecasting accuracy. And lastly, democratiza-
tion of scientific resources is now possible through community resources such
as Teragrid [6] and the availability of well established standards for accessing
them. High-schools students can now get access to and learn about the same
tools and resources used by weather researchers.

These advances require concomitant advances in fundamental ways in which
computational science is done, before they can be leveraged to the fullest extent.
These advancements include:

1. Adaptivity in computational models, allowing them to react to external
events,

2. Adaptive detection and response to weather, through continuous data min-
ing and instrument steering,

3. Adaptive use of available resources to respond to current computational
and data load, and priorities of tasks, and

4. Ability for the underlying data subsystem to mine, record, track, and an-
notate data products in real time.

In the next section, we give an overview of the overall LEAD architecture. An
appreciation of the portal interface to the system and the experiment execution
tool is useful for the understanding of the remainder of the paper; so we provide
that as well.
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Fig. 1. The LEAD infrastructure is assembled as a set of services that interact with
compute, data, and sensor resources, and accessed by a user through a portal.

3 The LEAD Cyberinfrastructure

The LEAD vision is to effect a paradigm shift in the way computation science
in mesoscale meteorology is performed, brought about by a service framework
for data search and model execution, for weather researchers, and students
and teachers at K-12 levels and beyond. The LEAD Cyberinfrastructure builds
upon a Service Oriented Architecture (SOA) to provide a uniform and secure
interface to access resources of common interest to a distributed community
of users [12]. Figure 1 illustrates this architecture. At the bottom are physical
resources, such as computational clusters, mass-storage, instruments, and sen-
sors. The service architecture virtualizes these resources so that they can be
accessed using standard protocols and interfaces, without worrying about the
underlying architecture or implementation. The OGSA standard [10] is com-
monly used as the foundation for resource virtualization in many Grid systems.
These resources can be grouped as a set of core services that include security
services for authentication and identity mapping, data services for moving, stor-
ing, replicating, searching, and accessing data, resource management services
to schedule and monitor resources, and execution management services to plan,
schedule, and manage the lifecycle of jobs run on the Grid.

On top of these core services are gateway services that provide value-added
functionality and are directly exposed to the user community. These include cer-
tificate services for identity management and single sign-on capability, metadata
catalogs, resource registries, notification services, workflow engines, and appli-
cation services. The LEAD Portal acts as an online desktop for the users of
the gateway, and provides visual interfaces to interact with the various gateway
services.
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Fig. 2. Typical weather forecasting workflow in LEAD. It goes through stages of
ingesting and preprocessing observational data, assimilating it into a 3D grid, running
the prediction model on it, and disseminating the forecast as graphics and animations.
Each box is a service and their execution is orchestrated by the workflow engine in
the center.

Scientists compose experiments, such as complex data searches or model
runs, as workflows, which consist of domain and middleware services connected
as a graph. Domain applications are wrapped as web-services using the Ap-
plication Factory Toolkit [19]. These application services can be graphically
connected together to represent the dataflow between them using the XBaya
workflow composer GUI [33], which then compiles the workflow into a Jython or
BPEL [1] script that can be executed. A typical weather forecasting workflow
is shown in Figure 2. The rectangular boxes represent scientific applications
exposed as web-services using the Application Factory. The dotted lines signify
dataflow, in the form of files consumed, transformed, and produced by the ap-
plications. A workflow engine [39] acts as a central service that orchestrates the
invocation of each service in the workflow according to the execution logic.

The adaptivity requirements posited in the previous section are addressed by
the LEAD Cyberinfrastructure. The workflow engine is capable of receiving no-
tifications about external weather events that take place, and dynamically alter
the execution logic for experiments. This allows for the adaptation of the com-
putational model at runtime. Data mining applications constantly monitor data
streams from various sensors looking for abnormal weather signatures. Based
on the type of weather activity, these applications can configure and launch
an appropriate workflow for the specific geographical region. Resource brokers,
self-management services, and monitoring services detect and adapt to failures
in the hardware and service substrate, and also provision available services to
the required tasks at hand. Provenance services recording workflow execution
help workflows resume from points of failure. Personal catalogs tracking a user’s
experiment assist in reconfiguring and restarting workflows, as also in providing
the current status of workflows to the user. These data management tools that
enable adaptivity are described in the sections below.
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4 myLEAD: Personal Metadata Catalog

The myLEAD personal workspace comprises of a metadata catalog service and
a separate back end storage manager. The notion of a separate DBMS hosted
catalog for metadata is gaining a foothold in computational science through
tools such as myGrid [14], MCS [38], and SRB [31], in distributed computing
through Lustre [15], and even in enterprise networks through the Acopia ARX
[26].

The myLEAD metadata catalog accepts data product descriptions on a
wide range of data products including text, binary, images, workflow scripts,
and input parameters. Data product descriptions arrive at the catalog as XML
documents coded according to the LEAD Metadata Schema (LMS) [30]. A thin
service layer provides atomic inserts into the catalog and back end, and performs
other duties in cooperation with the workflow system [13]. Early inspiration for
the metadata catalog is the Globus MCS metadata catalog [38], and it utilizes
the service interfaces provided by the UK e-Science OGSA-DAI tool [2]. It
is a distributed service with an instance located at each site in the LEAD
Cyberinfrastructure [9]. A user’s personal workspace resides at one LEAD Grid
site, and is backed up to a master site. Metadata descriptions reside in the
metadata catalog, as do smaller data products. Larger products are stored to a
storage service, currently the Distributed Replica Service (DRS) [7].

An early estimate of usage of myLEAD is 500 users, where, at any one mo-
ment, 25 users are executing a large-scale ensemble computational model. Such
ensemble workflows are capable of having up to 1,200 functional applications,
and consume and produce up to 10,000 data products [28].

4.1 Data Model

The logical data model for a personal workspace consists of projects, exper-
iments, collections, logical files, and attributes. Users can store one or more
projects in their workspace. Under the projects, one or more experiments, which
can themselves contain several collections, can be included. Logical files can be-
long to one or more collections, experiments, or projects. The structure of a
personal workspace can vary based on the user’s preference or the design of
the applications that cooperate with the metadata catalog. These logical data
model objects can be described by attributes associated with them. Attributes
can be keywords, or simple or complex name-value pairs that are added during
the creation of the objects and enhanced during future accesses to it.

The relational schema we have developed for the data model is highly gener-
alized. Figure 3 shows the UML diagram for a slightly simplified version of the
database schema. The database maintains most of the components of the data
model in a single table. For instance, experiments, projects, and collections for
all user spaces are stored in a single table. Logical files are kept in a separate
table. The term Attribute is used in the general sense to mean a descriptive
feature of a data object. Hereafter, we capitalize it to distinguish it from the
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Fig. 3. Simplified relational schema of the myLEAD database. The organizational
details (experiments, projects, etc.) and application attributes are coded in the data
and not in the schema. This gives the catalog independence from the scientific domain.

database table of the same name. As depicted in Figure 3, an Attribute is imple-
mented in the database schema as attribute and element tables. In the attribute
table, the name and structure (i.e., data type) of a possibly complex Attribute
are defined. The element table specifies a 〈name, value〉 pair belonging to one
or more entries in the attribute table.

The attribute table defines attributes as containing one or more elements.
Here, an attribute can be added on-the-fly by adding a new row to the attribute
table. Although it is slightly more complicated because the attribute must be
declared before an instance is created, this design decision reflects the balance
we maintain between support for annotations after-the-fact and efficient query-
ing. Additional details on the schema and database support can be found in
[18].

4.2 Storing and Querying Metadata by a Hybrid Approach

In the myLEAD metadata catalog, the metadata of the data product is shredded
into both Character Large Objects (CLOB) and relational tables. Due to the
focus of the catalog on locating data objects that meet a specified criteria,
the XML LMS document is stored using a hybrid technique employing both
inlining and shredding [18]. Parts of the document received at the catalog are
stored as CLOBs in the database for faster reconstruction. Key pieces of the
schema are shredded (broken apart) for fast querying. This eliminates the need
for achieving lossless shredding from XML since the shredded data is no longer
needed to construct the XML documents returned in query responses.

4.3 Service Architecture

The myLEAD personal workspace is a distributed tool as depicted in Figure 4.
At the lowest layer, there are set of distributed storage services such as the Dis-
tributed Replica Service (DRS) [7] for the personal data products and Unidata’s
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Fig. 4. Architecture of myLEAD personal workspace. The agent is a single service
layer on top of the storage repository and the metadata catalog. It intercepts workflow
activities by listening on event notification channels.

THREDDS Data Server (TDS) [8] for the public data products. Metadata on
personal data products is managed by the myLEAD service and stored to a
relational database. Much of the logic is implemented as database stored pro-
cedures. The data products themselves are either co-located with the metadata
in the database (as in the case of workflow scripts), or passed to a replica man-
ager, such as DRS. We envision providing support for TDS in the future, which
provides features specific to the meteorology domain, such as sub-setting and
aggregating files, and extracting fields from binary netCDF file. The server is
a long-lived grid service built on top of a relational database. It is built on the
OGSA-DAI service [2] interface layer.

The myLEAD agent provides client-side services for human users working
interactively through the portal, and to other services in the LEAD system,
particularly the workflow execution engine. The myLEAD agent responds to
activities being carried out on the LEAD Cyberinfrastructure by listening on an
event notification channel [17] on which status events about workflow progress
are published. The agent uses the notification messages to determine the cur-
rent state of a particular workflow, and actively manages the user space by,
for instance, creating a new collection when a major mode transition has taken
place [29]. Users interact with the tools primarily through the LEAD Cyber-
infrastructure [11]. However, we are building user interactive features beyond
the portal, such as to download and visualize archived experiments on their
laptops.

5 Karma: Provenance Framework

Provenance [34, 5] is a form of metadata that describes the causality of an
event, and the context within which to interpret it. Provenance about workflow
executions is vital for scientific workflows and experiments to ensure that the
exact sequence of tasks executed in the experiment is recorded [34]. This log,
called the workflow provenance, describes the events that took place during
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the course of a workflow’s execution and tries to address the questions of what
services were invoked, where the workflow and services ran, what their inputs
and outputs were (including data products used and produced), who invoked the
workflow, and so on. This type of provenance is necessary to verify and validate
the experiments at a later time, and brings in accountability. It is a useful
debugging tool post-execution and a monitoring tool while the experiment is
running. It can also be used to track resource usage and help with scheduling
future runs of the workflow.

Provenance about data generated by and used in workflows is termed data
provenance. It attempts to answer questions about the origin of the data (in
the form of workflows or services that created it), the input data that were
transformed to create this data, and the usage trail for the data product. This
form of provenance is necessary to discover the creator of the data, to provide
insight on its quality, and may also help determine its copyright. The data usage
trail also comes in handy when users of the data need to be notified of potential
errors in the creation of the data.

The Karma provenance framework [35] collects both these forms of prove-
nance for the scientific workflows running in the LEAD Cyberinfrastructure.
The provenance model is designed around an abstract workflow model and ac-
tivities defined at different parts of the workflow help collect provenance. A key
application of the collected provenance is in estimating the quality of workflow
derived data products in the LEAD system.

5.1 Provenance Model

The Karma provenance framework [35] used in the LEAD project uses an ab-
stract model of a workflow, which it considers as a directed graph, with nodes
representing services and edges representing the dataflow between them. Ser-
vices are used as a layer of abstraction on top of scientific tasks to enable their
use in a SOA [19]. As a workflow executes, different services are invoked in
sequence by a workflow engine interpreting the workflow logic. Data products
and other parameters are passed as inputs to the service, which subsequently
emits the generated data products. Invoking a service consists of staging the
input files to the service location, launching the scientific task that the service
wraps (usually as a command-line application), monitoring the execution of the
scientific application, registering the output result from the application with
the myLEAD catalog, and staging the data to a central data repository. These
files may be used by subsequent services invoked by that workflow or other
workflows.

As can be seen, the workflow execution takes place at 3 levels: at the work-
flow engine level, at the service level, and at the scientific application level.
The Karma provenance framework tracks provenance as activities that take
place at different stages of the workflow. These activities in a workflow are
distributed across various dimensions, one of them being the level. The ac-
tivities, such as WorkflowStarts/Finishes, ServiceStarts/Finishes, and
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Fig. 5. The Karma Provenance Architecture. Workflows executing at the bottom
publish provenance activities to a notification broker in the middle. These XML ac-
tivities are subscribed to by the Karma provenance service at the top and recorded
in a database. The provenance graph is reconstructed just-in-time and disseminated
when queried for by clients.

ApplicationStarts/Finishes, take place at the boundaries between different
levels. In addition, the activities contain a logical timestamp that helps order
them and tracks the causality of the events. A third parameter present in the
activity is the host where the event took place, which captures the distributed
nature of the execution across organizational boundaries. Finally, two activi-
ties, DataProduced/Consumed, generated by the applications, help to track the
dataflow between the applications.

Based on these activities generated by the various components of the work-
flow, a dynamic model of the workflow execution and the dataflow between
the services can be constructed at workflow runtime. These activities are col-
lected by the central provenance service, and used to build the workflow and
data provenance graphs, and query upon them. Figure 5 shows the architecture
of Karma. As the workflow executes at the bottom, its components produce
activities, represented as XML notifications published to a pub-sub notifica-
tion system [17]. The Karma provenance service subscribes to these activities
and records them in a relational database. When a client queries the Karma
service for workflow or data provenance through its web-service interface, the
activities are reconstructed and composed together to form the workflow or
dataflow graph, and returned to the client as an XML provenance document.
Client libraries and the Application Service Toolkit [19] automate and ease the
user’s burden of generating these activities. Empirical performance measures
have shown the overhead for collecting provenance activities to be under 1% of
the application run time [36].

5.2 Provenance and Data Quality

One novel use that provenance is being applied to in LEAD is in predicting the
quality of data products generated from the workflows. It is intuitive that the
way a data is created has a bearing on its quality. Since provenance describes the
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Fig. 6. Model to evaluate quality score of data product using various metrics applied
to metadata attributes based on user-defined quality constraints. At the bottom are
the attributes that affect the data’s quality, and they are aggregated, using various
metrics and user-defined constraints, to the overall quality score for the data at the
top.

derivation history of data created by a workflow, it can be leveraged to estimate
the data quality. Provenance forms a key attribute in the generic quality model
[37] being used to quantify the quality of data products in LEAD. Such a
quantification is necessary to allow comparison of data products when a user is
trying to locate data for input to a workflow or for visualization and analysis.
Typical search techniques for scientific data depend on the user to provide
values for attributes that are then matched. These usually end up being too
broad resulting in a large number of results with little to distinguish between
them. Our quality model brings in not just the intrinsic metadata available for
the data product, but also hidden (or indirect) metadata such as the quality of
service of accessing the data product, the community’s perception of the data,
and data provenance.

Recognizing that quality is a very subjective matter, our quality model al-
lows the users to define quality constraints on the intrinsic and hidden attributes
of data products at a fine granularity [37]. The constraints are rules that define
the relative importance of each attribute, which can then be evaluated for each
matching data product and aggregated into a numerical quality score for the
data product. This score then forms the basis for filtering query results and
presenting only the most relevant data products in a sorted order to the user.

The quality model [37] used to evaluate the user’s quality constraint is
shown in Figure 6. Starting at the bottom, we have various intrinsic meta-
data attributes and indirect attributes available for a data product, including
the provenance, represented as process metadata and input parameters. Based
on the type of the attribute, different techniques are used to measured and
converted them into a numerical estimate. For example, provenance is used to
construct a quality model for the process deriving that data, and this model
is used to generate a provenance quality score for the data. Quality metrics
modeled as weighting functions are applied to the quality scores for attributes,
guided by the user’s constraints. These result in an aggregate quality score for
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each metric, that are further combined into a single overall quality score for the
data product. This score can then be used to rank the data product and help
in the data search process.

6 Calder: Stream Mining of Environmental Data

In LEAD, the forecasting application is a special kind of data driven applica-
tion that is triggered when an abnormal weather event is detected. Dynamic
execution of forecast models is specified using a rule-action paradigm. A rule,
defined by a user and run for a specific period of time, is a combination of filter-
ing tasks and data mining actions triggered by the occurrence of certain events.
The action portion of the rule-action paradigm is an invocation that kicks off
a latent forecast model. Continuous data mining is performed in LEAD using
the Calder system. A brief description of the dynamic adaptation scenario in
LEAD is provided in [43].

Calder [41, 25] is a web-service that performs continuous query execution
over real time streams of observational data (Figure 7). The query submis-
sion, modeled on OGSA-DAI [2], is through a data service that implements
an extended realization of the GGF DAIS specification to stream systems [24].
Queries are expressed as event-action SQL queries deployed into the system dy-
namically at runtime with an associated lifetime. Calder is responsive to asyn-
chronous stream rates and has sophisticated event scheduling mechanisms that
improve the service time compared to conventional stream processing [27]. The
Calder system contains a distributed query service and a stream provenance ser-
vice. The distributed query planner optimizes the queries and distributes them
among computational resources using a cost-efficient model [23]. The prove-
nance service uses different models [42] to track the provenance of streams and
queries in the system.

In LEAD, Calder is invoked from within a workflow as shown in Figure 8,
which shows the execution of the data mining algorithm on the observational
NexRad Level II data. The request to the Calder stream query service returns
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Fig. 8. Stream processing to detect vortices in Doppler radar data (below) as part of
a larger workflow (above).

when the data mining results in a response trigger, such as “bad weather found”.
The Calder system communicates with external LEAD components using a
common notification bus that transports WS-Eventing messages [17], and a
separate, internal event channel for the transfer of data streams. Calder’s query
execution engine subscribes to channels that stream in observational data as
events. These events are either described by XML metadata or arrive as bzipped
binary data chunks.

When the query is instantiated at the computational node, it executes the
filtering/data mining loop depicted at the bottom of Figure 8 for every incom-
ing NexRad Level II Doppler radar volume scan. If the classification algorithm
detects a vortex pattern whose intensity exceeds a pre-defined threshold (MDA
algorithm [22]) or detects possible storm centers where the reflectivity exceeds
a pre-defined threshold (SDA algorithm), a response trigger is issued to the
WS-Eventing notification channel. The workflow engine subscribes to the no-
tification channel, and acts on the message by waking up the dormant predic-
tion simulation. We are currently expanding the continuous mining scenario
in LEAD to include mining over multiple radars and aggregation of mining
outputs that could be used to monitor the movement of storms over a spatial
region, thereby providing more meaningful information to the forecast system.

7 Conclusions

The LEAD Cyberinfrastructure is providing essential data management tools
that enable computational weather scientists to carry out investigations that
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are dynamically adaptive to weather. These tools, described in this article, al-
low scientists to manage experimental data in a grid-embedded workspace by
automatically cataloging all pieces in the e-Science experiment; precisely track
the execution of the workflow and creation of the data products as provenance
to help scientists verify their results at a later time and to help the commu-
nity in evaluating and reusing the data through quality metrics; and in mining
observational weather data in real time to automatically respond to weather
events by configuring and running computational models, the results of which
could potentially save lives.

LEAD has a major commitment to providing facilities to educational users.
The same tools being developed for weather researchers can also be configured
for students and teachers to run simple weather forecasting models through the
LEAD portal as part of class assignments. Glossaries and ontological dictio-
naries are being developed to assist beginners in learning key concepts about
weather, and techniques such as community quality perception indices used by
the quality model can possibly serve as means for knowledge transfer between
researchers and students.

The data management tools developed for LEAD are also being applied
to other data driven computational science domains with similar dynamic and
adaptive properties. Our contributions, highlighted in this article, make it easier
for the scientist to locate, understand, and use their data, allowing them to
advance the frontiers of science more rapidly.
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