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Summary. Scientific problem solving environments (PSEs) are software platforms
that allow a community of scientific users the ability to easily solve computational
problems within a specific domain. They are designed to hide the details of general
purpose programming by allowing the problem to be expressed, as much as possible,
in the scientific language of the discipline. In many areas of science, the nature of
computational problems has evolved from simple desktop calculations to complex,
multidisciplinary activities that require the monitoring and analysis of remote data
streams, database and web search and large ensembles of supercomputer-hosted
simulations. In this paper we will look at the class of PSE that have evolved for these
“Grid based” systems and we will consider the associated programming models they
support. It will be argued that a hybrid of three standard models provides the right
programming support to handle the majority of the applications of these PSEs.

1 Introduction

Domain specific problem solving environments have a long history in computing and
there are several examples of widely used tools that are also commercial successes.
For example Mathematica [1] provides a platform for doing symbolic mathematics
and related visualization tasks using a programming language that is designed with
mathematical primitives as a basic component of the type system. Another example
is Matlab [2], which is widely used in the scientific community to study problems
requiring matrix manipulations or other linear algebra operations. In the area of
computer graphics PSE like AVS and Explorer [3] pioneered the use of programming
by component composition to build visualization pipelines. This same approach is
used in SciRun [4] and many of the other systems described below.

In recent years, we have seen a shift in the nature of the problems scientists
are trying to solve and this is changing the way we think about the design of PSEs.
Specifically, many contemporary computational science applications require the inte-
gration of resources that go beyond the desktop. Remote data sources including on-
line instruments and databases and high-end supercomputing platforms are among
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the standard tools of modern science. In addition multidisciplinary collaborations
involving a distributed team of researchers are becoming a very common model of
scientific discovery. Grid computing was invented to make it easier for applications
and research teams to pool resources to do science in such a distributed setting.
Grids are defined as a service oriented architecture that allows a group of collabo-
rators, known as a virtual organization (VO), to share access to a set of distributed
resources. There are three primary classes of core services that Grids provide that
make it easier to build PSEs that use distributed systems. These services are:

• Security - authentication and authorization
• Virtualization of Data Storage
• Virtualization of Computation

The PSE that is built on top of a Grid service framework is often called a
science gateway, because it provides a portal for a community to access a collection
of resources without requiring them to be trained in the distributed systems and
security technology that the Grid is built upon. As illustrated in Figure 1, the
user’s desktop interaction is through a browser and other tools which can be started
with a mouse click in the browser. A remote server mediates the user’s interaction
with the Grid security services, the virtual data storage and metadata catalogs and
application resources. The user’s programs are represented as workflows that are
executed by a remote execution engine.

Figure 1. The organization of top level services in a science gateway PSE.

In this paper we will look at the problem solving programming model that is
evolving for these Grid science gateway PSEs and suggest ways in which it can be
extended in the future.
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2 Programming in a Science Gateway PSE

The access point to a science gateway is usually based on a web portal that allows
users access to the collective computational and data management resources of the
underlying Grid. There are many examples of these gateway portals currently in
use. The TeraGrid web site (http://www.teragrid.org) has links to many of these.
They include

• The National Virtual Observatory (NVO), a gateway for astronomical sciences.
• Linked Environments for Atmospheric Discovery (LEAD), a PSE portal for

mesoscale weather prediction.
• Network for Earthquake Engineering Simulation (NEES), a gateway for earth-

quake hazard mitigation.
• The GEOsciences Network (GEON), a geophysics gateway.
• Network for Computational Nanotechnology and nanoHUB, a PSE for access to

nanotechnology tools.
• The Earth System Grid (ESG), a portal for global atmospheric research.
• The National Biomedical Computation Resource (NBCR), a gateway focused on

integrative biology and neuroscience
• The Virtual Laboratory for Earth and Planetary Materials (VLAB), which fo-

cuses on materials research.
• The Biology and Biomedicine Science Gateway (The Renci Bioportal) which

provides resources and tools for molecular biosciences.
• The Telescience Project, a gateway for neuroscience biology.

This is only a small sample. There are many other significant gateway projects
in the U.S., Europe and Japan. While there are many unique features supported
by these gateways, they also share many common attributes. Perhaps the most
important feature they all share are mechanisms that provide access to community
data. Science has become more data driven. The Scientists and engineers need to be
able to search for, discover, analyze and visualize the data produced by instruments
and computational experiments. They need to have mechanisms to discover new
data based on searchers of metadata catalogs and they need tools to extract this
data and save it in a gateway workspace for later use.

Once a scientist has collected the data (or identified the required data sources),
he or she must begin the process of analyzing it. The data is frequently used as the
input to a large simulation, a data mining computation or other analysis tool. A
simple approach to the design of a PSE is to wrap up all the important application
components and present a web portal user-interface page to the user for each one.
For example, a simulation program may require one or two standard input files and
a desired name for the output file or files. These may be exactly what is required
to run the simulation program from the command line. The advantage of providing
the input parameters in a portal web page is that we can transfer the complexity of
selecting the best computer to run the application and establishing all the needed
libraries and environment variables to the back-end Grid system. The user need only
identify the input and output data set names.

While a simple web interface to individual applications is useful, life is seldom
this simple. Specifically, the data is seldom in exactly the form that the analysis tools
expect, so transformations must be applied to make it fit. These transformations
may be format conversions, data sub-sampling, or interpolation. The task may also
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involve data assimilation, where multiple data sources must be merged or aligned
in a particular way to meet the requirements of the simulation task. There may be
many such preprocessing tasks and the analysis/simulation part of the activity may
require the use of more than one package. Finally, there may be post-processing to
create visualizations or other reports. And, as with most scientific experiments, the
sequence of transformations, data analysis, mining, simulation, and post processing
must be repeated in exactly the same way for many different input data samples.
Programming the sequence of steps required to do such an analysis scenario is known
as workflow design and this term is now in common use in the e-Science community.

The second most important feature of any science gateway PSE is to provide a
mechanism for users to create workflow scripts that can be saved and later bound
to input files and executed automatically using the remote grid resources. A recent
study [5] has identified a dozen popular workflow tools used by these PSEs. The four
most commonly used tools are Kepler [6], which is used in a variety of application
domains, Taverna [7], a common tool for life-science workflows, Pegasus [8], used
by many large physics applications, and BPEL [9], the industry standard for web
service orchestration. In a later section of this paper we describe how BPEL has
been integrated into the LEAD science gateway.

3 Compositional Programming Models in e-Science

To see how these tools work we need to look at the semantics of their graphical
composition. Within the e-Science community, the primary model of workflow com-
position is based largely on macro-dataflow concepts. The idea is very simple. Scien-
tific analysis is based upon transformation of data. An experiment begins with raw
data. These data are often derived from experimental measurement, such as from a
collection of instruments. The data must be pre-processed or ”assimilated” into a
coherent set of inputs to analysis or simulation packages. The output is then routed
to final analysis or visualization tools. This is “programmed” by using a graphical
tool which uses icons to represent the individual tasks as components in a workflow.
As illustrated in Figure 2, each workflow component has one or more inputs and one
or more outputs. Each input represents a data object or “message” that is required
to enact the component and each output represents a result data message. The data

Figure 2. Each icon represents a process “component” with one or more required
inputs and one or more output data objects.
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object may be a numerical value, a string or the URI of a file. In some systems the
data object may be a continuous stream of data to be processed. As illustrated in
Figure 3, two components may be composed if the output of one component can
serve as a valid input to another component. ”Unbound” inputs represent the data
sources for the workflow and the unbound outputs are the final data products.

Figure 3. The components may be composed. In this case one result from compo-
nent X is used as an input to component Y. A, B, and C are unbound inputs which
must be supplied by the user at runtime.

In the typical system based on this model, the programmer drags icons onto a
pallet and wires together the dataflow for the experiment. Figure 4 illustrates the
interface to the XBaya system used in the Linked Environments for Atmospheric
Discovery (LEAD) project [10, 11].

Figure 4. The XBaya workflow composition tool used to build a storm forecasting
workflow.
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Unfortunately, there are several problems with this basic model of dataflow
driven workflow as described above. The first problem relates to the way compo-
nents are connected. When is the output of one component suitable as an input to
another component? Clearly, if they have conflicting simple types, such as providing
a String as an input to something that is expecting a Float, then it is easy for a
rudimentary type system to detect the error. But most problems are due to subtle
semantic differences between the content of the message that is passed. For example,
in large systems, the message often only contains the URI of a data file that is stored
on a remote resource. How do we know if the data file has the right format or con-
tent to be used by the destination component? The solution to this problem lies in
providing complete information about the exact semantics and format of each input
and output. This metadata needs to be attached to the component and some form
of metadata analysis would be required to check compatibility. Without a common
metadata schema, a component provided by one group of researchers cannot be used
by another group. Consequently, it is up to the scientist composing the workflow to
understand this issue.

The second problem with this simple model is that it does not take into account
the control dependencies that a typical computer program uses. For example, condi-
tionals and iteration are difficult to express in a language where the only operation
is the composition of directed acyclic graphs. However, it is not difficult to overlay
additional control operations over the dataflow. For example, a conditional can be
expressed by a component (Figure 5) that takes two inputs, a value message, and a
conditional predicate that the message must satisfy. There are two outputs. If the
predicate evaluates to true, then the value is forwarded out one output. If the value
is false, the other message is generated.

Figure 5. A simple conditional element with two inputs: a value and a predicate.
Based on the predicate value one of the output messages is generated.

Another essential component of any complete e-science workflow programming
tool is the expression of iteration. There are two cases to consider. The first is the
classical case of a “while” loop. As illustrated in Figure 6, the input is a predicate, an
initial iterate value and a set of data values. The predicate is applied to the iterate
value and if the result is true, the iterate value and data values are passed to a
subgraph. The subgraph transforms both the data values and applies some function
to the iterate value. These are fed back to the while control node and the test is
repeated.

The second form is a parallel “for each” that can be used when you wish to
execute a subgraph for each element of a set of data values. In this case the subgraph
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Figure 6. A “while” loop and a parallel “for each” element.

is also supplied with an additional “iteration” index so the different invocations of
the subgraph can be uniquely identified. This additional index is important when the
subgraph must create a side-effect outside the body of the workflow. For example,
when an element of the workflow creates a file, it must be distinguished from the
file generated by the other instances. However, the exact semantics of how such an
iteration index is propagated to the body of a “for each” loop is non-trivial and not
a topic for this paper.

There are other standard features of workflow composition tools in this category.
For example, it is important to be able to encapsulate any valid composed workflow
as a component which can be used in other workflows.

Finally a topic that is always overlooked by e-Science workflow systems is that
of exceptions. An exception occurs when a specific component realizes that it cannot
correctly process an incoming message. As with any modern programming language,
it is essential that the system have a mechanism to capture these runtime exceptions
and deal with them. The model often used in programming languages, where a
block of code is encapsulated in a “try” block which is followed by a “catch” block
which is responsible for handling the exceptional conditions, can be used in graphical
dataflow-based systems. In the graphical case we can simply identify a subgraph
that may throw an exception and provide a description for a replacement “catch”
subgraph. The exceptions that are the most frequent are those that are related
to access to remote resources. For example, a remote service that fails to respond
because of a network or other resource failure. In these cases it is often better to
handle the problem at a lower, resource allocation level than at the abstract workflow
graph level. A situation that may be handled at the graph level could be one where
a request to an application component is simply too large or, for some other reason,
too difficult to process. In these cases, the workflow designer may know that an
alternative service exists that can be used in special cases like this.
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4 The Service Architecture of a Science Gateway PSE.

The science gateway PSE programming model we have described so far is based on
building applications by composing application services. The LEAD gateway is like
many others in that the components services are implemented as Web services. This
allows us to use standard robust middleware concepts and tooling that is widely
used in the commercial sector. However, large-scale computational science is still
the domain of big Fortran applications that run from the command line. To use
these applications in a Web service based workflow we need to encapsulate them
as services. To accomplish this we use an Application Factory Service [12], which
when given a description of an application deployment and execution shell script,
automatically generates a web service that can run the application. As illustrated
in Figure 7, the service takes as input command-line parameters and the URLs
of any needed input files. The service automatically fetches the files and stages

Figure 7. The application services provide a mechanism to execute applications on
behalf of the user on remote resources.

them in a subdirectory on the machine where the application is to run. It then
uses a remote job execution tool (Globus GRAM [13]) to run and monitor the
application. Finally the output files are pushed to the data storage facilities. During
the invocation of the service the progress of the data transfers and the monitoring
of the application are published as “events” to a message notification bus. The bus
relays the messages to listening processes including the user’s private application
metadata catalog. This allows the user to consult the catalog from the portal to see
the status of the execution.

To tie this all together we need to fill out a more complete service oriented archi-
tecture (SOA). The portal and workflow composer are only one piece of the system.
One important component is the workflow engine. While most e-Science workflow
tools also double as the execution engine, the XBaya system is actually a compiler.
It can either directly execute the workflow or it can compile a python program
which, when run, does the execution, or it can generate a BPEL document. BPEL is
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the industry standard for web service orchestration and many commercial and open
source execution engines exist. The importance of having an execution engine that
is separate from the composition tool cannot be understated. Science workflows can
take a very long time to execute. This is especially true in the case where a workflow
is driven by data from instruments where an event from the instrument may not
come for months! The execution engine must be able to retain the state of the work-
flow in persistent storage so that it can survive substantial system failures. Even
the workflow engine may need rebooting. Figure 8 illustrates the parts of the SOA
that are directly involved in the execution of the workflows. The only detail of the

Figure 8. The organization of services in a science gateway PSE.

SOA workflow execution we have not discussed is the process of resource allocation
and brokering. When a workflow is composed it is in an abstract form: the specific
application services used in the graph are not bound to specific instances of services
ready to run the application on specific hosts. The application factory service is
responsible for instantiating the application services, but the specific instances are
selected by a resource brokering and workflow configuration service. There are many
ways to do resource brokering and this topic is far beyond the scope of this paper.

It should also be noted that we have not described the complete picture of the
the SOA for an e-Science PSE. A major component not discussed here is the data
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subsystem. e-Science revolves around data. The workflow system only transforms
the data. This topic is treated in another paper in this workshop and elsewhere
[14, 15].

5 Event Bus based PSE organization.

There are other approaches to building a PSE programming system that are often
overlooked because the dataflow graph model is so intuitive for scientists. Rather
than thinking in terms of composing applications as explicit dataflow/control flow
graphs, we can consider the possibility of program components that respond to their
own environment in productive ways. The concept is based on an information bus
as illustrated in Figure 9. In this model a component “subscribes” to messages of
some type or “topic” or containing certain content. Any component may “publish”
messages on some topics for others to hear. To understand this, we should consider
an example. Data from an instrument is gathered and published by an instrument
component sitting on the bus. The user inserts data filters onto the bus which
captures the data events and transforms them and republishes them. These events
are captured by a data analysis component, which publishes results. The results
are captured by different rendering tools. This type of system, which resembles a
blackboard model [11], is extremely flexible and dynamic.

Figure 9. The message bus architecture allow a more dynamic organization than
the fixed dataflow model of execution.

This information bus model is the most flexible for integrating user interaction
into the system. Future systems will likely contain a combination of bus-based and
dataflow approaches.

6 Discussion.

As part of this workshop a series of questions were posed to the authors from other
participants. In the spirit of the workshop we will devote our conclusion to a discus-
sion of the points they raised.

• Q1: Anne Trefethen. You mentioned MATLAB as one of the classic PSEs. Have
you looked at MATLAB Simulink, SimBiology, or SimEvents, which seem to
have the same kind of graphical interface? Have they solved any of the issues
you raise?
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Yes. These tools all use a graphical interface similar to the ones we have discussed
here. There are many more examples. This model of programming is certainly not
new. Many domain specific composition tools are able to reduce the complexity of
the problem by simplifying the semantic space. SImBiology is an excellent example.
However, most of these systems are not designed to operate in the wide area as
web service workflow engines. However MATLAB does have support for Web ser-
vice integration, so it is possible to integrate web services into a MATLAB-based
application framework.

• Q2: Tom Jackson. How do you deal with the problem of integrating legacy user
code into portals (which are typically non-Java), particularly for visualization?

As discussed in Section 4 of this paper, legacy application integration is accomplished
by wrapping the application as a web service. This is a semi-automatic process. In
the case of visualization, it is possible to wrap an off-line rendering system as a
web service and we have done that. A more complex problem is to invoke a “live”
desktop application as part of a workflow. This is a general problem many systems
have with inserting a human action into the workflow. The best solution is to combine
the dataflow model with the event-bus model described above.

• Q3: Gabrielle Allen. How do you deal with resource allocation and/or resource
scheduling in these scenarios?

As mentioned in section 5, resource allocation and scheduling is handled by a “call-
out” to a resource allocation service from the workflow configuration service. This
use of late binding of the resources with the workflow script allows for very great
flexibility. If the workflow engine is also able to catch exceptions and listen to the
event notification bus, it is possible to change the resource allocation while the
workflow execution is continuing.

• Q4: Tom Jackson. Where you referring to Enterprise Service Bus architectures
when you discussed message bus solutions?

Yes. Although Enterprise Service Bus is often associated with a specific technology
such as an EJB/JMS solution. However the concept is identical.

• Q5: Gabrielle Allen. What is the difference between event-driven and data-driven
architectures, and can you integrate these with a centralized component which
allows decision making and control to only need to be implemented in one place?

A workflow or computation can be data-driven and implemented with an event-
driven bus framework or with a dataflow framework. There is a big difference be-
tween dataflow (as described here) and an event-driven bus. In the case of dataflow
the workflow designer implements control based on a graph of dependencies that
must be satisfied. Messages from one service are explicitly routed to the graphically
connected services. In the even-driven bus case each service can hear all messages
and respond to any of them. We control chaos by selecting services that only respond
to messages that are of the appropriate topic.

• Q6: Bill Gropp. Have formal methods for verifying correctness been applied to
graphical workflows?

Yes and No. There is ample work in the theoretical literature about the semantics
and correctness of these graphical models, but we know of no system in use that
implements any of these idea in practice.
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• Q7. Richard Hanson. Libraries of software routines are well established as a
programming model and tool. What do you visualize as an execution model for
grid computing and workflows?

In many ways, what we have described here is a way to deploy application software
libraries in a distributed context. But there is an important and subtle difference be-
tween software components and traditional software libraries. Most software libraries
are not well encapsulated: they rely on the runtime environment of the program in-
voking them and they often operate by side-effecting common data structures. The
behavior of component systems is completely defined by the interfaces they present
to their clients.

• Q8: (Mo Mu) What do you think is the role of APIs in the composition of
workflows as a mechanism/standards to ensure the proper fitting of compo-
nents/services?

In a Web service oriented system, interfaces are defined by the Web Service Defini-
tion Language. This provides a programming language neutral way to describe the
messages sent to a service and the types of messages that are returned. Also, Web
service systems have evolved considerably from the days of remote procedure calls.
The stand now is message oriented, where the message is an XML document de-
fined by an XML schema. The reply is defined similarly. By using WSDL and XML
schemas, the services become completely programming language neutral. Services
built from Java or C++ or .Net or Perl or Python can all interoperate. This was
not possible with programming language based APIs because they all have different
type systems.

• Q9 : (Keith Jackson) What role dows semantic information play in a component
architecture? What kinds of semantic information should a service expose?

Semantics are critical. Current service models do not provide enough semantics
about the content of messages and responses. As discussed above this is one of the
greatest challenges to making a truly interoperable system of service components.

• Q10: (Anne Trefethen) How do we get community agreement on the semantics?

This is perhaps the most important question. The first step is to get a community to
agree upon an ontology. This is starting to happen in many scientific domains. Once
there is a common ontology, one can start defining common scientific metadata.
Again this is happening in atmospheric science, oceanography, physics, geology, and
many more areas. But there is a long way to go. Once you have a common ontology
and common scientific metadata, then wrapping community codes to work as services
in general e-Science PSE frameworks is relatively easy.
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