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Abstract. We describe three different dynamic data-driven applications 
systems (DDDAS): an empty house, a contaminant identification and tracking, 
and a wildland fire. Each has something in common with all of the rest and can 
use some common tools. Each DDDAS is quite complicated in comparison to 
a traditional static input simulation that is run with large numbers of inputs 
instead of one longer run that is self-correcting. 
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1 Introduction 

We quote from the 2005 dynamic data-driven application systems (DDDAS) 
National Science Foundation solicitation [1], “DDDAS is a paradigm whereby 
application (or simulations) and measurements become a symbiotic feedback control 
system. DDDAS entails the ability to dynamically incorporate additional data into an 
executing application, and in reverse, the ability of an application to dynamically 
steer the measurement process. Such capabilities promise more accurate analysis and 
prediction, more precise controls, and more reliable outcomes. The ability of an 
application to control and guide the measurement process and determine when, 
where, and how it is best to gather additional data has itself the potential of enabling 
more effective measurement methodologies. Furthermore, the incorporation of 
dynamic inputs into an executing application invokes new system modalities and 
helps create application software systems that can more accurately describe real 
world, complex systems. This enables the development of applications that 
intelligently adapt to evolving conditions and that infer new knowledge in ways that 
are not predetermined by the initialization parameters and initial static data. The need 
for such dynamic applications is already emerging in business, engineering and 
scientific processes, analysis, and design. Manufacturing process controls, resource 
management, weather and climate prediction, traffic management, systems 
engineering, civil engineering, geological exploration, social and behavioral 
modeling, cognitive measurement, and bio-sensing are examples of areas likely to 
benefit from DDDAS.” See also [2] for numerous examples and clear definitions of 
what makes a system a DDDAS. 

As small groups, we are working on three kinds of DDDAS critical infrastructure 
projects funded by the NSF: 

 
• ITR/NGS: Collaborative Research: DDDAS: Data Dynamic Simulation for 

Disaster Management. The emphasis is on wildland fire modeling, 
simulation, prediction, and a major milestone is to provide real-time 
information to people fighting actual fires. The final test of the project will 
be to do a full scale test with a prescribed burn of a mountainside in 2008-
2009. 

• ITR: Collaborative Research: Predictive Contaminant Tracking Using 
Dynamic Data Driven Application Simulation (DDDAS) Techniques. 
Multiscale data-driven algorithms and software to easily move data from 
sensors to computers potentially far away has been developed. 

• DDDAS-TMRP: Collaborative Research: Adaptive Data-Driven Sensor 
Configuration, Modeling, and Deployment for Oil, Chemical, and 
Biological Contamination near Coastal Facilities. Consider a networked 
drone operating off a coast that recognizes oil in water. Upon detection and 
alerting the simulation, by dynamically loading into the drone sensor a 
chemical library specific to hydrocarbon pollution, the sensor can search for 
chemicals that will identify the source of the hydrocarbons.  For example, a 
diesel-driven ship may have sunk nearby, or a fishing boat may simply be 
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leaking fuel. 100LL would indicate a small downed aircraft.  Depending on 
the sensor result, very different computations can be done: trace where the 
ship or aircraft sank and alert rescue, or trace where the boat sailed and 
what its travel route was to identify the boat and mitigate the problem. 

 
The remainder of this paper is organized as follows. In §2, we describe features that 
are common in DDDAS. In §3, we describe a whimsical DDDAS that would make a 
good commercial product for the modern American home. In §4, we describe a 
contaminant tracking DDDAS based on a set of movable drones in water bodies. In 
§5, we describe a wildland fire DDDAS. Finally, in §6, we offer some concluding 
remarks. 
 

2 What Is in a Typical DDDAS 
 

DDDAS environments require new software capabilities for application modeling 
and composition, dynamic runtime, resource management, data management, and 
measurement control aspects, as well software architecture drilling across all layers 
and end-to-end software infrastructure. The DDDAS program solicitation includes a 
comprehensive list of challenges and has inspired the scientific community, as 
exemplified by DDDAS projects that have started to address these and other related 
challenges.  In our own DDDAS projects, we have identified several relatively 
diverse areas that have common issues that must be addressed by DDDAS: computer 
science, informational, and computational sciences that lead to significant impact for 
addressing important problems. These include: 
 

1. Effectively assimilating continuous streams of data into running 
simulations. These data streams most often will be… 

a. Noisy but with known statistics, and must be incorporated into the 
model using stochastic methods, such as filters and smoothers. 

b. Received from a large number of scattered remote locations and 
must therefore be injected into a usable computational grid. 

c. Missing bits or transmission packets, as for example is the case in 
wireless transmissions. 

d. Injecting dynamic and unexpected data input into the model. 
e. Limited to providing information only at specific scales, specific to 

each sensor type. 
2. Warm restarting simulations by incorporation of the new data into parallel 

or distributed computations, which require the data but are sensitive to 
communication speeds and data quality. 

3. Tracking and steering (control of measurements, models, reporting results, 
and visualization) of remote distributed simulations to efficiently interact 
with the computations and to collaborate with other researchers. 

4. Translation components to rectify when simulation output does not directly 
match observational data. 



4 Craig C. Douglas1,2, Divya Bansal1, Jonathan D. Beezley3, Lynn S. Bennethum3, 
Soham Chakraborty1, Janice L. Coen4, Yalchin Efendiev5, Richard E. Ewing5, Jay 
Hatcher1, Mohamed Iskandarani6, Christopher R. Johnson7, Deng Li1, Minjeong 
Kim3, Robert A. Lodder8 

 
5. Interpretation and analysis components to assist researchers with 

collections of simulations. 
6. Application program interface and lightweight middleware components for 

designing and creating a DDDAS or DDDAS problem solving environment. 
7. Better scheduling of computational and network resources so that multiple 

models, possibly running at different locations, can be coordinated and data 
can be exchanged in a timely manner. 

8. Virtualization and sandbox implementations for testing purposes and 
security. 

 
DDDAS assumes that application components, resource requirements, 

application mapping, interfaces and control of the measurement system can be 
modified during the course of the application simulation. The diagram in Figure 1 
shows how a number of elements might dynamically interact with each other: Any of 
the components may change without resorting to a new simulation as the 
computation progresses. Many DDDAS applications are multiscale in nature. As the 
scale changes, models change, which in turn, changes which numerical algorithms 
must be used and possibly the discretization methods. DDDAS applications involve 
a complicated time dependent, nonlinear set of coupled partial differential equations, 
stochastic or agent-based simulation methods, which add to the complexity of 
dynamically changing models and numeric algorithms. It also causes computational 
requirements to change, particularly if dynamic adaptive grid refinement or 
coarsening methods are used, in response to the dynamically streamed data into the 
executing model. 

To support data management needs in our DDDAS projects, data acquisition, 
data accessing, and data dissemination tools are typically used. Data acquisition tools 
are responsible for retrieving of the real-time or near real-time data, processing, and 
storing them into a common internal data store. Data accessing tools provide 
common data manipulation support, e.g., querying, storing, and searching, to upper 
level models. Data dissemination tools read data from the data store, format them 
based on requests from data consumers and deliver the formatted data to the data 
consumers. Figure 2 illustrates a simplified view of the software framework of the 
DDAS system we are developing. In our implementation, the data used to drive a 
DDDAS system are retrieved periodically by a data retrieval service, extracted, 
converted, quality controlled, and then staged as dynamic inputs to our simulation 
models. The extraction process reads the retrieved data based on the meta data 
associated with them and feeds the extracted values to the conversion model whose 
major purpose is unit conversion, e.g., from inches to millimeters. The converted 
data are then analyzed for potential errors and missing values by the quality control 
model. This control process will ensure the correctness of the data, which is of great 
importance for the model simulation accuracy. The quality controlled data are then 
fed to the data storage model, which either saves the data to a central file system or 
loads them to a central database (this depends on project requirements). The data 
store model may also need to register the data in a metadata database so that other 
models can query it later. 
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Fig. 1. DDDAS processing [3] 

 

 

 

Fig. 2. Data acquisition, accessing, and dissemination software layout in a typical DDDAS 
project with n models 

DDDAS research projects have brought together multidisciplinary expertise, 
involving researchers from a number of fields to synergistically pursue research on 
creating DDDAS capabilities and environments. There is a learning curve that is 
nontrivial. DDDAS applications are usually complicated, getting data is usually 
difficult, and there is already large scale research ongoing using traditional, take 
initial data and just run a simulation some period of time, and look at the results. 

 
A community web site, http://www.dddas.org [4], has been developed by Prof. 

Douglas with help from about 50 other DDDAS-related projects. The site currently 
has a complete funded project list (from 2000 to 2006), virtual proceedings from 
workshops from 2000 through 2006 [5-8], a number of talks on topics that range 
from disaster management to transportation to homeland security to how a bat flies, 
news items, pointers to working DDDAS codes, and the January 2006 NSF DDDAS 
workshop report [9]. Most of the projects listed are from the United States, though a 
number of the projects have international partners and interest in DDDAS overseas 
has been increasing. 

3 An Empty House DDDAS 
In the United States, it is quite common for homes to be devoid of people for a 

significant number of hours per day (i.e., “My two cats really own the house.”). 
However, it is advantageous to have the home appear to be lived in and constantly 
occupied. A smart home is able to communicate with the owners and for sensors to 
be adjusted to the immediate situation, inside or outside. 
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We need sensors that can detect motion and identify individuals 

(pictorially and verbally). Depending on the first results from the DDDAS, 
the sensors will have to detect much more complicated data. Face recognition 
and some indication of the emotional state is one of the highly successful 
DDDAS projects [10]. 

We need to distinguish between animals, vehicles, regular visitors (wanted and 
unwanted), and irregular visitors. Each category requires its own computational 
model. Frequently, more than one model must be used in parallel. In fact, the way to 
implement an empty house DDDAS is two tiered: (1) object detection and 
identification, and (2) receiving information about a detected object (recognized 
friendly, recognized undesirable or unrecognized) and chooses an appropriate 
response. The two tiered approach reduces the load on the second tier so that 
resources are available for decision making and communicating with the owner and 
makes it easy to add extra (or new) models later. 

Animals can usually be ignored unless individuals are regular nuisances. Ones 
that live in the house and need to be let in (or out) are a special case and must be 
recognized as well as the animal’s intent. When the occupants are away for an 
extended period of time, the animals need to be fed and given water on a regular 
basis. 

Vehicles on a driveway are the first point of identification of individual people. 
For example, recognizing the license plate or corporate identity (e.g., UPS) leads to 
running a model for acceptable visitors. A moving van might indicate house robbers 
and a call to the police might be warranted depending on what the people inside it do 
after getting out of the van. Smoke detection in or near the house obviously needs a 
call to the fire department. 

People walking up to a door (or window) provides a different recognition 
problem. Examples of walkers include the mailman or other deliver people, product 
sellers, house robbers, arsonists, and religious nuts. The former is welcome, but the 
rest are unwelcome and/or a serious threat to the integrity of the house. Being able to 
identify unwanted visitors and determine which ones will go away with a polite, but 
firm, “No,” is essential and nontrivial to model. A database has to be developed over 
time as the DDDAS is trained. 

For deliveries, a voice greeting needs to be generated, answers to common polite 
questions (e.g., how are you?), signing for a box or envelope, and directions given to 
what to do with a delivery. If the delivery is put into a secure box, the contents need 
to be transferred into the house either immediately or on a regular basis. The house 
occupants need to be notified of a delivery and who delivered it (using pictures or 
audio). If a delivery person cannot be answered by the DDDAS, the occupants 
should have the option of seeing, hearing, and talking to the delivery person in real 
time. Hence the DDDAS needs to be able to track the occupants seamlessly. Thus, 
two way, secure communications is required. 

Clearly the Household DDDAS is nontrivial, yet much of what is needed to 
produce a working one has been developed over the past few years in NSF supported 
DDDAS grants [4]. To make it work requires a set of sensors (motion detectors, 
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microphones, and webcams), mechanical devices to move or rotate the sensors, face 
and vehicle recognition software, voice decoding, networking (at the house and with 
the occupants, wherever they might be), and parallel processing to run multiple 
models simultaneously. Yet the total cost of such a system is not very high thanks to 
most of the devices and software being either commonplace or already existing. It is 
a matter of assembling the pieces correctly and devising the DDDAS. This would 
make an interesting commercial product for installing in new homes where the cost 
would be dwarfed by construction and land expenses. 

4 Contaminant Tracking DDDAS 
The most infamous oil spill was the Exxon Valdez oil spill. It was the largest oil spill 
ever when it occurred, but is no longer ranks among the top 50 largest oil spills 
globally. Oil spills remain one of the largest threats to coastal water regions and 
water supplies. Yet even small oil spills can indicate different things, as noted in the 
DDDAS-TRMP project summary in §1. 

The DDDAS contaminant tracking system consists of sensors, a hydrodynamic 
and contaminant transport models, a data assimilation system, as well as computers, 
networks, and software to integrate the capabilities of the various components into a 
unified system for disaster management and mitigation. 

Our sensor is a Solid-State Spectral Imager (SSSI) designed to gather 
hydrological and geological data and then to perform chemical analyses. The sensor 
is small and light enough to be mounted on various roving platforms so it can be 
used in remote-sensing situations and can scan ranges of 10-100 meters in distance. 
Using a laser-diode array, photodetectors, and on-board processing, the SSSI 
combines spectroscopic integrated sensing and processing with a hyperspace data 
analysis algorithm. 

The SSSI detects and identifies contaminants in water using near-infrared (IR), 
visible, and ultraviolet light. Absorption, fluorescence, and even Raman 
spectrometry can be implemented, but absorption spectrometry is the most common. 
Virtually every organic compound (e.g., polycyclic aromatic hydrocarbons, 
paraffins, carboxylic acids, and sulfonic acids) has a near-IR spectrum that can be 
measured, including two classes of terrestrial biomarkers, lipids, and amino acids. 
Near-infrared spectra consist of overtones and combinations of fundamental mid-
infrared bands, giving near-infrared spectra a powerful ability to identify organic 
compounds while still permitting some penetration of light into samples. 

The SSSI has a modest amount of memory and computing capacity on board. 
The SSSI is reprogrammable in the field. When an interesting chemical trace is 
discovered, the reaction from the application overseeing the SSSI is two-fold: (a) 
invoke an appropriate application, and (b) request that the SSSI look for specific 
other chemical traces using other specific pulse sequences. There is a symbiotic 
relationship between the sensor network and the application simulation that is typical 
in a DDDAS. 

The SSSI uses Walsh-Hadamard or Complementary Randomized Integrated 
Sensing and Processing (CRISP) encoding sequences of light pulses to further 
increase the signal-to-noise (S/N) ratio. In a Walsh-Hadamard sequence multiple 
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laser diodes illuminate the target at the same time, increasing the number of photons 
received at the photodetector and the S/N. The Walsh-Hadamard sequence can be 
demultiplexed to individual wavelength responses with a matrix-vector multiply 
operation. CRISP encoding uses orthogonal pseudorandom codes with unequal 
numbers of on and off states. The duty cycle of each code is different and the codes 
are selected to deliver the highest duty cycles at the wavelengths where the most 
light is needed and lowest duty cycle where the least light is needed to make the sum 
of all of the transmitted (or reflected) light from the samples proportional to the 
analyte concentration of interest. 

The hydrodynamic model consists of the Spectral Element Ocean Model 
(SEOM) in its two dimensional shallow water version. The spatial discretization 
relies on the spectral element method, an h-p type finite element discretization, 
which relies on relatively high degree (5-8th) polynomials to approximate the 
solution within each element. The main features of the spectral element method are: 
geometric flexibility due to its unstructured grids, dual paths to convergence: 
exponential by increasing polynomial degree or algebraic via increasing the number 
of elements, dense computational kernels with sparse inter-element synchronization, 
and excellent scalability on parallel machines. The model can be forced through 
winds, tides, and lateral injection of mass at inflow boundaries (e.g., river input). The 
model is supplemented with an advection-diffusion equation to simulate the 
trajectory of contaminants as they are carried along by the simulated flow. 

Using multiple linear regression the Bootstrap Error-adjusted Single-sample 
Technique (BEST) classification algorithm can be performed in situ, allowing a 
rover to classify many samples, only notifying the simulation when an interesting 
substance is found. Once the spectrum of a sample has been collected, it must be 
classified to determine the substance present. Spectra recorded at n wavelengths are 
represented as single points in a n-dimensional hyperspace. In this scheme, similar 
samples produce similar spectra that project as probability orbitals or clusters into 
similar regions of hyperspace. The BEST metric is a clustering technique for 
exploring these distributions of spectra in hyperspace. 

An initial library can be computed based on substances likely to be found in the 
target environment. When a substance unknown to the BEST library is found, the 
sensor can sample nearby points with similar spectra to create a new library entry for 
the new substance. Scientists can determine the type of substance present by further 
analyzing raw spectra of the substance provided by SSSI and by using data from 
their other instruments, apply these data to update the simulation. The SSSI chemical 
library will comprise substances expected to be in the environment in which the SSSI 
operates. 

The initial deployment of the sensor and model focuses on estuarine regions 
where water quality monitoring is critical for human health and environmental 
monitoring. A sample tidal calculation will be performed using a grid that 
encompasses a bay or set of bays regions and possibly a river region. The model is 
forced with tidal elevation obtained from tide gauges. Runs without data assimilation 
have shown good comparison with observation and previous modeling results. 
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However, for DDDAS the use of data assimilation is imperative to inject 
observational data in the model while accounting for model and observational errors. 

The data assimilation reduces the computational errors associated with initial 
data, essentially the solution at previous time step, and improves the prediction. 
Using the first set of measurements, the approximation of the initial data is 
recovered. As new data are incorporated into the simulator, the initial data are 
updated using an objective function. We note that the formulated problem is ill posed 
because there are fewer sensors than the finite dimensional space describing the 
initial data. The objective function is set up based on both a measurement error as 
well as a penalization term that depends on the prior knowledge about the solution at 
previous time steps (or initial data). The prior information is refreshed using the 
updated initial data. The penalization constants depend on time of update and can be 
associated with the relative difference between simulated and measured values. In 
the simulations, both the prior and penalization constants change in time. 

To account for the errors (uncertainties) associated with sensor measurements, 
we consider an initial data update within a Bayesian framework. The posterior 
distribution is set up based on measurement errors and prior information. This 
posterior distribution is complicated and involves the solutions of partial differential 
equations. We could use a Metropolis-Hasting Markov chain Monte Carlo (MCMC) 
method to generate samples from the posterior distributions. However, a sampling 
with MCMC is expensive since it requires iterative steps and the acceptance rate is 
typically low. We developed an approach that combines least squares with a 
Bayesian approach that gives a high acceptance rate. In particular, we can prove that 
rigorous sampling can be achieved by sampling the sensor data from the known 
distribution, thus obtaining various realizations of the initial data. Our approach has 
similarities with the Ensemble Kalman Filter approach, which can also be adapted to 
an initial data update. 

Consider finding hydrocarbon fuel in a body of water.  Gasoline can simply be a 
sign of pollution from a small boat.  Heavier fuel oils could be an indication that a 
larger boat has a leak or sank recently nearby.  Jet fuel could come from a downed 
aircraft. The SSSI needs to be reprogrammed in the sunken vehicle case and a search 
and locate application must be invoked to find the accident and rescue any people 
that may be in danger.  Emergency services, the coast guard, and the news media 
may need to be automatically informed of progress. 

Oil droplets can travel nearly anywhere in the ocean. The droplet size exerts a 
major effect on droplet motion. The rise velocity of oil droplets extends from about 
2.5×10-7 m/s for a diameter of 2µ m to 4.3×10-3 m/s for a diameter of 260µ m. 
Droplets traveling at 2.5×10-7 m/s will ascend only 0.001 m and 0.02 m, over periods 
of 1 hour and 24 hours, respectively. However, droplets ascending at 4.3×10-3 m/s 
will climb 15 m and 370 m over equivalent periods. A vertical diffusivity of 51 cm2/s 
will distribute oil droplets (equally upward and downward) about 6 m and 30 m over 
the same time. Therefore, the smallest oil droplets act as though they are neutrally 
buoyant, i.e., transported only by diffusion. However, buoyancy primarily advects 
the largest droplets. 
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Fig. 3. Schematic diagram of a wildland fire dynamic data-driven application system.: blue 
blocks are functional units and purple are data inputs and outputs 

5 Wildland Fireline Predictive DDDAS 
Our wildland fire DDDAS is built upon a previously existing coupled 

atmosphere-wildfire model. Components have been developed and added which (1) 
save, modify, and restore the state of the atmosphere-wildfire model, (2) apply 
ensemble data assimilation algorithms to modify ensemble member states by 
comparing the data with synthetic data of the same kind created from the simulation 
state, (3) retrieve, process, and ingest data from both novel ground-based sensors and 
airborne platforms in the near vicinity of a fire, and (4) provide computational results 
visualized in several ways adaptable to user needs. Fig. 3 presents the actual software 
structure. The observation function interprets the model variables in terms of 
observable quantities and produces synthetic data from the model state. The data 
assimilation compares the synthetic data and the real data, and adjusts the model 
state accordingly. 

The original modeling system is composed of two parts: (1) a numerical weather 
prediction model and (2) a fire behavior model that models the growth of a wildfire 
in response to weather, fuel conditions, and terrain. Both models are two way 
coupled so that heat and water vapor fluxes from the fire feed back to the atmosphere 
to produce fire winds, while the atmospheric winds and changes in humidity in turn 
drive the fire propagation. This wildfire simulation model can thus represent the 
complex interactions between a fire and the atmosphere. 

The meteorological model is a three dimensional non-hydrostatic numerical 
model based on the Navier-Stokes equations of motion, a thermodynamic equation, 
and conservation of mass equations using the anelastic approximation. Vertically 
stretched terrain following coordinates allow the user to simulate in detail the airflow 
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over complex terrain. Forecasted changes in the larger scale atmospheric 
environment are used to initialize the outer of several nested domains and update 
lateral boundary conditions. Two way interactive nested grids capture the outer 
forcing domain scale of the synoptic scale environment while allowing the user to 
telescope down to tens of meters near the fireline through horizontal and vertical grid 
refinement. Weather processes such as the production of cloud droplets, rain, and ice 
are parameterized using standard treatments. 

Local fire spread rates depend on the modeled wind components through an 
application of the Rothermel fire spread formula [11]. The heat release rate is based 
on [12] which characterizes how the fire consumes fuels of different sizes with time 
after ignition, distinguishing between rapidly consumed grasses and slowly burned 
logs. Within each atmospheric grid cell, the land surface is further divided into fuel 
cells, with fuel characteristics corresponding to the 13 standard fuel types [13]. Each 
fuel cell has four tracers, which identify burning areas of fuel cells and define the fire 
front. Fire spread rates are calculated locally along the fire as a function of fuels, 
wind speed and direction from the atmospheric model (which includes the effects of 
the fire), and terrain slope while a local contour advection scheme assures 
consistency along the fireline. The canopy may be dried and ignited by the surface 
fire, so a simple radiation treatment distributes the sensible and latent heat into the 
lowest atmospheric grid levels. 

The empirical fire model uses a submesh representation of the fire region. Within 
each cell on the fire model grid, a quadrilateral defines the burning region. The 
burning area in each grid cell is defined by the position of four moving points, called 
tracers. This representation makes the fire area hard to adjust in data assimilation.  
As a result, we have developed a translation of the tracers into a level function. The 
level function is given by values at nodes of the fire grid. The fire region is where the 
level function is positive. The absolute value of the level function is approximately 
equal to the Euclidean distance from the fireline. In data assimilation, the level 
function can be increased or decreased just like the physical quantities in the model 
and greatly simplifies the assimilation process. 

Ensemble filters work by advancing in time a collection of simulations started 
from randomly perturbed initial conditions. When the data is injected, the forecast 
ensemble is updated to get a new analysis ensemble to achieve a least squares fit 
using two conditions: change in the ensemble members should be minimized, and the 
data d should fit the ensemble members state u, h(u) ≈ d, where h is called the 
observation function. The weights in the least squares are obtained from the 
covariances of the ensemble and of the data error. For comprehensive surveys of 
Ensemble Kalman Filters (EnKF) techniques, see [14-16]. In general, an EnKF 
works by forming the analysis ensemble as linear combinations of the forecast 
ensemble. This raises two concerns, especially in highly nonlinear models: if the 
change of state in the update is large there may not be suitable forecast members to 
make linear combinations of in order to match the data.  Hence, a linear combination 
of realizable states may not itself be a realizable state.  This results in the need for 
large ensembles, frequent small updates, and has the potential to break down due to 
nonphysical states being introduced. 
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Fig. 4. Comparison of the results of 4 methods of simulating 2-D growth of a fire 
using an ensemble of solutions where the vertical axis is temperature and the 2 
horizontal axes represent x- and y- spatial dimensions 

 
We were using filters based on the EnKF with data perturbation. The data 

assimilation always produced an ensemble with nonphysical solutions and so that the 
simulation always broke down numerically. Therefore, we have developed a 
regularization by adding a term involving the change in the spatial gradient of 
ensemble members to the least squares procedure [17]. 

Consider Fig. 4 [18]. The exact solution is shown in the upper left. The ensemble 
solution with a standard EnkF algorithm is shown in the upper right, which creates 
unstable and nonphysical solutions. An EnkF solution with stabilization with the 
Johns and Mandel (2004) method is shown in the lower left, which produces the 
best, physically realistic solution.  The solution of the ensemble without any data 
assimilation is shown in the lower right, in which the solution of the ensemble drifts 
away from the solution. 

Existing ensemble filter formulas assume that the observation function is linear 
and then compute with the observation matrix H. To simplify the software, we have 
derived a mathematically equivalent ensemble filter that only needs to evaluate h(u) 
for each ensemble member. The ensemble update involves computation with 
extremely large, dense matrices. 
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There is clearly a need to adjust the simulation state by distorting the simulation 

state in space rather than employing an additive correction to the state. Also, while 
the position of the feature may have error distribution that is approximately gaussian, 
this is not necessarily the case for the value of the state at a given point. For this 
reason, alternative error models including the position of features were considered in 
the literature [19] and a number of works emerged that achieve more efficient 
movement of features by using a spatial transformation as the field to which additive 
corrections are made: a transformation of the space by a global low order polynomial 
mapping to achieve alignment [20], and two-step models to use alignment as 
preprocessing to an additive correction [21, 22]. We have proposed [23] a new 
method, a Morphing Ensemble that combines alignment and additive correction into 
a single step, using ideas borrowed from registration and morphing in image 
processing [24]. 

Data comes from fixed sensors that measure temperature, radiation, and local 
weather conditions. The fixed sensors, positioned so as to provide weather conditions 
near a fire, are mounted at various heights above the ground on a pole with a tripod 
base. The data logging and transmission electronics are buried in the soil in a 
protective box. Wiring to the sensors and antennae is insulated. This type of system 
will survive burn overs by low intensity fires. These sensors supplement other 
sources of weather data derived from permanent and portable automated weather 
stations. The temperature and radiation measurements provide the direct indication 
of the fire front passage and the radiation measurement can also be used to determine 
the intensity of the fire. The raw data is logged and transmitted as comma delimited 
ASCII text for easy use in spreadsheets. 

Data also comes from images taken by sensors on either satellites or airplanes. 
Camera calibration, an inertial measurement unit, GPS, and digital elevation data are 
used in a processing system to convert raw images to a map product with a latitude 
and longitude associated with each pixel.  The three wavelength infrared images can 
then be processed using a variety of algorithm approaches to extract which pixels 
contain a signal from fire and to determine the energy radiated by the fire. The 
original pixel values, the derived probability of fire in each pixel, and the latitude 
and longitude information are stored in a Data Center as GeoTIFF images. 

Data from previous fires are stored in a data center in GeoTIFF (images), Excel 
spreadsheet files, or text files (sensors). The Excel data is made more accessible by 
converting it to a comma separated value (CSV) format. GPS information is stored 
about each fixed-location sensor. Each sensor's data is time stamped to identify when 
the data was collected or received (if it comes without a time stamp). For mobile 
sensors, both the time stamp and GPS information is available. 

Data that comes into the data center must go through a process consisting of up 
to six steps:  

• Retrieval: Get the data from sensors. This may mean receiving data directly 
from a sensor or indirectly through another computer or storage device 
(e.g., a disk drive).  

• Extraction: The data may be quite messy in raw form, thus the relevant data 
may have to be extracted from the transmitted information.  

• Conversion: The units of the data may not be appropriate for our 
application.  
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• Quality control: Bad data should be removed or repaired if possible. 

Missing data (e.g., in a composite satellite photo) must be repaired. 
• Store: The data must be archived to the right medium (or media). This 

might mean a disk, tape, or computer memory, or no storage device at all if 
data is not being archived permanently or only temporarily.  

• Notification: If a simulation is using the data as it comes into the data center, 
the application must be informed of the existence of new data. 

The data is related to the model by the observation equation h(u) ≈ d. The 
observation function h maps the system state u to synthetic data, which are the values 
the data would be in the absence of modeling and measurement errors. Knowledge of 
the observation function, the data, and an estimate of the data error covariance is 
enough to find the correct linear combinations of ensemble members in the ensemble 
filter. The data assimilation code also requires an approximate inverse g of the 
observation function. For a system state u and data d, is the direction in which the 
system state can change to decrease a norm of the data residual. For an observation 
function that is simply the value of a variable in the system state, the natural choice 
of approximate inverse can be just the corresponding term of the data residual, 
embedded in a zero vector. 

Building the observation function and its approximate inverse requires 
conversion of physical units between the model and data, and conversion and 
interpolation of physical coordinates. In addition, synthetic data at instants of time 
between the simulation time of ensemble members need to be interpolated to the data 
time. Data is injected into the ensemble to minimize both a weighted sum of the data 
residual and the change in the ensemble. 

The data items enter in a pool maintained by the data acquisition module. The 
assimilation code can query the data acquisition module to see if there are any new 
data items available, request their quantitative and numerical properties, and delete 
them from the pool after they are no longer of use. The properties of the data items 
include 

• a time stamp, 
• encoding of the type and parameter values of the observation function and 

its approximate inverse, 
• estimate of the error of the data, and 
• the numerical values of the data itself. 

From the point of view of the assimilation code, all information about physical 
units, etc., is encoded in the observation function. 

Visualization of the model output as an image is accomplished by brightness, 
color encoding, and transparency for a visual indication of the location and intensity 
of the fire, and of the probability distribution of the forecast. 3-D visualization of the 
fire is more complex and complexity increases if high spatial resolution of the output 
is desired.  3-D visualization uses model output from the fire propagation code for 
the flame region and from the atmospheric code for visualization of smoke. 
Ensemble statistics are used for visualization of probability. 

The geographic output of the fire model in 2-D or 3-D is visualized in a number 
of ways: 
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• For computer based mapping, manipulation, and visualization of the model 

output, file formats compatible with the geographic information system 
(GIS) products are generated. 

• A PDF file: the output is a map generated for potential output as hardcopy 
view of the fire at a set point in time. 

• A MPEG-4 (or similar format) file: the time varying output for both 2-D 
and 3-D is also used to generate a movie. 

• A file appropriate for viewing as a layer on top of Google Earth [25]. 
 
Our Google Earth Fire visualization system (see Fig. 5) greatly simplifies map 

and image visualization. The user can control the viewing perspective, zooming into 
specific sites, and selecting the time frame of the visualization within the parameters 
of the current available simulation. 

6 Concluding Remarks 
DDDAS is an interesting field that is trying to abstract into a science a number of 
previously treated areas. Data assimilation, control engineering, process control, 
cyber physical systems, and other buzzwords describe special cases of DDDAS 
(unless you are a researcher in these fields, in which case DDDAS is a special case 
of your own field).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                         
 
Fig. 5. Google Earth Fire Layering software tool: top left picture is what you get 
when clicking on Wildfires, top right picture is what you get by clicking on one of 
the fire symbols on the top left, and the bottom picture shows how the 3D layering 
appears 
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There are many application areas in which data can be injected into a running 

process. Doing it right leads to applications that can run forever instead of simulating 
short periods of time using static, initial data. While long range predictions can be 
achieved (e.g., weather prediction) using many runs with different sets of initial data 
from slightly different initial times, it is not the same as running just one simulation. 

Making one traditional application starting from the static, initial data into an 
application that uses dynamic data to run a long time is good engineering. 
Abstracting what makes many different applications run as a DDDAS is good 
science, which is completely different. The purpose of the DDDAS program at the 
NSF is to do good science that is also good engineering. However, the list of 
DDDAS projects on http://www.dddas.org goes far beyond traditional engineering 
topics. 
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