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Abstract. The need for improving software processes approximated the 

software engineering and artificial intelligence areas. Artificial intelligence 

techniques have been used as a support to software development processes, 

particularly through intelligent assistants that offer a knowledge-based support 

to software process’ activities. The context of the present work is a project for 

an intelligent assistant that implements a linguistic technique with the purpose 

of extracting object-oriented elements from requirement specifications in 

natural language through two main functionalities: the syntactic and semantic 

analyses. The syntactic analysis has the purpose of extracting the syntactic 

constituents from a sentence; and the semantic analysis has the goal of 

extracting the meaning from a set of sentences, i.e., a text. This paper focuses 

on the syntactic analysis functionality and applies the UML to its core as a 

semantic network for knowledge representation, based on the premise that the 

UML is de facto a standard general modeling language for software 

development. 

1 Introduction 

In the software engineering area, object-oriented technology use has increased to the 
point of becoming a currently dominant technology in software development [1]. In 
spite of the advantages that object-oriented technology can provide in the software 
development community, the fundamental problems associated with the 

John Debenham
237



2            Alberto Tavares da Silva1, Luis Alfredo V. Carvalho2 

identification tasks of the object-oriented elements, i.e., classes, attributes, 
relationship and multiplicities, remain; these tasks are easily handled manually and 
guided by heuristics that the analyst acquires through experience, whose results are 
posteriorly transferred to a CASE tool characterizing an automation gap between 
natural language requirement specifications and the respective conceptual modeling 
[2]. The automatic support to requirement analysis processes can better reflect the 
problem solve behavior of experienced analysts [3]. 

The need for improving software processes approximated the software engineering 
and artificial intelligence areas. A growing number of researches have used artificial 
intelligence techniques as a support to software development processes, particularly 
through intelligent assistants that offer a knowledge-based support to software 
process’ activities [4].  

The context of the present work is a project for an intelligent assistant that 
implements a linguistic technique with the purpose of extracting object-oriented 
elements from requirement specifications in natural language, enabling the 
generation of a conceptual model based on the UML class diagram notation. The 
referred approach includes three main linguistic requirements: a grammar, a 
knowledge representation structure and a knowledge representation language. The 
linguistic technique for the proposed intelligent assistant adopts, from computational 
linguistics (which automatically analyses natural language in terms of software 
programs called parsers), two main functionalities: the syntactic and the semantic 
analyses [5]. The syntactic analysis has the purpose of extracting the syntactic 
constituents that include the lexicon syntactic structures, like verb phrases; and the 
grammatical categories, like nouns. The semantic analysis has the goal of extracting 
the meaning from a text. Fig. 1 illustrates a general schema of the problem solution 
for the referred assistant.   

Syntactic
Analysis

Semantic
Analysis 

Requirements in
natural language

OO
elements

Syntactic
constituents

 
Fig. 1. The problem solution in a pipeline style. 

This paper focuses on the syntactic analysis functionality and applies the UML to 
its core as a semantic network for knowledge representation based on the premise 
that the UML is de facto a standard general modeling language for software 
development [1]. Based on the referred structure, a knowledge base (KB) can be 
generated, enabling the syntactic analysis. The proposed semantic network realizes 
two more logical representations for the intelligent assistant: the static structure and 
the database conceptual model. 

The present article is structured in the following way: the second section presents 
the three linguistic requirements for the proposed syntactic analyzer; the third section 
presents the proposed UML semantic network with a case study; and the fourth 
section presents the conclusions. 
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2    Linguistic Requirements   

2.1    Grammar 

There are three basic approaches to a grammar: the traditional, the phrase structure 
and the transformational. The traditional grammar denominates as subject and 
predicate the essential parts of any construction whose core is the verb. The phrase 
structure grammar includes the syntactic description based on the identification of 
all kinds of syntactic constituents and the formulation of rules that order the words 
inside a sentence. The transformational grammar has the transformational rules as 
its basis, making it possible to convert the deep structures, identified in the 
constituent grammar analysis, into surface structures that correspond to the real form 
of the enunciation, i.e., the kernel sentence [6-8].   

This work adopts the phrase structure grammar because it allows the 
representation of the knowledge to be modeled by the proposed UML semantic 
network as well as the extraction of the syntactic constituents from the sentences. 
The cited grammar permits to specify a language with an infinite number of 
sentences as the natural language, being well-founded on a formalism based on 
production with four components [5, 9]: 

T – terminal vocabulary: language words and symbols being defined; 
N – non-terminal vocabulary: symbols used to specify the grammar; 
P – set of production;  
S – start symbol. 

2.2    Knowledge Representation Language 

The language enables the formulation of knowledge through symbolic 
representations that will capacitate a system to reason [10]. First-order logic (FOL) is 
the most widely used, studied and implemented version of logic [11]. It is important 
to note, from [10], that whatever other features a knowledge representation language 
may have ought to comprise a well-defined notion of entailment because the so-
called job reasoning here means to compute the entailments of a KB.   

Many modern logicians limit the expressive power of FOL to a more easily 
computable subset, like Horn Clauses [10, 11]. In Horn clause representation, a KB 
can often be separated in two types of clauses: facts and rules. The facts are used to 
determine the basic truth from a domain, whereas the rules are used to understand the 
vocabulary and express new relationships. The propositions considered as true 
arguments are denominated hypotheses or axioms, and the propositions that search 
the logical consequences from the reported axioms are denominated theorems. Based 
on the abovementioned concepts, there appears the activity denominated a theorem 
proof, whose objective is to derive the logical consequences from the given 
propositions [12, 13]. The logical reasoning, or logical inference, involves the logical 
consequence concept. Logic is the inference science which is based on two basic 
hypotheses: in a correct inference the premises must be true and the inferred 
conclusion must have a logical relation with the premises in a way that guarantees 
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the transference of the truth contained in these premises to the conclusion; the 
relation between the premises and conclusion, which guarantees the transference of 
the truth, is a formal relation denominated logical consequence or logical entailment, 
which can be analyzed as a relation between logical forms [14]. The Resolution 
Procedure permits to automate the deductive reasoning in a FOL knowledge base, in 
a complete and consistent way, with the objective of determining whether a sentence 
α, or a formula, is true or not in a KB, i.e., if KB╞ α (whether α is a logical 
consequence of KB). The resolution procedure is more manageable when applied to 
a Horn clause KB [10], being called a SLD resolution (Selected literals, Linear 
pattern, over Definite clause).  

There are two languages that allow a high level symbol manipulation in NLP: Lisp 
and Prolog. This work emphasizes Prolog, which syntax is in FOL logic with clauses 
written in Horn clause [10-12, 15]. Prolog clauses include facts and rules that are 
accepted as a set of axioms and the user’s question as the presumed theorem. The 
Prolog inference mechanism tries to prove the theorem, as it is a theorem prover 
based on the SLD resolution procedure [12, 13]. Prolog is also a suitable language to 
implement the phrase structure grammar [12, 13, 16]. A large number of Prolog 
implementations provide a notational extension called Definite Clause Grammar 
(DCG), that facilitates the formal grammars’ implementation in Prolog and it is 
directly executed as a syntactic analyzer, which enables sentence decomposition in 
its constituents. DCG allows implementing the context dependence, where a sentence 
depends on the context where it happens, like a concordant number [13].  

Based on the abovementioned considerations, this work adopts the Horn clause in 
DCG notation as the knowledge representation language, based on the premise that 
DCG was developed as a linguistic modeling tool that permits the depiction of any 
sentential structure that can be represented by a phrase structure grammar and, also, 
that has a well-defined notion of entailment based on an SLD resolution procedure.  

2.3    Knowledge Representation Structure 

Semantic network is a structure for representing knowledge as a pattern of 
interconnected nodes and arcs, in a way that the nodes represent concepts of entities, 
attributes, events and states; and the arcs represent the connections among the 
concepts [17]. Stuart Shapiro, who implemented the first semantic network with 
integral support for FOL, believes that a network structure can actually support 
important types of “subconscious” reasoning that are not directly representable in a 
linear logical form [17]. Shastri affirms that, in a general way, it is possible to 
translate a semantic network into a non-graphic language and vice versa [18]. Russel 
and Norvig [15] consider the semantic network a system specially projected to 
organize and to reason about/upon categories, offering graphic help to visualize a 
KB, being also a logical form. To Sowa [19], the semantic network is a declarative 
graphic depiction which can be used to represent knowledge as an automated 
reasoning support for it.  

Sowa [19] classifies UML diagrams as a semantic network and justifies it by 
saying that central to the UML exists a network definition of object types and 
another one like a relational graph that permits the representation of metalevel 
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information. The UML semantic understanding demands to comprehend the UML 
specification through a four-layer metamodel hierarchy [1]. The meta-metamodeling 
layer, called M3 in Fig. 2, defines the metamodeling specification language. The 
metamodeling layer, called M2, defines the model specification language as the 
UML. The model layer, called M1, has the primary responsibility of describing 
semantic domains, i.e., it allows the generation of user models as UML metamodel 
instances. The lowest layer, called M0, includes run-time instances of the model 
elements. The UML semantic refers to the run-time interpretation from the generated 
models [20]. 

Class
Class

Attribute

aVideo

Video

+title: String

<<instanceOff>><<instanceOff>>

<<instanceOff>>

M3
Meta-metamodel

M2
Metamodel

UML

M1
User model

M0
Run-time instances

<<instanceOff>>

 

Fig. 2. The UML layer hierarchy 

The present work adopts the UML class diagram notation, from the metamodel 
layer in Fig. 2, as the knowledge representation structure, i.e., the semantic network. 
The justification considers that a UML class diagram model, in the user model layer 
of Fig. 2, is a static structure composed by nodes and arcs interconnected, where the 
nodes represent classes and the arcs, associations [17]. The referred model is a 
system projected to organize and to reason with object instances, e.g., from UML 
run-time instance layers, objects representing axioms can be instantiated and asserted 
in a KB in accordance to the adopted knowledge representation language syntax, i.e., 
a Horn clause in DCG notation. The Prolog inference engine enables the reasoning 
through a logical consequence among the referred axioms. 

3    Semantic Network for the Syntactic Analyzer  

3.1    Knowledge Representation Structure 

The linguistic requirements for the proposed syntactic analyzer include: the phrase 
structure grammar as the grammar, the Horn clause in DCG notation as the 
knowledge representation language and the UML class diagram as the knowledge 
representation structure, being this last requirement the core of the present work.  

Two domains are defined based on a general problem-solution vision: real world 
aspects and symbolic representations, as illustrated in Fig. 3. Both domains were 
defined based on three representation concepts. The first defines representation as a 
relationship between two domains, where the first is meant to stand for or take the 
place of the second [10]. The second defines representation as the correspondence 
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between the real world and the symbolic representation [15]. In the third one, the 
symbols serve as surrogates for external things [11].   
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PROLOG
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World

Phrase

Structure

Grammar
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DCG

Syntactic
Analysis

Syntactic
Analysis

Sentence
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Question

semantics

?

?

 
Fig. 3. Space solution domains 

Fig. 3 permits a syntactic analysis process correspondence in both domains. In 
the real word, a natural language sentence is grammatically evaluated by a phrase 
structured grammar that permits to associate the grammar with its constituents’ 
analysis; the results are the syntactic constituents. In the symbolic representation 
world, the sentence corresponds to a question in Prolog notation, or a theorem to be 
proved by the Prolog theorem prover; the sentence is processed by the KB inference 
engine, which axioms implement the phrase structure grammar from the respective 
real world in DCG notation; the result is a Prolog clause as the answer to the goal. 
There is a semantic relationship between both domains as illustrated in Fig. 3.  
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Fig. 4.  Semantic network for the syntactic analyzer 
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Based on the premise that the knowledge kernel of the syntactic analyzer is the 

grammar, Fig. 4 illustrates a knowledge representation structure of a phrase structure 
grammar. The proposed semantic network works like a bridge between the other two 
linguistic requirements, i.e., the phrase structure grammar as the grammar and the 
Horn clause in DCG notation as the knowledge representation language. The 
knowledge represented by the referred network is the phrase structure grammar and 
the knowledge generated is a set of axioms from the cited grammar represented 
symbolically through the Horn clause. This confirms Shastri’s affirmation that it is 
possible to translate a semantic network into a non-graphic language [18]. 

Based on the premise that the job of reasoning is to compute the entailments of a 
KB [10], the Horn Clause knowledge representation language adopted has a well 
defined notion of logical entailment. The reasoning occurs through the theorem 
prover inference mechanism, i.e., Prolog. The reasoning in the proposed syntactic 
analyzer includes examining whether a sentence has the grammatical sequence in 
accordance to the phrase structure grammar implemented and, based on the correct 
analysis, generating the syntactic constituents. 

3.2    Case Study 

This case study adapts a short example implemented in [13] and illustrates a 
production instantiation from the proposed UML semantic network, i.e., it shows the 
composition of an axiom enabling its own assertion in a KB. The following grammar 
is based on the phrase structure grammar, the knowledge language is Horn clause in 
DCG notation, implementing the context dependence based on a concordant number 
[13]: 

T:  { the, hates, hate, cat, mouse, cats, scares }. 
N: { noun_phrase, verb_phrase, determiner, noun, verb,NP, VP, Verb, Det, 

Noun, Number, Number1}. 
P: {  (sentence, (Number,sentence(NP, VP)) --> noun_phrase(Number, NP), 

verb_phrase(Number, VP)., 
verb_phrase(Number, verb_phrase(Verb, NP)) --> verb(Number1,Verb), 
noun_phrase(Number, NP)., 
noun_phrase(Number, noun_phrase(Det, Noun)) --> determiner(Det), 
noun(Number,Noun)., 
determiner(determiner(the)) --> [the]., 
verb(singular,verb(hates)) --> [hates].,  
verb(plural,verb(hate)) --> [hate]., 
noun(singular,noun(cat)) --> [cat]., 
noun(singular,noun(mouse)) --> [mouse]., 
noun(plural,noun(cats)) --> [cats]., 
verb --> [scares]., 
verb --> [hates]. }. 

S: { sentence } 
The non-terminal symbols (N) represent the grammar and include the 

grammatical category symbols, the syntactic structure symbols and the argument 
symbols. The NonTerminal class enables the generation of the relations based on the 
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referred symbols; these relations are, incidentally, the ones that compose the 
productions. As an example, the following relations compose the above second 
production: 

− verb_phrase(Number, verb_phrase(Verb, NP)). 
− verb_phrase(Verb, NP). 
− verb(Number1,Verb). 
− noun_phrase(Number, NP).  

Fig. 5 illustrates a run-time interpretation, i.e., layer M0 in Fig.2, which 
corresponds to an instantiation of the object oProduction from the Production class, 
which clause attribute has the following state: “verb_phrase(Number, 
verb_phrase(Verb, NP)) --> verb(Number1, Verb), noun_phrase(Number, NP)”. The 
object oProduction is composed by three instantiations from the NonTerminal class.   

-clause: verb_phrase(Number, verb_phrase(Verb, NP)) --> verb(Number1,Verb), noun_phrase(Number, NP).

:oProduction

-relation: verb_phrase(Number, verb_phrase(Verb, NP)).

:oNonTerminal

-relation: verb(Number1,Verb).

:oNonTerminal

-relation: noun_phrase(Number, NP).

:oNonTerminal

 

Fig. 5. A run-time interpretation for a production 

Fig. 6 shows the instantiation of the oNonTerminal object, also in layer M0 in 
Fig. 2, whose relation attribute has the following state: “noun_phrase(Number, NP)”. 
The referred object composition depends on other three object instantiations, i.e., one 
object from the SyntaticStructure class and two objects from the Argument class.  

-relation: noun_phrase(Number, NP).

:oNonTerminal

-alias: Number

:oArgument

-name: verb_phrase

:oSyntacticStructure

-alias: NP

:oArgument

 

Fig. 6. A run-time interpretation for a relation 

As abovementioned, the purpose of the Syntactic Analyzer is extracting the 
syntactic constituents from a sentence. The prototype, illustrated in Fig. 7, 
instantiates all the productions of the present case study from the proposed UML 
semantic network, permitting to extract the syntactic constituents, e.g., from the 
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sentence “the mouse hates the cat”, the word “mouse” belongs to the grammatical 
category “noun” and is inside the syntactic structure “noun phrase”. 

 
Fig. 7. Syntactic analyzer output 

4    Conclusion  

The linguistic requirements for the proposed syntactic analyzer include: the phrase 
structure grammar as the grammar, the Horn clause in DCG notation as the 
knowledge representation language and the UML class diagram as the knowledge 
representation structure, i.e., the semantic network, being this last requirement the 
core of the present work. The referred semantic network works like a bridge between 
the other two linguistic requirements, i.e., the knowledge represented by the semantic 
network is the phrase structure grammar and the knowledge generated by the same 
network is a set of axioms from the cited grammar, represented symbolically through 
the Horn clause. This confirms Shastri’s affirmation that it is possible to translate a 
semantic network into a non-graphic language [18]. 

The semantic network based on the UML class diagram complies with some 
important concepts. Firstly, its structure is equivalent to a model made by nodes and 
arcs interconnected [17]. Secondly, it is a system projected to organize and to reason 
with categories that offer graphical help to visualize the KB, being a kind of logic 
[15]. Moreover, it is a surrogate for external things, i.e., the phrase structure 
grammar [11]. In addition to that, it gives support to automation reasoning by means 
of the theorem prover inference mechanism proposed, which includes examining 
whether a sentence has the grammatical sequence in accordance to the phrase 
structure grammar implemented and, based on the correct analysis, generating the 
syntactic constituents. Finally, inside an object-oriented view from the UML model, 
the semantics occurs through the object run-time interpretations, as illustrated in Fig. 
5.   

Briefly, the meaning of the semantic network proposed is a KB whose axioms 
are able of reasoning under a question, i.e., a theorem to be proved. 
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