

A Knowledge Representation Semantic
Network for a Natural Language Syntactic

Analyzer Based on the UML

Alberto Tavares da Silva1, Luis Alfredo V. Carvalho2

1 Escuela Politecnica del Ejército del Ecuador
atsfc@espe.edu.ec
WWW home page:

http://www.espe.edu.ec/espe_portal/portal/main.do?sectionCode=91
2 Universidade Federal do Rio de Janeiro,
COPPE - Instituto Alberto Luiz Coimbra

de Pós-graduação e Pesquisa de Engenharia - Brasil
LuisAlfredo@ufrj.br

WWW home page: http://www.cos.ufrj.br/~alfredo

Abstract. The need for improving software processes approximated the

software engineering and artificial intelligence areas. Artificial intelligence

techniques have been used as a support to software development processes,

particularly through intelligent assistants that offer a knowledge-based support

to software process’ activities. The context of the present work is a project for

an intelligent assistant that implements a linguistic technique with the purpose

of extracting object-oriented elements from requirement specifications in

natural language through two main functionalities: the syntactic and semantic

analyses. The syntactic analysis has the purpose of extracting the syntactic

constituents from a sentence; and the semantic analysis has the goal of

extracting the meaning from a set of sentences, i.e., a text. This paper focuses

on the syntactic analysis functionality and applies the UML to its core as a

semantic network for knowledge representation, based on the premise that the

UML is de facto a standard general modeling language for software

development.

1 Introduction

In the software engineering area, object-oriented technology use has increased to the
point of becoming a currently dominant technology in software development [1]. In
spite of the advantages that object-oriented technology can provide in the software
development community, the fundamental problems associated with the

John Debenham
237

2 Alberto Tavares da Silva1, Luis Alfredo V. Carvalho2

identification tasks of the object-oriented elements, i.e., classes, attributes,
relationship and multiplicities, remain; these tasks are easily handled manually and
guided by heuristics that the analyst acquires through experience, whose results are
posteriorly transferred to a CASE tool characterizing an automation gap between
natural language requirement specifications and the respective conceptual modeling
[2]. The automatic support to requirement analysis processes can better reflect the
problem solve behavior of experienced analysts [3].

The need for improving software processes approximated the software engineering
and artificial intelligence areas. A growing number of researches have used artificial
intelligence techniques as a support to software development processes, particularly
through intelligent assistants that offer a knowledge-based support to software
process’ activities [4].

The context of the present work is a project for an intelligent assistant that
implements a linguistic technique with the purpose of extracting object-oriented
elements from requirement specifications in natural language, enabling the
generation of a conceptual model based on the UML class diagram notation. The
referred approach includes three main linguistic requirements: a grammar, a
knowledge representation structure and a knowledge representation language. The
linguistic technique for the proposed intelligent assistant adopts, from computational
linguistics (which automatically analyses natural language in terms of software
programs called parsers), two main functionalities: the syntactic and the semantic
analyses [5]. The syntactic analysis has the purpose of extracting the syntactic
constituents that include the lexicon syntactic structures, like verb phrases; and the
grammatical categories, like nouns. The semantic analysis has the goal of extracting
the meaning from a text. Fig. 1 illustrates a general schema of the problem solution
for the referred assistant.

Syntactic
Analysis

Semantic
Analysis

Requirements in
natural language

OO
elements

Syntactic
constituents

Fig. 1. The problem solution in a pipeline style.

This paper focuses on the syntactic analysis functionality and applies the UML to
its core as a semantic network for knowledge representation based on the premise
that the UML is de facto a standard general modeling language for software
development [1]. Based on the referred structure, a knowledge base (KB) can be
generated, enabling the syntactic analysis. The proposed semantic network realizes
two more logical representations for the intelligent assistant: the static structure and
the database conceptual model.

The present article is structured in the following way: the second section presents
the three linguistic requirements for the proposed syntactic analyzer; the third section
presents the proposed UML semantic network with a case study; and the fourth
section presents the conclusions.

John Debenham
238

 A Knowledge Representation Semantic Network for a Natural Language 3
Syntactic Analyzer Based on the UML

2 Linguistic Requirements

2.1 Grammar

There are three basic approaches to a grammar: the traditional, the phrase structure
and the transformational. The traditional grammar denominates as subject and
predicate the essential parts of any construction whose core is the verb. The phrase
structure grammar includes the syntactic description based on the identification of
all kinds of syntactic constituents and the formulation of rules that order the words
inside a sentence. The transformational grammar has the transformational rules as
its basis, making it possible to convert the deep structures, identified in the
constituent grammar analysis, into surface structures that correspond to the real form
of the enunciation, i.e., the kernel sentence [6-8].

This work adopts the phrase structure grammar because it allows the
representation of the knowledge to be modeled by the proposed UML semantic
network as well as the extraction of the syntactic constituents from the sentences.
The cited grammar permits to specify a language with an infinite number of
sentences as the natural language, being well-founded on a formalism based on
production with four components [5, 9]:

T – terminal vocabulary: language words and symbols being defined;
N – non-terminal vocabulary: symbols used to specify the grammar;
P – set of production;
S – start symbol.

2.2 Knowledge Representation Language

The language enables the formulation of knowledge through symbolic
representations that will capacitate a system to reason [10]. First-order logic (FOL) is
the most widely used, studied and implemented version of logic [11]. It is important
to note, from [10], that whatever other features a knowledge representation language
may have ought to comprise a well-defined notion of entailment because the so-
called job reasoning here means to compute the entailments of a KB.

Many modern logicians limit the expressive power of FOL to a more easily
computable subset, like Horn Clauses [10, 11]. In Horn clause representation, a KB
can often be separated in two types of clauses: facts and rules. The facts are used to
determine the basic truth from a domain, whereas the rules are used to understand the
vocabulary and express new relationships. The propositions considered as true
arguments are denominated hypotheses or axioms, and the propositions that search
the logical consequences from the reported axioms are denominated theorems. Based
on the abovementioned concepts, there appears the activity denominated a theorem
proof, whose objective is to derive the logical consequences from the given
propositions [12, 13]. The logical reasoning, or logical inference, involves the logical
consequence concept. Logic is the inference science which is based on two basic
hypotheses: in a correct inference the premises must be true and the inferred
conclusion must have a logical relation with the premises in a way that guarantees

John Debenham
239

4 Alberto Tavares da Silva1, Luis Alfredo V. Carvalho2

the transference of the truth contained in these premises to the conclusion; the
relation between the premises and conclusion, which guarantees the transference of
the truth, is a formal relation denominated logical consequence or logical entailment,
which can be analyzed as a relation between logical forms [14]. The Resolution
Procedure permits to automate the deductive reasoning in a FOL knowledge base, in
a complete and consistent way, with the objective of determining whether a sentence
α, or a formula, is true or not in a KB, i.e., if KB╞ α (whether α is a logical
consequence of KB). The resolution procedure is more manageable when applied to
a Horn clause KB [10], being called a SLD resolution (Selected literals, Linear
pattern, over Definite clause).

There are two languages that allow a high level symbol manipulation in NLP: Lisp
and Prolog. This work emphasizes Prolog, which syntax is in FOL logic with clauses
written in Horn clause [10-12, 15]. Prolog clauses include facts and rules that are
accepted as a set of axioms and the user’s question as the presumed theorem. The
Prolog inference mechanism tries to prove the theorem, as it is a theorem prover
based on the SLD resolution procedure [12, 13]. Prolog is also a suitable language to
implement the phrase structure grammar [12, 13, 16]. A large number of Prolog
implementations provide a notational extension called Definite Clause Grammar
(DCG), that facilitates the formal grammars’ implementation in Prolog and it is
directly executed as a syntactic analyzer, which enables sentence decomposition in
its constituents. DCG allows implementing the context dependence, where a sentence
depends on the context where it happens, like a concordant number [13].

Based on the abovementioned considerations, this work adopts the Horn clause in
DCG notation as the knowledge representation language, based on the premise that
DCG was developed as a linguistic modeling tool that permits the depiction of any
sentential structure that can be represented by a phrase structure grammar and, also,
that has a well-defined notion of entailment based on an SLD resolution procedure.

2.3 Knowledge Representation Structure

Semantic network is a structure for representing knowledge as a pattern of
interconnected nodes and arcs, in a way that the nodes represent concepts of entities,
attributes, events and states; and the arcs represent the connections among the
concepts [17]. Stuart Shapiro, who implemented the first semantic network with
integral support for FOL, believes that a network structure can actually support
important types of “subconscious” reasoning that are not directly representable in a
linear logical form [17]. Shastri affirms that, in a general way, it is possible to
translate a semantic network into a non-graphic language and vice versa [18]. Russel
and Norvig [15] consider the semantic network a system specially projected to
organize and to reason about/upon categories, offering graphic help to visualize a
KB, being also a logical form. To Sowa [19], the semantic network is a declarative
graphic depiction which can be used to represent knowledge as an automated
reasoning support for it.

Sowa [19] classifies UML diagrams as a semantic network and justifies it by
saying that central to the UML exists a network definition of object types and
another one like a relational graph that permits the representation of metalevel

John Debenham
240

 A Knowledge Representation Semantic Network for a Natural Language 5
Syntactic Analyzer Based on the UML

information. The UML semantic understanding demands to comprehend the UML
specification through a four-layer metamodel hierarchy [1]. The meta-metamodeling
layer, called M3 in Fig. 2, defines the metamodeling specification language. The
metamodeling layer, called M2, defines the model specification language as the
UML. The model layer, called M1, has the primary responsibility of describing
semantic domains, i.e., it allows the generation of user models as UML metamodel
instances. The lowest layer, called M0, includes run-time instances of the model
elements. The UML semantic refers to the run-time interpretation from the generated
models [20].

Class
Class

Attribute

aVideo

Video

+title: String

<<instanceOff>><<instanceOff>>

<<instanceOff>>

M3
Meta-metamodel

M2
Metamodel

UML

M1
User model

M0
Run-time instances

<<instanceOff>>

Fig. 2. The UML layer hierarchy

The present work adopts the UML class diagram notation, from the metamodel
layer in Fig. 2, as the knowledge representation structure, i.e., the semantic network.
The justification considers that a UML class diagram model, in the user model layer
of Fig. 2, is a static structure composed by nodes and arcs interconnected, where the
nodes represent classes and the arcs, associations [17]. The referred model is a
system projected to organize and to reason with object instances, e.g., from UML
run-time instance layers, objects representing axioms can be instantiated and asserted
in a KB in accordance to the adopted knowledge representation language syntax, i.e.,
a Horn clause in DCG notation. The Prolog inference engine enables the reasoning
through a logical consequence among the referred axioms.

3 Semantic Network for the Syntactic Analyzer

3.1 Knowledge Representation Structure

The linguistic requirements for the proposed syntactic analyzer include: the phrase
structure grammar as the grammar, the Horn clause in DCG notation as the
knowledge representation language and the UML class diagram as the knowledge
representation structure, being this last requirement the core of the present work.

Two domains are defined based on a general problem-solution vision: real world
aspects and symbolic representations, as illustrated in Fig. 3. Both domains were
defined based on three representation concepts. The first defines representation as a
relationship between two domains, where the first is meant to stand for or take the
place of the second [10]. The second defines representation as the correspondence

John Debenham
241

6 Alberto Tavares da Silva1, Luis Alfredo V. Carvalho2

between the real world and the symbolic representation [15]. In the third one, the
symbols serve as surrogates for external things [11].

Phrase

Structure

Grammar

Syntactic

Constituents

PROLOG

AnswerSymbolic

Representation

Real
World

Phrase

Structure

Grammar
in

DCG

Syntactic
Analysis

Syntactic
Analysis

Sentence

Prolog

Question

semantics

?

?

Fig. 3. Space solution domains

Fig. 3 permits a syntactic analysis process correspondence in both domains. In
the real word, a natural language sentence is grammatically evaluated by a phrase
structured grammar that permits to associate the grammar with its constituents’
analysis; the results are the syntactic constituents. In the symbolic representation
world, the sentence corresponds to a question in Prolog notation, or a theorem to be
proved by the Prolog theorem prover; the sentence is processed by the KB inference
engine, which axioms implement the phrase structure grammar from the respective
real world in DCG notation; the result is a Prolog clause as the answer to the goal.
There is a semantic relationship between both domains as illustrated in Fig. 3.

-clause

-type

Production

-lexicon
-number

Terminal

-name
-inflexion

GrammaticalCategory

-name

SyntacticStructure

-relation
-type

-level

NonTerminal
compound

0..*

member
0..1

code-
description-
dateCreation-
idiom-
file

KnowledgeBase

KB
1..*

member
1..* classified

1..*

classify
0..1

classify

1..1

classified

1..*

plural

1..1

singular

1..1

rule

1..*

member

1 ..*

fact1..*

member

1..*

-alias
-description

Argument member

1..*

compound
1

..*

represent0..

2

identify
0..1

Fig. 4. Semantic network for the syntactic analyzer

John Debenham
242

 A Knowledge Representation Semantic Network for a Natural Language 7
Syntactic Analyzer Based on the UML

Based on the premise that the knowledge kernel of the syntactic analyzer is the

grammar, Fig. 4 illustrates a knowledge representation structure of a phrase structure
grammar. The proposed semantic network works like a bridge between the other two
linguistic requirements, i.e., the phrase structure grammar as the grammar and the
Horn clause in DCG notation as the knowledge representation language. The
knowledge represented by the referred network is the phrase structure grammar and
the knowledge generated is a set of axioms from the cited grammar represented
symbolically through the Horn clause. This confirms Shastri’s affirmation that it is
possible to translate a semantic network into a non-graphic language [18].

Based on the premise that the job of reasoning is to compute the entailments of a
KB [10], the Horn Clause knowledge representation language adopted has a well
defined notion of logical entailment. The reasoning occurs through the theorem
prover inference mechanism, i.e., Prolog. The reasoning in the proposed syntactic
analyzer includes examining whether a sentence has the grammatical sequence in
accordance to the phrase structure grammar implemented and, based on the correct
analysis, generating the syntactic constituents.

3.2 Case Study

This case study adapts a short example implemented in [13] and illustrates a
production instantiation from the proposed UML semantic network, i.e., it shows the
composition of an axiom enabling its own assertion in a KB. The following grammar
is based on the phrase structure grammar, the knowledge language is Horn clause in
DCG notation, implementing the context dependence based on a concordant number
[13]:

T: { the, hates, hate, cat, mouse, cats, scares }.
N: { noun_phrase, verb_phrase, determiner, noun, verb,NP, VP, Verb, Det,

Noun, Number, Number1}.
P: { (sentence, (Number,sentence(NP, VP)) --> noun_phrase(Number, NP),

verb_phrase(Number, VP).,
verb_phrase(Number, verb_phrase(Verb, NP)) --> verb(Number1,Verb),
noun_phrase(Number, NP).,
noun_phrase(Number, noun_phrase(Det, Noun)) --> determiner(Det),
noun(Number,Noun).,
determiner(determiner(the)) --> [the].,
verb(singular,verb(hates)) --> [hates].,
verb(plural,verb(hate)) --> [hate].,
noun(singular,noun(cat)) --> [cat].,
noun(singular,noun(mouse)) --> [mouse].,
noun(plural,noun(cats)) --> [cats].,
verb --> [scares].,
verb --> [hates]. }.

S: { sentence }
The non-terminal symbols (N) represent the grammar and include the

grammatical category symbols, the syntactic structure symbols and the argument
symbols. The NonTerminal class enables the generation of the relations based on the

John Debenham
243

8 Alberto Tavares da Silva1, Luis Alfredo V. Carvalho2

referred symbols; these relations are, incidentally, the ones that compose the
productions. As an example, the following relations compose the above second
production:

− verb_phrase(Number, verb_phrase(Verb, NP)).
− verb_phrase(Verb, NP).
− verb(Number1,Verb).
− noun_phrase(Number, NP).

Fig. 5 illustrates a run-time interpretation, i.e., layer M0 in Fig.2, which
corresponds to an instantiation of the object oProduction from the Production class,
which clause attribute has the following state: “verb_phrase(Number,
verb_phrase(Verb, NP)) --> verb(Number1, Verb), noun_phrase(Number, NP)”. The
object oProduction is composed by three instantiations from the NonTerminal class.

-clause: verb_phrase(Number, verb_phrase(Verb, NP)) --> verb(Number1,Verb), noun_phrase(Number, NP).

:oProduction

-relation: verb_phrase(Number, verb_phrase(Verb, NP)).

:oNonTerminal

-relation: verb(Number1,Verb).

:oNonTerminal

-relation: noun_phrase(Number, NP).

:oNonTerminal

Fig. 5. A run-time interpretation for a production

Fig. 6 shows the instantiation of the oNonTerminal object, also in layer M0 in
Fig. 2, whose relation attribute has the following state: “noun_phrase(Number, NP)”.
The referred object composition depends on other three object instantiations, i.e., one
object from the SyntaticStructure class and two objects from the Argument class.

-relation: noun_phrase(Number, NP).

:oNonTerminal

-alias: Number

:oArgument

-name: verb_phrase

:oSyntacticStructure

-alias: NP

:oArgument

Fig. 6. A run-time interpretation for a relation

As abovementioned, the purpose of the Syntactic Analyzer is extracting the
syntactic constituents from a sentence. The prototype, illustrated in Fig. 7,
instantiates all the productions of the present case study from the proposed UML
semantic network, permitting to extract the syntactic constituents, e.g., from the

John Debenham
244

 A Knowledge Representation Semantic Network for a Natural Language 9
Syntactic Analyzer Based on the UML

sentence “the mouse hates the cat”, the word “mouse” belongs to the grammatical
category “noun” and is inside the syntactic structure “noun phrase”.

Fig. 7. Syntactic analyzer output

4 Conclusion

The linguistic requirements for the proposed syntactic analyzer include: the phrase
structure grammar as the grammar, the Horn clause in DCG notation as the
knowledge representation language and the UML class diagram as the knowledge
representation structure, i.e., the semantic network, being this last requirement the
core of the present work. The referred semantic network works like a bridge between
the other two linguistic requirements, i.e., the knowledge represented by the semantic
network is the phrase structure grammar and the knowledge generated by the same
network is a set of axioms from the cited grammar, represented symbolically through
the Horn clause. This confirms Shastri’s affirmation that it is possible to translate a
semantic network into a non-graphic language [18].

The semantic network based on the UML class diagram complies with some
important concepts. Firstly, its structure is equivalent to a model made by nodes and
arcs interconnected [17]. Secondly, it is a system projected to organize and to reason
with categories that offer graphical help to visualize the KB, being a kind of logic
[15]. Moreover, it is a surrogate for external things, i.e., the phrase structure
grammar [11]. In addition to that, it gives support to automation reasoning by means
of the theorem prover inference mechanism proposed, which includes examining
whether a sentence has the grammatical sequence in accordance to the phrase
structure grammar implemented and, based on the correct analysis, generating the
syntactic constituents. Finally, inside an object-oriented view from the UML model,
the semantics occurs through the object run-time interpretations, as illustrated in Fig.
5.

Briefly, the meaning of the semantic network proposed is a KB whose axioms
are able of reasoning under a question, i.e., a theorem to be proved.

John Debenham
245

10 Alberto Tavares da Silva1, Luis Alfredo V. Carvalho2

References

1. OMG 2004. Object Management Group: UML 2.0 Infrastructure. OMG
document ptc/04-10-14, http://www.omg.org/cgi-bin/doc?ptc/2004-10-14.

2. Overmyer, S. P.; Lavoie, B.; and Rambow O. 2001. Conceptual Modeling
through Linguistic Analysis Using LIDA. In Proceedings of the 23rd
International Conference on Software Engineering, 0401. Washington, DC:
IEEE Computer Society.

3. Rolland, C., and Proix, C. 1992. A Natural Language Approach for Requirements
Engineering. In Proceeding on Conference Advanced Information Systems
Engineering 257-277. Manchester: Springer-Verlag.

4. R. A. Falbo, Integração de Conhecimento em um Ambiente de Desenvolvimento
de Software. Ph.D. Dissertation, COPPE, UFRJ, 1998.

5. R. Hausser, Foundations of Computational Linguistic (Springer-Verlag, Berlin,
2001).

6. N. Chomsky, Syntactic Structures (Mouton de Gruyter, Berlin, 2002).

7. J. C. Azevedo, Iniciação à Sintaxe do Português (Jorge Zahar Editor, Rio de
Janeiro, 2003).

8. M. C. P. Souza e Silva and I. V. Koch, Lingüística Aplicada ao Português:
Sintaxe (Cortez Editora, São Paulo, 2004).

9. R. Grishman, Computational Linguistics: An Introduction (Cambridge University
Press, 1999).

10. R. Brachman, and H. J. Levesque, Knowledge Representation and Reasoning
(Morgan Kaufmann Publishers, San Francisco, 2004).

11. J. F. Sowa, Knowledge Representation. Logical, Philosophical and
Computational Foundations (Brooks/Cole, California, 2000).

12. W. F. Clocksin and C. S. Mellish, Programming in Logic (Springer-Verlag
Berlin Heidelberg, 2003).

13. I. Bratko, PROLOG – Programming for Artificial Intelligence (Addison-Wesley
Publishers, 2001).

14. H. Kamp, and U. Reyle, From Discourse to Logic. Introduction to
Modeltheoretic Semantics of Natural Language, Formal Logic and Discourse
Representation Theory (Kluwer Academic Publishers, Netherlands, 1993).

15. S. Russel, Stuart and P. Norvig, Inteligência Artificial (Editora Campus, Rio de
Janeiro, 2004).

16. A. Gal, G. Lapalme, P. Saint-Dizier and H. Somers, Prolog for Natural
Language Processing (John Wiley & Sons, 1991).

17. J. F. Sowa, et al., Principles of Semantic Networks. Explorations in the
Representation of Knowledge (Morgan Kaufmann Publishers, 1991), pp 1-3.

18. L. Shastri, Why Semantic Networks? In: Principles of Semantic Networks.
Explorations in the Representation of Knowledge (Morgan Kaufmann Publishers,
1991), pp. 109-136.

19. J. F. Sowa, Semantic Networks (August, 12, 2002);
http://www.jfsowa.com/pubs/semnet.htm.

20. B. V. Selic, On the Semantic Foundations of Standard UML 2.0, LNCS 3185,
(Springer-Verlag Berlin Heidelberg, 2004), pp. 181-199.

John Debenham
246

