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Abstract: This paper attempts to present the new approach to design sufficient number of 

systematic fuzzy linguistics in matrix form and map the Fuzzy Linguistic 

Variable Matrix, which contains linguistic terms, into numeric domain using 

Fuzzy Normal Distribution based on the Parabola-based Membership Function. 

Existing fuzzy set theory is difficult to design the systematic and sufficient 

fuzzy linguistics. Due to this reason, in most practice, giving insufficient fuzzy 

linguistics induces inaccurate calculation whilst giving excessive fuzzy 

linguistics induces the parameter design problems and calculation performance. 

This paper presents Fuzzy Linguistic Variable Matrix and Parabola-based 

Fuzzy Normal Distribution (FND) as preferred framework to address the 

problem.  

Keywords: Fuzzy Set, Fuzzy Logic, Fuzzy Linguistics Variable Matrix, Parabola-based 
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1. INTRODUCTION 

It is well known that most people use Gaussian normal distribution for 

the statistic model and probability model, which is widely used in many 

applications. However, fundamental assumption of Gaussian normal 

distribution is entailed by the axiom of additively where all probabilities that 

satisfy specific properties must add to 1. This forces the conclusion that 
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probability of an event necessarily entails knowledge of remaining events. 

This articulates the challenge of modeling any uncertainty associated with an 

expert judgment.  

For The fuzzy set theory, axiom of additives of where all probabilities 

(memberships) equal to 1 is not applied due to the fact that fuzzy set is the 

study of possibility instead of probability (D. Dubois and H. Prade, 1988). In 

addition, the motivation for selecting fuzzy set theory and fuzzy logic can be 

characterized by the following reasons: 

1. when the measurement of the event is not given(J. C., Helton, 1997);  

2. when that information is nonspecific, ambiguous, or conflicting(J. C. 

Helton, 1997); 

3. when the information can be described by human using adverb or 

adjective; 

For above reasons, it seems that there is a lack of models to handle the 

uncertainty on the basis of the classical probability. With consideration of 

the capability dealing with uncertainty and ambiguity for above reasons, 

fuzzy set theory and fuzzy logic are the preferred choices of the models. As 

the age of the fuzzy set theory is still young (L.A Zadeh, 1965), it has great 

potential to improve its theory. This project introduces the concept of Fuzzy 

Linguistic Variable Matrix (FLVM) and Parabola-based Fuzzy Normal 

Distribution (FND) for dealing with uncertainty and ambiguity. 

Firstly the fundamental concept of fuzzy set theory in explained in 

section 2. Then the definition of FLVM and Parabola-based Membership 

Function (PbMF) are depicted in section 3 and section 4 respectively. The 

concept of FND with Fuzzy Density Function (FDF) is depicted in section 5. 

Finally the conclusion as well as the identification of future study is depicted 

in section 6.  

2. FUNDAMENTAL CONCEPT 

Fuzzy sets were introduced by Zadeh (1965) was specifically designed to 

mathematically represent uncertainty and vagueness and to provide 

formalized tools for dealing with the imprecision intrinsic to many problems. 

To illustrate the idea how this paper innovatively modifies the existing fuzzy 

set theory, it is necessary to review the fundamental concept of fuzzy set 

theory and fuzzy logic. 

Definition 2.1: Let X be a nonempty set, A fuzzy set α in X is 

characterized by its membership function: [ ]0 1: ,Xαµ → , and ( )xαµ  is 

interpreted as the degree of membership of element x in Set α for each 

x X∈ (L.A Zadeh, 1965). 

Definition 2.2: A linguistic variable is characterized by a quintuple in 

which x is the name of variable; T(x) is the term set of x, that is, the set of 
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names of linguistic values of x with each value being a fuzzy number 

defined on U; G is a syntactic rule for generating the names of values of x; 

and M is a semantic rule for associating with each value its meaning. (L.A 

Zadeh, 1978) 

Most application researches apply triangular membership function. Other 

membership functions widely used include Cauchy, Gaussian, sigmoidal, 

and trapezoidal membership functions. However, the designs or/and the 

calculations of the membership functions are relatively complex or 

inefficient. To simplify them, this paper proposes FLVM and PbMF as the 

preferred alternatives for the fuzzy applications. 

3. FUZZY LINGUISTIC VARIABLE MATRIX 

This section introduces the approach to design fuzzy linguistic terms 

using FLVM. The human intelligence possesses the superior capability of 

fuzzy classification, fuzzy judgment, and fuzzy reasoning. If there is suitable 

linguistic schema, there will be the framework making the classification, 

judgment and reasoning more objective. 

Definition 3.1 (Fuzzy syntactic representation): The syntactic pattern of 

a fuzzy linguistic variable set,α, consists of three syntactic components: a 

direction linguistic variable set, a hedge linguistic variable set, and an atomic 

linguistic variable set, denoted as d h aV ,V ,V  respectively. In syntactic terms, 

the expression is h d a=(V +V )+Vα , where ( hV + dV ) forms syntactic terms 

set as a directional hedge linguistic set denoted as hdV .  

Let X be the universal set, hdV  gives the column vector, aV  gives the 

row vector, and ijα  is the fuzzy linguistic variable (set) which its linguistic 

syntactic representation is determined by its row and column position. 
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Definition 3.2 (Fuzzy semantic constraint): In the universal set mnX , 

1 1 2( ) /

j n

i m

ij
=

≤ ≤ −

∀ α = Φ  and 
1

1 2( ) /

j

m i m

ij
=

+ ≤ ≤

∀ α = Φ  where Φ  is null set and is 

regarded as 0. 
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Example 1 

Provided that 

{ }

{ }
d

h

a

V = above, below

V = much,quite,little,absolutely

V ={poor,average,excellent}

 

hV  and dV  are used together as hdV  to modify the aV . Therefore,  

hd

much above, quite above, little above, absolutely, 
V =

little below, quite below, much below

 
 
 

 

Assign hdV  as row matrix and aV  as column matrix, then get table 1. 

Table 1: Matrix of Fuzzy Linguistic terms for a variable   Poor Average Excellent 

Much Above much above poor much above average - 

Quite Above quite above poor quite above average - 

Little Above little above poor little above average - 

Absolutely absolutely poor absolutely average absolutely excellent 

Little Below - little below average little below excellent 

Quite Below - quite below average quite below excellent 

Much Below - much below average much below excellent 

Let X be the universal set, its fuzzy subsets are represented in a matrix 

form on the basis of table 1 such that 

11 12 13

21 22 23

31 32 33

41 42 43

51 52 53

61 62 63

71 72 73

0

0

0

0

0

0

MA P MA A

QA P QA A

LA P LA A

X A P A A A E

LB A LB E

QB A QB E

MB A MB E

α α α − −

α α α − −

α α α − −

α α α= = − − −

α α α − −

α α α − −

α α α − −
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4. PARABOLA-BASED MEMBERSHIP FUNCTION 

“A correct and good membership function is determined by the user 

based on his scientific knowledge, working experience, and actual need for 

the particular application in question. This selection is more or less 

subjective, but the situation is just like in the classical probability theory and 

statistics where if one says 'we assume that the noise is Gaussian and while,’ 

what he uses to start with all the rigorous mathematics is a subjective 

hypothesis that may not be very true, simply because the noise in question 

may not be exactly Gaussian and may not be perfectly white.” (Chen 

Guanrong and Trung Tat Pham, 2001). This paper assumes the membership 

function shape is parabolic, and the parabolic shape can be modified with g-

level method. 

Definition 4.1 (symmetric fuzzy set, 
nαγ  and 

n
dα ): A symmetric fuzzy 

set is determined by its membership function where there is only one 

element (or singleton), 
nαγ , with membership = 1 and the two end points 

with equal distance,
n

dα , to 
nαγ .  

Definition 4.2 (PMF): Let X be the universal set, and x is any element in 

the set X. α  is the fuzzy subset. There are n subsets of α , which is a 

nonempty set. For each subset nα , n Xα ⊆  where finite n = {1, 2, 3…i}. 

In other words, nα  is the subset with index n. Therefore, the Parabolic 

Membership Function (PMF) of nα , ]1,0[: →nn
y αα , is defined as: 

 
nnnn

cxbxaxy αααα ++= 2
)( , where nx α∈  

(1) 

 
Theorem 1 (PMF): On the basis of the definition 4.1 and 4.2, the 

parabolic membership function can be expressed as 

2

22
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The membership function is used for the atomic linguistic variable. 

Theorem 2 (fuzzy set overlap): The fuzzy set overlap, δ , is defined as 

the cross point at a degree of the membership of two adjacent sets 
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( 0 1≤ δ < ).To obtain the cross point in the parabolic membership function , 

n
dα is defined as: 

1

2 1

n n

n
d +α α

α

γ − γ
=

− δ
                                                (3) 

Definition 4.3 (g-level, PbMF): The shape of the PMF can be tuned as 

PbMF by giving the power of 
n

gα , where 4 0g≥ > suggested. The 

assignment of 
n

gα  is called g-level. The new membership function of PbMF, 

( )
n

xαµ , is defined as:  

                                         ( ) ( ) n

n n

g
x y x

α

α α
 µ =
 

                          (4) 

The PbMF is used for the atomic linguistic set. 
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Figure 1: Fuzzy Normal Distribution 

5. FUZZY NORMAL DISTRIBUTION 

Fuzzy Normal Distribution (FND) is characterized by PbMF. The 

objective of FND is to find a suitable fuzzy number represented for a 
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linguistic term. Figure 1 exhibits the graphical overview of FND on the basis 

of the PbMF, membership fuzziness, fuzzy interval, and V-partition, which 

are further defined as follows. 

Definition 5.1 ( a[V ] j , extension of definition 3.1): an atomic set  

a[V ] j  where1 j n≤ ≤ , is the super fuzzy set that contains any linguistic 

terms (subsets) with semantic meaning and syntactic symbol of the atomic 

variable itself. For all j, a

1

[V ]ij j j

i m≤ ≤

∀α ∈ = α , i.e. { }1n n mnα = α α� . 

 Definition 5.2 (L, U): the lower boundary (L) and upper boundary (U) 

are designed by the distribution (ratio) of hedge linguistics, which is 

characterized by a distance function (which is used to find the crisp 

boundary, L` and U`) and the membership overlap factor (0< λ <1) (which is 

used for make the crisp boundary fuzzy). The distance function is defined by 

[ ]( )
[ ]( )

[ ]( )
h j

h j
h

M V
dis V

M V
=
∑

 where { }1 2, , ,j ∈ η� , η  is the maximum 

number of hV , and M() is the measure function determined by the expert 

judgment.  

Definition 5.3 (membership fuzziness): The membership [0, 1] can be 

fuzzified by directional hedge linguistic set dhV . The fuzzy interval of the 

membership is determined by L and U. Adding the membership overlap 

factor (MOF), λ ,  makes boundary in fuzziness. Therefore, we have 
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Example 2: 
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From example 1, we get { }hV = much,quite,little,absolutely , 

“ absolutely ” can be ignored as it makes the atomic variable into a singleton 

after combination. Therefore, { }hV = little,quite,much . For the 

measurement of hV , we assume we have M(little) =1, M(quite)=2, 

M(much)=3, then 

 [ ]h
1 1 1

dis(V )= dis(little)  dis(quite)  dis(much)
6 3 2

 
=  
 

 ,  

The crisp boundary is: 

[ ]

[ ]

[ ]
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For overlap factor ( λ ) = 0.1, we have the membership fuzziness interval: 

( )
( )( )

1

1 1

0 8333 1 0 75 1

0 5 0 8333 0 45 0 9167
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'

min ' ,

' '

. .

. . . .
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L L

U U

L U L U
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   →
   
   
   

 

 

Definition 5.4 ( dV , Directional Hedge): Iff ( ) 0'
n

y xα > , then dV  is 

negatively directional in semantic meaning. Iff ( ) 0'
n

y xα = , dV  is static.  

Iff ( ) 0'
n

y xα < , dV  is positively directional.  

Definition 5.5 (L and U in dhV ): Elements of L and U in the positive 

direction ( dV +
) of hV , denoted as hV +

, are “self-inverse-reflect” to ones 

in negative direction ( dV −
) of hV , denoted as hV −

.  

 

Theorem 3 (V-Partition by membership fuzziness): If dV  is negatively 

directional in semantic meaning, then the corresponding fuzzy number x in 

the fuzzy boundary (L, U) is ( )
1

1 n
n n

gx d α
α α= γ − − µ ; If dV  is 

positively directional, then ( )
1

1 n
n n

gx d α
α α= γ + − µ . If dV  is static, 
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then
n

x α= γ . The fuzzy set is vertically partitioned (V-Partition) by the 

fuzzy boundaries, which is illustrated by example 3.  

From theorem 3, the fuzzy interval is assigned for each linguistic variable 

on the basis of membership fuzziness in the atomic fuzzy set. Definition 5.6 

is to find the crisp value or fuzzy number to represent each linguistic 

variable.  

Definition 5.6 (cen( ijα )): The crisp value, ijζ , of a linguistic variable 

ijα  is obtained by the center function. 

 ( )
( ) ( )

2

max minij ij
ij ijcen

α + α
ζ = α =  

(6) 

 

Example 3: 
Continue to Example 2, we get Inv(little)=[0.75 1]; Inv(quite)=[0.45 

0.9167];Inv(Much)=[0 0.55].Assume the continuous universal set is 

X=[1,15], the fuzzy set “average” is determined by a PMF with
nαγ =8, d=7. 

Find the V-partitions of PMF. 

 

By applying theorem 3, we have: 

negative direction (with the linguistic word “below”): 

( )

( )
2 2

2

1

1

0 75 1 4 50 8 00

0 45 0 9167 2 81 5 98

0 0 55 1 00 3 30

. . .

. . . .

. . .

l

u n

L U

x d y l

x d y u

L U X X

LB A

QB A

MB A

α α

α α

−

=γ − −

=γ − −

   
   −    →
   −
   

−    

 

static: As A-A is the static point or singleton, A= 8 

 

positive direction (with the linguistic word “above”): 

( )

( )
2 2

2 2

1

1

1 0 75 8 00 11 50

0 9167 0 45 10 02 13 19

0 55 0 12 70 15 00

. . .

. . . .

. . .

l

u

L U

x d y l

x d y u

L U X X
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α α

α α

+
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   −    →
   −
   

−    

 



10 K.K.F. Yuen, H.C.W. Lau 

 

Therefore, [ ]

h

0
8 00 8 00dh h

h

12 70 15 00

10 02 13 19

8 00 11 50V

V V

V 4 50 8 00

2 81 5 98

1 00 3 30

'
. .

. .

. .

. .

. .

. .

. .

+

+

− −

  
  
  
       
  = =
  
               

 

Find the fuzzy number to represent each linguistic term using cen() 

method, then we have table 2. 

 

Table 2: Fuzzy numbers for the linguistic terms     L=min U=max cen() 

much above average MA-A 12.70  15.00  13.85 

quite above average QB-A 10.02  13.19  11.61 

little above average LA-A 8.00  11.50  9.75 

absolutely average A-A 8.00  8.00  8.00 

little below average LB-A 4.50  8.00  6.25 

quite below average QB-A 2.81  5.98  4.40 

much below average MB-A 1.00  3.30  2.15 

6. DISCUSSION AND CONCLUSION 

This paper introduces the new concept of fuzzy mathematical models 

describing Fuzzy Linguistic Variable Matrix (FLVM) which is mapped into 

numeric domain by Fuzzy Normal Distribution (FND) characterized by the 

Parabola-based Membership Functions (PbMF) and V-partition method of 

membership fuzziness. Fuzzy Normal Distribution applies the fundamental 

assumption of the fuzzy set theory on the basis of the possibility. Similar to 

the assumption of Gaussian distribution, this study assumes the fuzzy 

distribution of atomic linguistic variable is on the basis of Parabola-based 

Membership Function (PbMF), which is the Parabolic Membership Function 

(PMF) with g-level tuning.  

This model can be the preferred framework for modeling human 

subjective judgment which can be applied in the domain of qualitative 
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evaluation, especially transformation the solution of the linguistics 

evaluation problem into the solution of an arithmetic problem.  

Limitation of this approach is that the tuning method is not well defined. 

The future of the study will discuss the method of “fuzzy tuning for FND” 

using numerical analysis, which means the best practices to find out the 

suitable FLVM, overlap, and g-level to model the input FLVM. 

Another limitation is that the new method does not merge the existing 

well known fuzzy logic systems. The further study discusses the fusion of 

the new method and existing fuzzy set theory. The main reasons include the 

definitions of FLVM and FND are not comparable with existing definitions 

of fuzzy linguistic variable, atomic variable and linguistic hedge variable. 

ACKNOWLEDGEMENT 

Research was supported in part through a grant of an Innovation 

Technology Fund (UIT/74) from the Innovation and Technology 

Commission HKSAR. 

REFERENCE 

1. Chen Guanrong, and Trung Tat Pham, “Introduction to fuzzy sets, fuzzy 

logic, and fuzzy control systems”, page 6, CRC Press, 2001 

2. D. Dubois and H. Prade, “Possibility Theory”, Plenum Press, New York, 

1988 

3. J. C Helton, “Uncertainty and Sensitivity Analysis in the Presence of 

Stochastic and Subjective Uncertainty.” Journal of Statistical 

Computation and Simulation 57: 3-76 1997. 

4. L.A. Zadeh, “Fuzzy Sets”, Information and Control 8(3): 338-353 1965 

5. L.A. Zadeh, “The concept of a linguistic variable and its application to 

approximate reasoning – I”. Inf. Sci. 8(3): 199-249 1975 


