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Abstract In this paper, we propose to take structural context of imageregions into account
for region classification through a structural neural network. Firstly, a tree struc-
ture of each region is formed to characterize the relationship among the region
and its neighbours. Such structures integrate both visual attributes of regions and
their structural contexts. Then the structural representations are learned through
a Back-propagation Through Structure (BPTS) training algorithm. Comprehen-
sive experimental results demonstrate that our proposed approach has a great
potential in region classification.
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1. Introduction

While an ever increasing number of digital images play a moreand more
important role in improving the quality of daily life, usersare also confronted
with the difficulties in accessing specific images. Content-based image re-
trieval (CBIR) has been proposed and investigated to allow users to access
images in terms of their true content, due to the great demandposed by the
drastic growth of digital visual content (Smeulders et al.,2000). However, it
is also realized that the semantic gap between low level visual features (e.g.
color, shape, and texture) and semantic contents (e.g. objects and events) is
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the biggest obstacle of the successful applications of image access (e.g. re-
trieval, filtering, and summarization) in terms of semanticcontents. Automatic
or semi-automatic image content understanding is a key to build intelligent
image management systems. Image regions, which are meaningful primitives
of images, contribute to semantic content of images significantly. In addi-
tion, region semantics can be utilized to derive high level semantic concepts.
Therefore, it will be ideal to classify individual region into one of the semantic
classes.

Various Pattern recognition approaches have been widely employed for re-
gion classification. In general, there are two key issues, feature extraction and
classifier, involved in region classification. For example,based on visual fea-
tures (e.g. color, texture, shape, size, and centroid), Campbell et al. proposed
to classify image regions into semantic classes (e.g. sky, vegetation, and road)
by using a three-layer neural network (Campbell et al., 1997). However, the
performance of traditional region classification has been seriously limited due
to segmentation noise and ambiguity of visual features (e.g. cloud vs. snow).
On the other hand, contextual information of regions can be utilized to further
improve the performance of region classification, since it is certain that the
presence of some concepts or contents can provide importantinformation for
identifying other concepts or contents.

There are generally two types of contexts, conceptual context (i.e. global
context) and content context, in region classification. Conceptual context is
useful for modeling semantics at image level and can be utilized to increase the
confidence of assigning certain labels to certain regions aswell as the confi-
dence of excluding some labels in terms of a given image theme. For example,
it is much less possible to assigngrassto a green region if an image has been
identified asindoors. Conceptual context is generally obtained through image
classification. For example, Vailayaet al. proposed a Bayesian classification
approach to classify vacation images hierarchically (e.g.City vs. Landscape,
Mountain vs. Coast)(Vailaya et al., 2001). Recently, conceptual context can
also be derived through a set of words, since more and more images are ac-
companied with abundant annotations (e.g. web images). Therefore, many
approaches consider extracting conceptual context as a problem of associating
a bag of wordswith images by exploiting the co-occurrence of two modalities,
visual attributes and labels, of images. The co-occurrenceof those two modal-
ities was first investigated by Moriet al. (Mori et al., 1999). It is assumed
that a region corresponds to a label if they co-occur in images frequently. In
(Barnard et al., 2003a), a translation model is proposed to translate a vocabu-
lary of blobs to a vocabulary of terms based on the joint probability of images
and terms, and a probabilistic model was established to classify each region
into one of the terms. However, such classification is only a by-product of
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Figure 1. An illustration of an adjacency structure of region 1.

the model, since not all the textual labels correspond to a particular region or
object.

Content context, which represents the context of individual regions, can
also be employed to enhance region classification and even identify objects.
In (Singhal et al., 2003), content context was represented as the spatial rela-
tionship (e.g. above and below) between regions. However, structural context
based on spatial adjacency, which is seldom investigated, is also important in
region annotation. For example, a white region can be labelled ascloudwith
higher confidence if it is surrounded byskyregions. In this paper, we propose
to characterize such structural context existing among regions by forming an
adjacency graph. In such a graph, each node representing a region receive two
inputs, its visual features and structural context (i.e. connections among its
neighbours). Therefore, both attributes and context are integrated seamlessly.
As shown in our previous study (Wang et al., 2002)(Wang et al., 2004), this
graph representation is also effective and efficient in characterizing image con-
tent with only a small number of features.

Neural networks have been proposed to process structural data and the back-
propagation through structure (BPTS) algorithm can be employed to learn the
tree-structure representation(Frasconi et al., 1998). Such an algorithm has been
successfully utilized for scene classification (Wang et al., 2004). Therefore, in
this paper, we employ such learning algorithm to perform thetask of region
classification.

2. Representation of Structural Context

It is noticed that human beings perceive the real world in a structure way so
that both entities and their relationship can contribute totheir content represen-
tation. For example, being told that a region is surrounded by "sea", we may
think of "beach", island, and "ship". Therefore, the more structural context is
available, the more accurate the classification will be. As aresult, a formal
representation needs to be formed to characterize such structural context for
each region. As shown in Figure1, the neighbour regions of Region 1 form its



4

Figure 2. An illustration of a tree-structure encoding network with asingle hidden layer.

structural context through a graph. Such structure representation can be noted
as a graphG = {V,E}, whereV andE indicate the set of nodes (i.e. regions)
and edges (i.e. structural context among regions), respectively.

To process the graph representation, we need to figure out what structure
information is and how to model it for each region class. In general, any
relationship among regions can be abstracted as structuralinformation, such
as spatial relationship and visual similarity. In (Chang etal., 2004), it was
proposed to explicitly utilize graph matching methods based on the similarity
assigned to each edge and graph isomorphism. As explained inthe next sec-
tion, we employ a structural neural network model to processsuch structural
representation adaptively.

3. Back-propagation Through Structure (BPTS)

Connectionist models have been successfully employed to solve learning
tasks characterized by relatively poor representations indata structure such
as static pattern or sequence. Most structured informationpresented in real
world, however, can hardly be represented by simple sequences. Although
many early approaches based on syntactic pattern recognition were developed
to learn structured information, devising a proper grammaris often a very dif-
ficult task because domain knowledge is incomplete or insufficient. On the
contrary, the graph representation varies in the size of input units and can or-
ganize data flexibly. An encoding process of a tree structureis shown in Fig-
ure 2. Each node represents a neural network on the right of Figure 2 and all
the nodes share the same set of parameters. Neural networks for processing
data structures have been proposed by Sperduti (Sperduti and Starita, 1997).
It has been shown that they can be used to process data structures using an al-
gorithm namely back-propagation through structure(BPTS). The algorithm ex-
tends the time unfolding carried out by back-propagation through time(BPTT)
in the case of sequences. A general framework of adaptive processing of data
structures was introduced by Tsoi (Tsoi, 1998) and Frasconiet al. (Frasconi
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et al., 1998). Considering a generalized formulation of graph encoding shown
in Figure 2, we have

x = Fn(Aq−1y + Bu) (1)

y = Fp(Cx + Du) (2)

wherex, u andy are respectively then dimensional output vector of then
hidden layer neurons, them dimensional inputs to the neurons, and thep di-
mensional outputs of the neurons.q−1 is merely a notation to indicate that the
input to the node is taken from its children. TheA matrix is defined as follows:

A = [A1A2... Ac] (3)

wherec is the maximal out degree of the graph.Ai, i = 1, 2, ..., c is ann × p

matrix, and is formed from the vectorai
j, j = 1, 2, ..., n. A is ac × (n × p)

matrix. AndB, C, andD are respectively matrices of dimensionsn×m, p×n

andp × m. Fn(.) is ann dimensional vector given as follows:

Fn(α) = [f(α) f(α) ... f(α)]T (4)

wheref(.) is the nonlinear function such as a Sigmoidal function.
Note that we have assumed only one hidden layer in the formulation, be-

cause a single hidden layer with sufficient number of neuronsis a universal
approximator (Scarselli and Tsoi, 1998).

The training process is to estimate the parametersA, B, C andD from a
set of input/output samples by minimizing the cost criterion:

J =
1

2

∑

i=1

NT ||di − yi||
2 (5)

whereyi denotes the output of the root of thei-th sample,di denotes the de-
sired output of thei-th sample, andNT is the number of the samples. The
derivation of the training algorithm minimizing the cost criterion ( 5) will fol-
low a fashion similar to gradient learning by computing the partial derivation
of the costJ with respect toA, B, C andD.

4. Experiments and Discussions

The image database used in our experiments has 304 images taken by our-
selves, half of which is used for training, the other half fortesting. A sample
of each category is shown in Figure 3. All the images are segmented by using
EdgeFlow technique (Ma and Manjunath, 2000) since the segmentation can be
finely tuned by specifying different scalesσ of Gaussian functions. By setting
σ to 4, 3064 training regions and 2091 test regions are obtained. These regions
are manually labelled with a set of terms. The region classeswith less than 20
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Figure 3. Samples of the image database.

instances have been removed. Finally, we identified 13 region classes,audito-
rium, building, field, flower, grass, ground, people, sand, sky, stone, tree, wall,
water. Each region is characterized with 7-dimension features including the
number of colors, percentage of the three most dominant color, average pixel
values, standard deviation of pixel values, and region size.

Neighbour regions are not equally important in modeling spatial context,
which should be taken into account for structure context. For example, sky re-
gion is more informative than building region in classifying a region as moun-
tain. Furthermore, due to the error-prone segmentation, some neighbors are
not true neighbors. In order to select important and representative neighbor
regions, the length of the boundary between a neighbor region and the target
region is considered to investigate the impact of differentneighbor regions. In
our experiments, the topM,M = 0, ...5 regions with the longest boundary
length other than the biggest region size will be studied. While M is set to 0,
the experiment is the baseline.

Three experimental tasks have been conducted to evaluate the performance
of our proposed approach. At first, our approach is benchmarked with neu-
ral network methods by using multi-layer perceptrons. Then, the impacts of
different segmentation and different visual features are investigated.

Performance Against Multi-layer Perceptron

We compare the proposed approach with the classical patternclassifica-
tion approach, multi-layer peceptron (MLP). In order to make the comparison
fair, we also consider neighbor information by concatenating feature vectors of
neighbor regions into a higher dimension feature vector in the MLP method.
That is, the feature vector is in(N + 1)× d-dimension, ifN neighbor regions
are taken into account and each region is represented with ad-dimension fea-
ture vector. In this evaluation, regions are segmented by setting σ to 4 and
represented with 7-dimension features, and neighbor regions are selected in
the descending order of the length of the boundary adjacent to the target re-
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Table 1. Comparison between the proposed approach and the MLP methodon the test set

MLP Approach Proposed Approach
Accuracy (%) #Hidden neurons Accuracy (%) #Hidden neurons

0-neighbor 54.15 15 N/A N/A
1-neighbor 54.53 20 62.36 20
2-neighbor 60.46 20 61.08 10
3-neighbor 61.65 10 60.46 10
4-neighbor 63.25 10 56.08 10
5-neighbor 55.46 15 57.50 15

gion. An MLP with single hidden layer is adopted in this evaluation, since it
can be a universal approximator provided with a sufficient number of hidden
neurons (Scarselli and Tsoi, 1998). In order to tune the performance of the
MLP method, we vary the number of hidden neurons from 5 to 20 and choose
the best performance in each case.

As shown in Table 1, our proposed approach clearly outperforms the MLP
method while not many neighbour regions (e.g. 1 or 2 neighbour regions) are
utilized. In particular, the performance increases 14% while one neighbour re-
gion is utilized. It is also noticed that utilizing more neighbor regions is not
always helpful, because the performance of both our proposed approach and
the MLP method decreases while 5 neighbour regions have beenutilized. For
example, the performance of 5-neighbor (55.46%) is not as good as that of 2-
neighbor (60.46%) for the MLP method. Such experimental results coincide
with our assumption that not all the neighbour regions equally contribute to
the classification task. More neighbour regions may add noise into the train-
ing session and demands higher learning capacity from classifiers. It is no-
ticed that the most significant performance improvement happens while only
one neighbor is taken into account. Therefore, it is essential to identify the
most informative neighbor regions more effectively, otherthan simply using
the boundary length, to further improve the performance.

Table 1 also shows that MLP methods achieve higher accuracy exceptionally
while 4 neighbors are considered. The reason may be that our current database
favors the MLP method for such a particular case. For our proposed approach,
the classifier learns both structural information and region attributes, which
requires more representative training data. Further research on this issue will
be conducted.

Impact of Different Segmentation

Segmentation under different conditions generally introduces variations in
region extraction and spatial context. As shown in Figure 4,images will be
over-segmented at small scales and less over-segmented at great scales. In or-
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(a) (b) (c) (d)

Figure 4. Segmentation samples at different scales. (a) and (b)σ = 4; (c) and (d)σ=12;

Table 2. The number of regions of images segmented at different scales

Training Set Test Set # of Region Classes

σ=4 3064 2901 13
σ=12 1972 1807 13

Table 3. Classification accuracy (%) of different segmentation

1-neighbor 2-neighbor 3-neighbor 4-neighbor 5-neighbor

σ=4 62.36 61.08 60.46 56.08 57.50
σ=12 61.21 61.10 60.43 60.10 58.99

der to evaluate the impact of different segmentation, images are segmented by
settingσ to 4 and 12 since these settings can generate a reasonable number
of homogeneous regions for our image set. The number of training regions,
test regions, and the number of region classes are listed in Table 2 for different
segmentation scales, respectively. Obviously, segmentation at scale 4 gener-
ates more regions than at scale 12. As shown in Table 3, both segmentations
can achieve similar performance. There are also two differences between them.
First, performance of a larger scale (i.e.σ=12) decreases slighly. It may be that
over-segmentation is reduced while segmentation scale increases. Hence, each
segmented region is less homogeneous, which demands efficient content rep-
resentation through visual feature extraction. As a result, we also investigated
the impact of using different visual features. Second, the proposed approach is
more robust at a larger scale. As can bee seen in Table 3, the classification ac-
curacy of the segmentation at scale 12 is more around 60%. It may be that less
over-segmentation introduces less variation for neighborstructures and makes
learning slightly easier. Hence, additional experiments will be conducted to
explore these discoveries.

Impact of Different Features

Besides the 7-dimension features, five more features including averages of
R, G, B components and region centroid(x, y) are used to evaluate the impact
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Table 4. Impact of different feature sets at segmentation scale 4

Dimension 1-neighbor 2-neighbor 3-neighbor 4-neighbor 5-neighbor

7 62.36 61.08 60.46 56.08 57.50
12 75.11 75.35 71.49 73.22 70.15

Table 5. Impact of different feature sets at segmentation scale 12

Dimension 1-neighbor 2-neighbor 3-neighbor 4-neighbor 5-neighbor

7 61.21 61.10 60.43 60.10 58.99
12 73.82 73.60 72.16 71.94 69.29

of different feature sets. As shown in Tables 4 and 5 where thebest perfor-
mance of each case is listed, much better performance has been achieved while
the new 12-dimension features are adopted. Compared with the 7-dimension
features, the 12-dimension features present more helpful information (e.g. re-
gion centroid) and benefit region classification, although both of them are quite
simple. It can be expected that more representative featuresets will further
improve the performance of our proposed approach. As indicated in (Barnard
et al., 2003b), color and texture are the most representative features for scenery
images, we need to include more texture features such as oriented energy co-
efficients in our future study.

5. Conclusion and Future Work

A novel region classification approach is present in this paper. Such an
approach integrates structural context of image regions and the unique and
powerful learning capacity of the BPTS learning algorithm.Comprehensive
experiments have been conducted to evaluate our proposed approach. Exper-
imental results demonstrate that our proposed approach cangain significant
improvement even when only one neighbour region is utilized. In addition,
our proposed approach is robust to the selection of neighbour regions, if suit-
able segmentation can be obtained.

It is also observed that segmentation and visual features doaffect the per-
formance of the proposed approach. For example, more neighbour regions do
not always contribute to better classification accuracy, since structural variation
also increases the requirement of learning capacity. Therefore, it is worthwhile
to investigate how to identify more salient neighbour regions more efficiently
based on large scale image databases. Since segmentation, salient regions, and
visual features are closely related and interact with each other, it is also es-
sential to balance them to achieve optimal classification performance. Another
extension to our current work is to discover the second orderstructure rather
than the adjacency structure exploited here.
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