
A SURVEY OF AUTONOMIC COMPUTING SYSTEMS

Mohammad Reza Nami1, Mohsen Sharifi2
1Faculty of Computer Science, Shahid Beheshti University, The Iran ,2Faculty of Computer
Enginering, Iran University of Science and Technology, The Iran
Phone: +98-21-22403133,Fax: +98-21-22413139,

nami@iau-saveh.ac.ir

, mshar@iust.ac.ir

Abstract The evolution of networks and the Internet, which have presented high scalable
and available services have made environments more complex. The increasing
complexity, cost, and heterogeny in distributed computing systems have mo-
tivated researchers to investigate a new idea to cope with the management of
complexity in IT industry. For this, Autonomic Computing Systems (ACSs)
have been introduced. In this paper, we present a complete survey of ACSs. It
consists of characteristics, their effects on quality factors, architecture of ACS
building blockes, and challenges.

Keywords: Agent, Multi-agent System, Autonomic Computing Systems, Self-managing Sys-
tems.

1. Introduction

In centralized applications, data and programs were kept at one site and
this was a bottleneck in performance and availability of remote information in
desktop computers. Therefore, the concept of distributed systems was emerged.
During the 1990s, distributed databases and client-server packages were used
for information exchange between remote desktop computers. In these years,
Distributed Computing Systems (DCSs) consist of different computers which
were connected to each other and located at geographically remote sites. This
was the starting point for emerging concepts such as Peer, Peer-to-Peer (P2P)
computing [3], Agent [1], and Grid [2]. The evolution of networks and the
Internet, which have presented high scalable and available services have made
environments more complex. This complexity has increased the cost and er-
rors of managing IT infrastructures. The skilled persons who manage these
systems are expensive and can’t manage them in configuration, healing, opti-
mization, protection, and maintenance. Moreover, IT managers look for ways



2

to improve the Return On Investment (ROI) by reducing Total Cost of Own-
ership (TCO), improving Quality of Services (QoSs), and reducing the cost
for managing of IT complexity. A study shows that 25 to 50 percent of IT re-
sources are spent on problem determination and almost half of the total budget
is spent to prevent and recover system from crashes [4]. All these issues have
motivated researchers to investigate a new idea to cope with the management
of complexity in IT industry and self-management systems have been intro-
duced. On March 8, 2001, Paul Horn presented importance of these systems
with introducing ACSs to the National Academy of Engineering at Harvard
University. IBM Vice President of Autonomic Computing Alan Ganek [5] has
written a message and explained the importance of autonomic computing and
the aim of introducing ACSs as "The goal of our autonomic computing ini-
tiative is to help customers build more automated IT infrastructures to reduce
costs, improve up-time, and make the most efficient use of increasingly scarce
support skills." Some benefits of autonomic computing include reduction of
costs and errors, improvement of services, and reduction of complexity.

This paper is organized as follows. Related works are surveyed in section
2. In section 3, we present an overview of ACSs including definitions, bene-
fits, and their characteristics. Section 4 describes Autonomic Elements (AEs)
architecture as building blocks in ACSs. In section 5, some challenges such as
robustness,learning, and relationships among AEs are discussed. Finally, we
present conclusions and further researches.

2. Related Works

On March 8, 2001, Paul Horn presented a link between pervasiveness and
self-regulation in body ’s autonomic nervous system and introduced ACSs to
the National Academy of Engineering at Harvard University. With choosing
the termautonomic, researchers attempted to make autonomic capabilities in
computer systems with the aim of decreasing the cost of developing and man-
aging them. S. White et al in [6], and R. Sterritt and D. Bustard in [7] have
described some general architectures for ACSs and their necessary elements
called autonomic elements. J. A. McCann and M. C. Huebscher in [?] have
proposed some metrics to evaluate ACSs such as adaptability. Some perfor-
mance factors such as security and availability have been discussed by others
[9]. ACS properties have been discussed by many researchers. These prop-
erties include self-optimization [10], self-configuration [1], self-healing [11],
and self-protection [7]. Grand challenges in engineering and scientific have
been discussed in [12]. Different projects and products have been developed
in both by the industry and the academic. M. Salehie and L. Tahvildari have
outlined some of these products in [4]. From another view, we can categorize
researches carried out in this field in two groups as the follows:



Autonomic Computing 3

Group 1: Researches which describe technologies related to autonomic
computing.

Group 2: Researches which attempt to develop autonomic computing
as an unified project.

However, the lake of appropriate tools for managing the complexities in large
scale distributed systems has encouraged researchers to designing and imple-
menting ACSs features.

3. Autonomic Computing: Definitions and characteristics

This section present an overview of autonomic computing systems. The au-
tonomic concept is inspired by the human body ’s autonomic nervous system.
The human body has good mechanisms for repairing physical damages. It is
able to effectively monitor, control, and regulate the human body without ex-
ternal intervention. An autonomic system provides these facilities for a large-
scale complex heterogeneous system. An ACS is a system that manages itself.
According to Paul Horn ’s definition, an ACS is a self-management system
with eight elements. Self-configuration means that An ACS must dynamically
configure and reconfigure itself under changing the conditions. Self-healing
means that An ACS must detect failed components, eliminate it, or replace it
with another component without disrupting the system. On the other hand, it
must predict problems and prevent failures. Self-optimization is the capability
of maximizing resource allocation and utilization for satisfying user requests.
Resource utilization and work load management are two significant issues in
self-optimization. An ACS must identify and detect attacks and cover all as-
pects of system security at different levels such as the platform, operating sys-
tem, applications, etc. It must also predict problems based on sensor reports
and attempt to avoid them. It is called as Self-protection. An ACS needs to
know itself. It must be aware of its components, current status, and available
resources. It must also know which resources can be borrowed or lended by
it and which resources can be shared. It is Self-awareness or Self-knowledge
property. An ACS must be also aware of the execution environment to react to
environmental changes such as new policies. It is called as context-awareness
or environment-awareness. Openness means that An ACS must operate in a
heterogeneous environment and must be portable across multiple platforms.
Finally, An ACS can anticipate its optimal required resources while hiding its
complexity from the end user view and attempts to satisfy user requests. We
consider self-configuration, self-healing, self-optimization, and self-protection
as major characteristics and the rest as minor characteristics. We are going to
present a survey of current definitions of ACSs which have been derived from
Horn ’s definition. The aim of this survey is to identify all the possible defini-
tions about ACSs. The common researchers in this field have been considered



4

for this survey. They are first author in their publications. Table 1 shows the list
of each researcher ’s autonomic computing definition. The list of definitions
in table 1 shows that there are differences in interpretation and definition of
ACSs. Of course, with closer examination of the papers, it is found that these
definitions are derivred from the eight elements proposed by Horn in 2001. For
example, D. M. Chess et al have used the term ’self-configuration’ similar to
Horn ’s definition and have presented ’self-assembly’ property in Unity as an
autonomic computing product. As mentioned, the aim of Autonomic Comput-
ing (AC) is to improve the system abilities. Therefore, autonomic computing
characteristics affect various measurements of quality. Table 2 specifies the
relationships between autonomic computig properties and quality factors.

4. Toward Autonomic Element Architecture

The goal of an autonomic computing architecture is to reduce intervention
and carry out administrative functions according to predefined policies. Mov-
ing from manual to autonomic systems is introduced in a step-by-step manner
by Tivoli group in IBM. ACSs also can make decisions and manage them-
selves in three scopes: resource element scope, group of resource elements
scope, and business scope. In resource element scope, individual components
such as servers and databases manage themselves. In group of resource el-
ements scope, a pool of grouped resources that work together perform self-
management. For example, a pool of servers can adjust work load to achieve
high performance. Finally, overall business context can be self-managing. It
is clear that increasing the maturity levels of AC will affect on level of making
decision. The path to AC consists of five levels: basic, managed, predictive,
adaptive, and autonomic. They are explained in the following [17]:

Basic Level:At this level, each system element is managed by IT profes-
sionals. Configuring, optimizing, healing, and protecting IT components
are performed manually.

Managed Level: At this level, system management technologies can
be used to collect information from different systems. It helps admin-
istrator to collect and analyze information. Most analysis is done by IT
professionals, but it is starting point of automation of IT tasks.

Predictive Level: At this level, individual components monitor them-
selves, analyze changes, and offer advices. Therefore, Dependency on
persons is reduced and decision making is improved.

Adaptive Level: At this level, IT components can individually and
group monitor, analyze operations, and offer advices with minimal hu-
man intervention.



Autonomic Computing 5

Table 1. List of Different Definitions for Autonomic Computing System.

First Author Definition of Autonomic Computing

Kephart [12] Major characteristics and Self-managing

Chess [13] Major characteristics

IBM Tivoli Group [14] Major and Minor characteristics

Sterritt [15] Major and Minor characteristics except anticipatory

Tianfield [16] Self-mechanism including major characteristics,
Self-planning, Self-learning, Self-scheduling, Self-evolution

Parashar [2] Major characteristics, Self-adapting

Murch [17] Major and Minor characteristics

Tesauro [1] goal-driven self-assembly, self-healing,

real-time self-optimizing

De Wolf [10] Major characteristics

White [6] Major characteristics, Self-managing

Ganek [18] Major characteristics, Self-managing

Table 2. Relationships Between Autonomic Computig Properties and Quality factors.

Autonomic Properties Quality Factors

Self-configuration Maintainability, Usability, Functionality, Portability

Self-healing Reliability, Maintainability

Self-optimization Efficiency, Maintainability, Functionality

Self-protection Reliability, Functionality

Self-awareness Functionality

Openess Portability

Context-awareness Functionality

Anticipatory Efficiency, Maintainability

Autonomic Level: At this level, system operations are managed by busi-
ness policies established by the administrator. In fact, business policy
drives overall IT management, while at adaptive level, there is an inter-
action between human and system.



6

Figure 1. Autonomic Element architecture

Autonomic Elements (AEs) are the basic building blocks of autonomic sys-
tems and their interactions produce self-managing behavior. We can consider
AEs as software agents and ACSs as multi-agent systems. Each AE has two
parts: Managed Element (ME) and Autonomic Manager (AM). In fact, ACSs
are established from Managed Elements (MEs) whose behaviors are controlled
by Autonomic Managers (AMs). AMs execute according to the administrator
policies and implement self-managing. An ME is a component from system. It
can be hardware, application software, or an entire system. Sensors retrieve in-
formation about the current state of the ME, then compare it with expectations
that are held in knowledge base by the AE. The required action is executed
by effectors. Therefore, sensors and effectors are linked together and create a
control loop.

Autonomic Managers (AMs) are the second part of an AE. An AM uses
a manageability interface to monitor and control the ME. It has four parts:
monitor, analyze, plan, and execute. The monitor part provides mechanisms
to collect information from a ME, monitor it, and manage it. Monitored data
is analyzed. It helps the AM to predict future states. Plan uses policy infor-
mation and what is analyzed to achieve goals. Policies can be a set of ad-
ministrator ideas and are stored as knowledge to guide AM. Plan assigns tasks
and resources based on the policies, adds, modifies, and deletes the policies [
6]. AMs can change resource allocation to optimize performance according
to the policies. Finally, the execute part controls the execution of a plan and
dispatches recommended actions into the ME. These four parts provide control
loop functionality. Communications between AMs provide self-managing and



Autonomic Computing 7

Figure 2. Estimate of people trends toward autonomic products

context-awareness. External behavior of AEs is related to relationships among
them. Figure 1 shows detailed architecture of AEs in an AC environment. AMs
can be linked together via an autonomic signal channel.

Tivoli group has also presented an estimation of people trends to autonomic
operations from 2002 to 2006. Figure 2 shows results of this estimate.

5. Autonomic Computing Challenges

Since autonomic computing is a new concept in large-scale heterogeneous
systems, there are different challenges and issues. Some of them have been
explained in the following:

Issues in Relationships among AEs

Relationships among AEs have a key role in implementing self-management.
This Relationships have a life cycle consists of specification, location, nego-
tiation, provision, operation, and termination stages. Each stage has its own
challenges [12]. Expressing set of output services that an AE can perform and
set of input services that it requires in a standard form and establishing syntax
and semantics of standard services for AEs can be a challenge in specification.
As An AE must dynamically locate input services that it needs and other ele-
ments that need its output services must dynamically locate this element with
looking it up, AE reliability can be a research area in location stage. AEs also
need protocols and strategies to establish rules of negotiation and to manage
the flow of messages among the negotiators. One of challenges is the designer
to develop and analyze negotiation algorithms and protocols, then determine
which negotiation algorithm can be effective. Autonomated provision can be
also a research area for next stage. After agreement, The AMs of both AEs
control the operation. If the agreement is violated, different solutions can be



8

introduced. This can be a research area. Finally, after the both AEs agree to
terminate the negotiated agreement, the procedure should be clarified.

Learning and Optimization Theory

A question raises this challenge: how can we transfer the management sys-
tem knowledge from the human experts to ACSs? The master idea is that by
observing that how several human experts solve a problem on different sys-
tems and by using traces of their activities, a robust learning procedure can
be created. This procedure can automatically perform the same task on a new
system. Of course, facilitating the knowledge acquisition from the human ex-
perts and producing systems that include this knowledge can be a challenge.
One of reasons of the success of ACSs is their ability to manage themselves
and react to changes. In short, in sophisticated autonomic systems, individual
components that interact with each other, must adapt in a dynamic environment
and learn to solve problems based on their past experiences. Optimization can
be also a challenge, because in such systems, adaptation changes behavior of
agents to reach optimization. The optimization is examined at AE level.

Robustness

There are many meanings for robustness. Robustness has been served in
various sciences and systems such as ecology, engineering, and social systems.
We can interpret it as stability, reliability, survivability, and fault-tolerance, al-
though it does not mean all of these. Robustness is the ability of a system to
maintain its functions in an active state and persistence, when changes occur
in internal structure of the system or external environment. The persons of-
ten mistake it with stability. Although both stability and robustness focus on
persistance, but robustness is broader than stability. It is possible that compo-
nents of a system are not themselves robust, but interconnections among them
make robustness at the system level. A robust system can perform multiple
functionalities for resistancing without change in the structure. With design
of instructions that permit system to preserve its identity even when it is dis-
rupted, the robustness in systems can be increased. Robustness is one of grand
scientific challenges which can be also examined in programming.

6. Conclusions and Future works

In a Distributed Computing System, users and multiple computers are in-
terconnected in an open, transparent, and geographical large-scalable system.
Therefore, development and management of these systems are master prob-
lems for IT professionals. IBM proposed Autonomic Computing Systems as a
solution. ACSs manage themelves. Four major characteristics of such systems
include self-configuration, self-optimization, self-protection, and self-healing.



Autonomic Computing 9

To achieve them, ACSs have four minor characteristics as self-awareness, context-
awareness, openness, and anticipatory. Autonomic Elements (AEs) provide
self-managing behavior in ACSs. They are the building blocks of ACSs and
their interactions produce self-managing behavior. The various parts of AEs
have been automated with evolution of AC levels. Engineering and scientific
challenges have discussed in this field such as robustness, learning, and rela-
tionships among AEs.

In this paper, a survey of autonomic computing systems and their impor-
tance are presented. As future researches, the following topics can be proposed
in autonomic distributed computing domain:

1 Performance evaluation of applying the autonomic behavior in a DCS
model.

2 Designing an autonomic manager in multi-layer P2P form, so that auto-
nomic behavior and management information as a knowledge base are
stored in separated layers.

3 Studying languages which develop autonomic management behavior in
a distributed computing environment.

4 Implementing a self-healing system in a virtual organization while one
of partners failed.

Acknowledgement

Mohammad Reza Nami is a faculty member and researcher in the Islamic
Azad University and Shahid Beheshti University from Iran. He has been ranked
as number 1 in computer science examination in Iran in October 2002. For this,
he has a scholarship from the Ministry of Science, Research, and Technology
(MSRT) of Iran. He can be reached at nami@iau-saveh.ac.ir and nami1352@yahoo.com

References
1. Tesauro, G., and et al.:A Multi-agent systems approach to autonomic computing. IBM Press,

(2004) 464-471.
2. Parashar, M., and et al.:AutoMate: Enabling Autonomic Grid Applications. Cluster Comput-

ing: The Journal of Networks, Software Tools, and Applications, Special Issue on Autonomic
Computing, Kluwer Academic Publishers, Vol. 9, (2006).

3. Milojicic, D. S., and et al.:Peer-to-Peer Computing. In: Proceedings of the Second Interna-
tional Conference on Peer-to-Peer Computing, (2002) 1-51.

4. Salehie, M., Tahvildari, L.:Autonomic Computing: emerging trends and open problems. ACM
SIGSOFT Software Engineering Notes, Vol. 30, (2005) 1-7.

5. Ganek, A.:IBM Initiatives in autonomic computing and policy.
http://www-03.ibm.com/autonomic/letter.shtml.



10

6. White, S., and et al.:An architectural approach to autonomic computing. In: Proceedings
"International Conference on Autonomic Computing" (ICAC’04), NewYork, USA, (2004)
2-9.

7. Sterritt, R., and Bustard, D.:Towards an autonomic computing environment. In: 14th Inter-
national Workshop on "Database and Expert Systems Applications" (DEXA ’03), (2003)
694-698.

8. McCann, J. A., Huebscher, M. C.:Evaluation issues in autonomic computing. In: Proceedings
of "Grid and Cooperative Computing" workshop (GCC-2004), Vol. 15, (2004) 597-608.

9. Chess, D. M., Palmer, C., and White, S. R.:Security in an autonomic computing environment.
IBM System Journal, Vol. 42, (2003) 107-118.

10. De Wolf, T. and Holvoet, T.:Evaluation and comparison of decentralised autonomic com-
puting systems. Department of Computer Science, K.U.Leuven, Report CW 437, Leuven,
Belgium, (2006).

11. Hariri, S. and Parashar, M.:Autonomic Computing: An overview, Springer-Verlag Berlin
Heidelberg, Vol. 3566, (2005) 247-259.

12. Kephart, J. O. and Chess, D. M.:The vision of autonomic computing. IEEE Computer, Vol.
36, (2003) 41-50.

13. Chess, D. M., Segal, A., Whalley, I., and White, S. R.:Unity: experiences with a prototype
autonomic computing system. In: 1st "International Conference on Autonomic Computing"
(ICAC 2004), New York, NY, USA, (2004) 140-147.

14. IBM Corporation Software Group:The Tivoli software implementation of autonomic com-
puting guidelines. http://www-03.ibm.com/autonomic/pdfs/br-autonomic-guide.pdf.

15. Sterritt, R., Parashar, M., Tianfield, H., and Unland, R.:A concise introduction to autonomic
computing. Advanced Engineering Informatics, Vo. 19, (2005) 181-187.

16. Tianfield, H.:Multi-agent autonomic architecture and its application in e-medicine. IEEE/WIC
International Conference on "Intelligent Agent Technology" (IAT 2003), (2003) 601-604.

17. Murch, R.:Autonomic Computing. Prentice-Hall, (2004).
18. Ganek, A. G. and Corbi, T. A.:The dawning of the autonomic computing era. IBM System

Journal, Vol. 42, (2003) 5-18.


