
 

Abstract— In this paper, we present an interesting filtering 
algorithm to perform accurate estimation in jump Markov 
nonlinear systems, in case of multi-target tracking.  With this 
paper, we aim to contribute in solving the problem of model-
based body motion estimation by using data coming from visual 
sensors. The Interacting Multiple Model (IMM) algorithm is 
specially designed to track accurately targets whose state and/or 
measurement (assumed to be linear) models changes during 
motion transition. However, when these models are nonlinear, 
the IMM algorithm must be modified in order to guarantee an 
accurate track. In order to deal with this problem, the IMM 
algorithm was combined with the Unscented Kalman Filter 
(UKF) [6]. Even if the later algorithm proved its efficacy in 
nonlinear model case; it presents a serious drawback in case of 
non Gaussian noise. To deal with this problem we propose to 
substitute the UKF with the Particle Filter (PF). To overcome the 
problem of data association, we propose the use of an accelerated 
JPDA approach based on the depth first search (DFS) technique 
[12]. The derived algorithm from the combination of the IMM-
PF algorithm and the DFS-JPDA approach is noted DFS-JPDA-
IMM-PF. 
 
Index Terms— Estimation, Kalman filtering, Particle filtering 
JPDA, Multi-Target Tracking, Visual servoing, data association. 

I. INTRODUCTION 
his paper hope to be a contribution within the field of 
visual-based control of robots, especially in visual-based 
tracking [3]; tracking maneuvring targets, which may 

themselves be robots, is a complex problem, to ensure a good 
track when the target switches abruptly from a motion model 
to another is not evident. Because of the complexity and 
difficulty of the problem, a simple case is considered. The 
study is restricted to 2-D motions of a point, whose position is 
given at sampling instants in terms of its Cartesian 
coordinates. This point may be the center of gravity of the 
projection of an object into a camera plane, or the result of the 
localisation of a mobile robot moving on a planar ground.  

Several of maneuvering target tracking algorithms are 
developed. Among them, the interacting multiple model 
(IMM) method based on the optimal Kalman filter, yields 
good performance with efficient computation especially when 
the measurement and state models are linear with Gaussian 
noise. However, if the later are nonlinear and/or non Gaussian  

 

noise, the standard Kalman filter should be substituted, in 
our study we choose the Particle Filter (PF). The algorithm 
derived from this combination is called IMM-PF. The other 
problem treated in this paper, is about the data association. 
Effectively, at each sample time, the sensor (camera) present, 
several measures and observations, coming from different 
targets; the problem is how to affect each measure to the 
correct target, to deal with this problem we choose an 
accelerated version of the JPDA algorithm based on the depth 
first search (DFS). The algorithm derived from the 
combination of DFS-JPDA and the non linear IMM 
algorithms is noted DFS- JPDA-IMM-PF. 

The paper is organized as follows. In section II the 
mathematical formulation of 2-D motion is presented. In 
section III we describe the IMM algorithm PF based. In 
section IV we present the DFS algorithm and than in section V 
we present DFS-JPDA-IMM-PF algorithm. In section VI we 
present and discuss the results of simulations. Finally in 
section VII we draw the conclusion. 

II. MATHEMATICAL FORMULATION OF 2-D MOTION 
The mathematical formulation of 2-D motion used is 

mainly inspired from Danes, Djouadi, and al in [4]. They 
make the hypothesis that the measurements are only the 2-D 
Cartesian coordinates of the moving point.  

Let s(.) denote the curvilinear abscissa of M over time onto 
its trajectory, the origin of curvilinear abscissae is set 
arbitrarily. Functions x(.) and y(.), represent the Cartesian  
coordinates of M. The measurement equation may be written 
as: 
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Where ( )p .  is a parameter vector function of minimal size. 
We can see that equation (1) is independent of the type of the 
motion of M onto its trajectory. 
The state equation could be written as: 
                               ( ) ( )X AXt t=&                                     (2) 
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, with As the n x n zero matrix with ones 

added on its first upper diagonal, and 0 the matrices of 
convenient sizes. The continuous time state equation (2) is 
linear time invariant and independent of M’s trajectory, except 
on the sizes of ( )s . and ( )p . . Moreover, it may be shown 
that the fundamental matrix F involved its exact discretization 
at the period T takes the form 
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  The dynamic and measurement noises are supposed to be 
stationary, white and Gaussian, non inter-correlated with 
known covariances. 
 

A. Canonical motion equations  
The point M is supposed to move on straight or circular 

trajectories at constant or uniformly time-varying speed 
(constant speed or constant acceleration). Those motions 
belong to the set of the possible behaviours of a non-
holonomic robot whose wheels are driven at constant 
velocities or accelerations. 

 
1) Output equations: One minimal description of a straight 
line is defined by the vector ( )p= , Tdα shown in figure 1(a), 
which is related to Plucker coordinates. Concerning a circular 
trajectory one minimal description is defined by the 
vector Τ= ),,0(p 00 yxR  shown in figure 1(b). The origin of 
curvilinear abscissa is uniquely defined from those 
parameterizations. 
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(b) Circle 

Fig.1. Trajectory Parameterization 
 
The output equations are as follows (trajectory parameter are 
considered time-invariant): 
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with )(ks distance covered by the target and )(⋅v  measurement 
noise with density dν(k)(ν). 

 
2) State Equations 
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Constant acceleration 
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III. THE IMM-PARTICLE FILTER ALGORITHM 
The basic idea is to combine the IMM approach [1], with a 

particle filter one. In the derivation of the standard IMM filter, 
a merging and filtering process are defined. We adopt a 
regularized particle filter for this filtering step, and perform 
the merging step on the probability densities, represented by a 
Gaussian mixture. One consequence of the discrete nature of 
the approximation of the a posteriori density is that it cannot 
directly be applied to an IMM framework as it is used in [1]. 

To obtain a good continuous approximation of the a 
posteriori density, we use a regularized version of the 
bootstrap filter as first reported in [8,9] for tracking targets in 
clutter. In this hybrid version of the bootstrap filter, the 
probability density function, that has been computed as a point 
mass probability density on a number of grid points in the 
state space, is fitted to a continuous probability density 
function that is a sum of a prefixed number of Gaussian 
density functions. Moreover, by using a hybrid type of 
sampling filter as an alternative for direct resampling, 
degeneracy in the effective number of particles is avoided 
[8,9]. The main advantages of the new method that we 
propose here are: 
 

 the method is able to deal with nonlinearities and non-
Gaussian noise in a mode; 

 the method uses a fixed number of particles in each 
mode, independent of the mode probability. 

 
Algorithm  
 

Let a system be described by the equations:  
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The process noise and the measurement noise are possibly 
mode-dependent. Their densities are denoted by: dw[k,M(k)](w)  
and  dν[k,M(k)](ν). 
 
Where M(k) denotes the model at time k. It’s a finite state 
Markov process tacking values in{ }

1

r

j j
M

=
, according to a 

Markov transition probability matrix p assumed to be known. 
  
The probability density of the initial state is known, x(0) ∼ 
P0(x). Define the information up to and including time step k 
as:  

( ) ( ) ( ){ }kzzkZ ,.......,1=  
The filtering problem that has to be solved is: 

Given a realization of Z(k) associated with (7) compute 
p(x(k)|Z(k)); i.e. the conditional probability density of the state 
x(k) given the set of measurements Z(k). 
 

A cycle of the IMM algorithm could be summarized in 
four steps: 

 Interaction stage 

Compute Mixing probabilities 
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Compute Normalizing factors 

( )∑
∈

−=
Mi

iijj kpc 1µ                                       (9) 

Compute A priori probability density in mode j 
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 Filtering stage 

Mj∈∀ draw N samples ( )1−kx j
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The predicted samples are: 
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Where ( )jkwl ,1−  are samples obtained from ( ) ( )wd jkw ,1−  

The predicted output  
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Mean of the state over the sample set 
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Covariance of the state over the sample set 
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From the conditional probability density function for the state 
in mode j based on a mixture of N Gaussian densities 
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Where jd
j N 25.0 −=ν , and jd  is the dimension of the state 

space.  

We obtain the probability density function for the state in 
mode j after mixture reduction, i.e. based on a mixture of 

NN r ≤  Gaussian densities. 
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The mean of predicted output over the sample set 
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Residual covariance over the sample set 
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Innovations 
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Probability density function for the innovations 
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Likelihoods 
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Mode probabilities 
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 Combination stage 

The a posteriori conditional probability density function 

for the stae  
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IV. DFS ALGORITHM  
Let m and n be the numbers of measurements and targets, 

respectively, in a particular cluster. The computational cost of 
data association increases exponentially with m and n. The 
efficiency of the algorithm used in the generation of the data 

association hypothesis is particularly important when m and n 
are large. In order to develop an efficient algorithm to generate 
all data association hypotheses, a mathematical model is 
developed for data association. One of the most used models 
for a combinational problem is called exhaustive search with 
constraints [13]. 

In the context of tracking multitarget, data association can 
be modeled as an exhaustive search with a set of proper 
notations. Let ( )mjX j ,...,2,1=  denote measurement j. The 
value of Xj belongs to a set Zj. The value of Xj identifies the 
target which is hypothesized to be associated with 
measurement j. For example, 2=jX  implies that 
measurement j is hypothesized to be associated with target 2. 
There, the set Zj is defined by: 

 
{ } .,...,2,1 and  ,...,2,1     ,1 ntmjwtZ jtj ====  

Where jtw takes two values, 1 if measurement j is 
associated to target t, 0 else. 

Based on the validation matrix Ω( jtw ), data association 
hypotheses [14] are generated subject to two restrictions: (1) 
each measurement can have only one origin, and (2) no more 
than one measurement originates from a target.  

In a JPDA scenario, the above two constraints can be 
easily translated into the language of exhaustive search 
problem for data association. Usually, an m-tuple, 
( )mqp XXXXX ,...,,...,,...,, 21 , is a solution the these two 
constraints are satisfied: 
1. If  p ≠ q , Xp ≠ 0 , and    Xq ≠ 0, then  Xp≠ Xq , 
2. If  Xp= Xq  and p ≠ q , then Xp =Xq = 0  . 

All data association hypotheses can be generated by 
solving the exhaustive search problem considered above. 

Here we use the specialized DFS algorithm proposed in 
[12] for the generation of data association hypotheses.  
In general, in exhaustive search problem, no solutions are 
known in advance. However, in the problem of data 
association, a solution which is always known, is (0,0,…,0). 
The other solutions can be generated systematically from 
various valid combinations of non-zero values of the elements.  
For more precision see [12]. 

V. DFS-JPDA-IMM-PF ALGORITHM  
The principle of the JPDA algorithm is the computation of 

probabilities association for each track and new measurement. 
These probabilities are then used as weighting coefficients in 
the formation of the averaged state estimate, which is used for 
updating each track. For a better description of the JPDA 
algorithm, see  [2,5]. 

The combination of the JPDA and the IMM-PF algorithms 
done as follows. A single set of validated measurements for 
JPDA-IMM-PF is obtained by considering the intersection Zk, 
of r sets of measurements corresponding to individual models: 
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Where j
kZ  represents the set of validated measurements 

under the assumption that model j is effective. The combined 
likelihood functions for the r modes of the IMM-PF algorithm 
are computed as in [6]. 

The prior mixed state estimates for model j and the 
validation regions for individual models are also computed as 
in [2,6]. The new mode probabilities, output state estimates, 
and corresponding error covariances are obtained as in [2,6]. 

VI. SIMULATIONS AND RESULTS  
In this section, we perform some simulations to evaluate 

our algorithm (DFS-JPDA-IMM-PF). 
The motion models considered are: - constant velocity on 

straight line (M1), -constant acceleration on straight line (M2), 
- constant velocity on circle (M3), - constant acceleration on 
circle (M4).   

 
To explore the capability of our JPDA-IMM-UKF 

algorithm to track maneuvring targets, various scenarios are 
considered; among of them we select the typical case of three 
highly maneuvring targets with crossing trajectories.  

 
We assume that the target is in a 2-D space and its position 

is sampled every T=1s. we run the DFS-JPDA-IMM-PF with 
1000 samples in each mode. 
    -   The probability transition matrix of four models is  
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     -   The initial probability of selecting a model is 0.25, that’s    

to say, at the start all models have the same chance to be 
selected. 

     -  The curvilinear abscissa s (.) remains continuous even if 
a trajectory jump occurs.  

 
A. Considered scenario 
 

We consider that we have to track simultaneously three 
maneuvring targets. In order to complicate the scenario, we 
suppose that the targets follow during there movements, 
crossing trajectories. 

a) Target 1(black): 
The target starts moving according to model M1 until the 

50th sample when an abrupt trajectory change occur  and still 
moving according to this during 50 samples (switching from 
model M1 to M3). 

b) Target 2 (blue): 
The target starts moving according to model M3 until the 

50th sample when an abrupt acceleration about 0.2 m/s2 occur  
and still moving according to this during 50 samples 
(switching from model M3 to M4). 

c) Target 3 (green): 
The target starts moving according to model M1 until the 

50th sample when an abrupt acceleration about 0.2 m/s2 occur  
and still moving according to this during 50 samples 
(switching from model M1 to M2). 

d) Target 4 (red): 
As the target 3 ,the target 4 starts moving according to 

model M1 until the 50th sample when an abrupt acceleration 
about 0.2 m/s2 occur  and still moving according to this during 
50 samples (switching from model M1 to M2). 
 

 
 
 
 
 
 
 
 
 
 

 
 

Fig.2. Real and Esteemed Trajectories 
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Fig.3. Models Probabilities for target 1 
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Fig.4. Models Probabilities 2 
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Fig.5. Models Probabilities 3 
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Fig.6. Models Probabilities 4 
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Fig.7. RMS x and y position error 
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Fig.8. RMS Acceleration and Speed Error 
 
B.  Results interpretation: 

Figure 2 shows that the esteemed and the real trajectory for 
the three targets are superposable and almost identical even if 
an abrupt change occurs on the tracked target dynamic. This 

result is confirmed by the figures (3,4,5,6,7,8), from this we 
can say that the tracker based IMM-PF algorithm is a pertinent 
solution to the problem of visual-based tracking highly 
maneuvering targets. In the Other hand figure 2 shows also 
that the data association is correctly done even if the 
trajectories cross each other. This should permit us to say that 
the JPDA algorithm computes perfectly and its combination 
with the IMM-PF algorithm (DFS-JPDA-IMM-PF) would be 
an efficient solution to the problem of highly maneuvering 
multi-target visual-based tracking. 

VII. CONCLUSION 
The model-based body motion estimation by using data 

coming from visual sensors still an open problem on which we 
try to provide a contribution. In this paper we presented a 
nonlinear algorithm which attempts to track efficiently a 
highly maneuvering target whose trajectory and/or dynamic 
could change abruptly, and the noise distribution is not 
necessary Gaussian; the algorithm proposed is noted IMM-PF.  
To extend this algorithm to multi-target case, we combined the 
later with a fast version of the JPDA algorithm noted DFS-
JPDA  to ensure good data association. 
Simulations show that the DFS-JPDA-IMM-PF is a good 
investment while we are asked to track a highly maneuvrable 
targets whose measurement and/or state models present a 
strong nonlinearities, and the noises are not Gaussian and 
when there different trajectories cross each other.  
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