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Component retrieval, about how to locate and identify appropriate
components, is one of the major problems in component reuse. It becomes
more critical as more reusable components come from component markets
instead of from an in-house component library, and the number of available
components is dramatically increasing. In this paper, we review the current
component retrieval methods and propose our conversational component
retrieval model (CCRM). In CCRM, components are represented as cases, a
knowledge-intensive case-based reasoning (CBR) method is adopted to
explore context-based semantic similarities between users’ query and stored
components, and a conversational case-based reasoning (CCBR) technology is
selected to acquire users’ requirements interactively and incrementally.
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1. INTRODUCTION

One of the major problems associated with component reuse is component
retrieval”*?, which is concerned with how to locate and identify appropriate
components to satisfy users’ requirements. This problem becomes more
critical as the emergence of several component architecture standards, such
as, CORBA, COM, and EJB. These standards make software components
interoperate more easily. Therefore component reuse surpasses the limitation
of a single software company, that is, instead of getting components from an
in-house component library, users search for desired components from
component markets* (web-based software component collections provided
by vendors or third parties), which separate component users and component
vendors from each other.

A large and rapidly increasing number of reusable components put more
strict demands on the retrieval efficiency’. If it is acceptable for users to look
through tens of available components to identify the most appropriate ones,
it is intolerable for them to look through hundreds, or thousands of candidate
components, to select what they really need.

Several methods have been put forward to address the component retrieval
problem. Most of them assume users can define their component query
clearly and accurately, which puts too much impractical burden on
component users. Based on the analysis of current retrieval methods, we
propose a component retrieval model combining knowledge-intensive case-
based reasoning technologies and conversational case-based reasoning
methods.

Case-Based Reasoning (CBR) is a problem solving method®. The main
idea underlying CBR is that when facing a new problem, we will search in
our memory to find the most similar previous problem, and reuse the old
solution to help solve the new problem.

A CBR process can be divided into four phases: retrieve, reuse, revise and
retain, as described in®. Our research, as reported in this paper, focuses on
the retrieve phase.

In the retrieve phase, a new case (new problem description) is compared
to the stored cases, and the most similar one (ones) will be retrieved. Partial
matching is adopted in the retrieve phase. Note that the CBR notion of
partial matching, i.e. the matching of a group of features in order to return a
best match, and where each feature typically has its own weight,
distinguishes this technology from information retrieval and database access
methods in general. Some CBR methods are ‘knowledge-poor’, which only
consider superficial or syntactical similarities between a new case and stored
cases, while other systems take both the syntactical similarity and the
semantic similarity into account by combining case-specific knowledge and
general domain knowledge. The latter approach is referred to as knowledge-
intensive CBR.
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Conversational case-based reasoning (CCBR) is an interactive form of
case-based reasoning. It uses a mixed-initiative dialog to guide users to
facilitate the case retrieval process through a question-answer sequence®. In
the traditional CBR process, users are expected to provide a well-defined
problem description (a new case), and based on such a description, the CBR
system can find the most appropriate case. But usually users can not define
their problem clearly and accurately. So instead of letting users guess how to
describe their problem, CCBR calculates the most discriminative questions
automatically and incrementally, and displays them to users to extract
information to facilitate the retrieval process.

CCBR has been probed in several application domains, for instance, the
customer support domain’, and products or services selection in E-
Commerce'®. To our knowledge, current CCBR methods are to a large extent
based on superficial feature properties, and there are so far no published
results on CCBR applied to software component retrieval. In our research,
we combine knowledge-intensive CBR and conversational CBR in an
attempt to resolve the component retrieval problem.

The rest of this paper is organized as follows. In section 2, we review
current existing retrieval methods, briefly discuss their advantages and
disadvantages; in section 3, our conversational component retrieval model
(CCRM) is proposed and some examples are illustrated; in section 4, we
discuss the current status of using CBR technologies in the component
retrieval field, and identify the advantages and limitations of our component
retrieval model. In the end, we discuss our results so far, and point to future
work (section 5).

2. CURRENT COMPONENT RETRIEVAL
METHODS

A component retrieval method can be described from three aspects:
component representation, component query (users’ requirements)
specification, and component retrieval process. A popular component
retrieval method, named free-text-based retrieval method'" ’2, comes from
the information retrieval community. In this method, components are
represented as free-text-based documents, while a component query is
described using keywords. The retrieval process is to look up the keywords
in all component description documents. The components with most
matched keywords will be selected. Vector space and indexing technology
are used to facilitate documents organizing and matching. This method has
low scores on both recall and precision’. Researchers and practitioners have
proposed to use general thesaurus to extend keywords, by including their
synonyms and antonyms, to get more relevant components'. In addition,
general domain knowledge is also used to extend initial keywords to get
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more semantically relevant components’. However, both of these two
improvements increase retrieval recall at the cost of retrieval precision.

Instead of free-text-based component and query descriptions, the
following four types of retrieval methods represent components and specify
queries using structural information from different perspectives. The pre-
enumerated vocabulary method uses a set of pre-defined vocabularies to
express both components and queries'®. In this way, both recall and precision
are increased at the cost of the flexibility to describe components and specify
component queries. The signature matching method'® describes both
components and queries using signatures which specify the interfaces of
components, for instance, the number and the type of input, and output
variables. This approach is suitable for components implemented using
strongly-typed programming languages. Its weakness is its lack of domain
and searching context information. The behavior-based retrieval method'® is
based on the special characteristic of software components being executable.
Components take the form of executable codes, and queries are represented
by a set of input samples and their desired outputs. The retrieval proceeds by
selecting samples, and executing components using the selected samples.
The components that satisfy the desired output are retrieved. This method is
designed for executable software components and has low efficiency
because of long execution time.

The final method we want to mention in this category is faceted selection.
This approach predefines a set of dimensions, called facets, which are used
to classify components from different perspectives'®. Users can find their
desired components by searching down the stratified categories. This method
is getting increasing attention because it takes domain knowledge into
account when designing facets. But there exists a design embarrassment: If
facets are designed too simple or few, there will be too many components in
final categories, which will ask users to select further manually. On the other
hand, if facets are designed too complex, it is hard for users to understand
them and hard for designers to classify all components into different
categories'” '®. In addition, the faceted selection method essentially uses the
exact matching process. However, it is very hard to get the appropriate
components through exact matching because of the universal differences
between component requirements and components descriptions'.

All the retrieval methods mentioned above have one common assumption,
that is, users can well define their component queries, and the retrieval
system can find one or a few appropriate components according to users’
queries. However, this assumption is not always realistic. People often lack
clear ideas about what they need while they begin searching for components
and usually can not define their queries accurately. They need retrieval
system to guide them refining their queries incrementally. Hence, an
efficient component retrieval system should be able to support partial
matching, select components based on both the syntactical similarity and the
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semantic similarity, and guide searchers to refine their component query
incrementally. Conversational case-based reasoning, extended with
knowledge-intensive CBR methods, provides a possibility for satisfying
these requirements.

3. THE CONVERSATIONAL COMPONENT
RETRIEVAL MODEL (CCRM)

3.1 CCRM Overview

As illustrated in Fig. 1, our conversational component retrieval model
(CCRM) includes six parts: a knowledge base, a new case generating
module, a knowledge-intensive CBR module, a component displaying
module, a question generating and ranking module, and a question
displaying module.

The knowledge base stores both component-specific knowledge (cases)
and general domain knowledge (including a domain ontology). The new case
generating module can set up a new case based on users’ initial query and
their later answers to discriminative questions. Given a new case, the
knowledge-intensive CBR module calculates the similarities between the
new case and stored component cases, and returns the components whose
similarities surpass a threshold (the threshold is specified initially and can be
adjusted following the execution of the system). The component displaying
module displays the candidate components to users, ordered by their
similarities. In the question generating and ranking module, possible
unknown questions are identified, and an information gain algorithm® is
used to rank the possible questions according to how much information it
can provide if it has been answered. Then general knowledge is used to filter
out those questions whose answers can be inferred from the initial query or
previously answered questions. These ordered questions are further
reordered according to some constraints inferred from general knowledge,
for example, people normally prefer to answer the high level questions
before answering low level ones. The question displaying module selects the
most discriminative question, in order to optimize search towards a
meaningful answer.
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Figure 1. The architecture of conversational component retrieval model (CCRM).

Arrows: A, B, C and D, are interactive processes between users and
CCRM. A: users input their initial query; B: the system provides users with
top matched components; C: the system displays the most discriminative
question to users; D: users select a displayed question and provide their
answer to the system. Other processes are completed in the system
automatically.

The retrieval process in the CCRM model can be described as the

following steps:

1. Users provide their initial query, which takes the form of free-text-
based terms.

2. The new case generating module transforms the initial query into a
new case. In this step, a general thesaurus and a domain ontology are
used to transform the free-text-based initial query into standard terms
used in the internal system, and formalize them into a new case.

3. The knowledge-intensive CBR module calculates the similarities
between the new case and stored cases through combining both
component specific knowledge and general domain knowledge, and the
components whose similarities surpass a threshold are returned.

4. If users find their desired component from the displayed candidate
components, they can terminate the retrieval process. Otherwise, the
conversational process is activated.

5. The question generating and ranking module identifies the unknown
questions from the candidate components, and ranks them according to
their information gains. Further, the ordered questions are filtered and
reordered using general domain knowledge.
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6. The question displaying module selects the most discriminative
question, and displays it and its meaningful answers to users in a
readable format.

7. Users provide the system with their answer to the displayed question.
Otherwise, if users can not answer a displayed question, the question
displaying module will display the next most discriminative question.

8. The new case generating module combines the previous new case and
the newly gained answer to set up a new case.

9. The iterations from 3 to 8 continue until users find their desired
component or there are no other discriminative questions left.

3.2 Component Representation in CREEK

In CCRM, we adopt a frame-based knowledge representation and
reasoning system, CREEK?', which can unify component-specific cases and
general domain knowledge within a single representation system. In
CREEK, all knowledge is represented as concepts, and a concept takes the
form of a frame-based structure, which consists of a list of slots. A slot acts
as a relation from the concept to a value related with another concept.
Viewed as a semantic network, a concept (frame) corresponds to a node, and
a relation (slot) corresponds to a link between nodes. Slot values have types
or roles, referred to as facet. Typical facets include current value, default
value, value class, and value constraint. So the knowledge in CREEK is
represented in a 4-level structure, frame, slot, facet and value.

OutputComponent (partial)
subclass-of value Component
has-instance value Write BMP
has-instance value Write TIFF
has-instance value Write JPEG
has-error value file-open-error
has-number-of-parameter default 1
has-image-color-space value-class Color-space

. has-image-dimension value-class Image-Dimension

Flgli has-image-file-type value-class Image-file-type pt'

has-size-constraints value-constraint (and (> 0 Bytes) (< 100 MB))

Fig. 2 gives, in a frame view, an example to illustrate how a part of an
image OutputComponent class is represented in CREEK. Fig. 3 shows, in a
network view, a part of the knowledge base for components used in the
image processing field. General domain knowledge can be represented as
relations between different values. For example, the “extract to” relation
from “3D” to “2D” means that 3 dimension images can be extracted to 2
dimension images. Similarly, the two relations “convert to” between “XYZ”
and “RGB” mean that images described using “XYZ” color space and
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images described using “RGB” color space can be converted to each other
without losing any information.
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Figure 3. A part of the knowledge base (implemented in the CREEK system) for
components in the image processing field,

Component query (partial)

Write BMP component (partial)
has-number-of-parameter 1

has-number-of-parameter 1
has-image-color-apace RGB has-image-color-space XYZ
has-image-dimension 3D has-image-dimension 2D
has-image-file-type BMP file has-image-file-type BMP file
has-error file-open-error has-error

file-open-error
has-file-size-constraints (and (> 0 Bytes)

(< 100 Megabyte))

has-file-size-constraints 5 megabyte

Figure 4. The partial frame contents of the component query and the stored component
‘Write BMP".

3.3 Knowledge-Intensive Similarity Calculation

In CCRM, we use an explanation-driven similarity calculating method’,
which can be divided into three steps, ACTIVATE, EXPLAIN and FOCUS.
ACTIVATE determines what knowledge in the knowledge base is involved
in the retrieval process, and calculates the similarities between the new case
and activated stored cases based on a rather syntactical or superficial
similarity measuring. The output of the ACTIVATE step is a set of
components whose similarity values surpass a certain threshold. EXPLAIN
is used to evaluate the similarities between the new case and stored cases,
selected in the ACTIVATE step, based on general domain knowledge. The
evaluation task concerns justifying that the well-matched slots are relevant to
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the problem goal, and “explaining away” the mismatched slots that are
unimportant. According to evaluation results, similarity values are adjusted.
For instance, if one mismatched slot is evaluated as important for the
problem goal, the total similarity value of the involved component is reduced.
Otherwise, the similarity value is increased or keeps unchanged.

In the example shown in Fig. 4, there are two mismatched slots, “has-
image-color-space” and ‘“has-image-dimension”, between the component
query and the stored component. With the domain knowledge that “RGB
convert to XYZ” and “XYZ convert to RGB”, we can explain that “since the
source image using RGB color space can be converted to an image using
XYZ color space and vice versa, it is possible to use this stored component
to realize the required task™, and the similarity value generated in the
ACTIVATE step can be kept unchanged or increased. On the contrary, there
is not any explanation path from 2D to 3D, which means it is impossible for
images with 2 dimensions to be converted to images with 3 dimensions, so
the mismatch on the “has-image-dimension” slot can not be explain as
unimportant and the similarity value of this stored component is reduced.

3.4 Question Selecting and Ranking

There are at least two requirements on the mixed-initiative question-answer
interaction in conversational CBR. First, displayed questions should be easy to
understand. Second, the selected question should be the most informative or
discriminative one.

As to the first requirement, we predefine a question and its possible answers to
each slot. For example, on the slot “has-image-file-type”, we predefine a question
that “what type of images do you want to deal with in this component?” and the
possible answers, “BMP”, “TIFF”, “JPEG”, or “Text”. All the slots that appear in
the candidate components, returned by the knowledge-intensive CBR module, but
not in the new case are identified and transformed into unknown questions. Whether
or not a possible answer is displayed to users in the conversational process depends
on whether this answer appears in the candidate components.

As to the second requirement, “selecting the most informative question”, we
adopt the information gain metric®® to quantitatively measure the information one
slot (question) can provide (if we know the value of this slot).

The core concept in information gain is entropy. Given a collection S, its entropy
value in state m can be calculated using the following formula:

The number ¢ means ho@’gfa}ﬁy( Ss’hi):ggu_pé) tlﬁg llection can be divided into,
and p; means the proportion of the ith sub-group. If we can not classify a collection
of components into sub-groups, its entropy is 0 (c=1, p;=1). After we acquire
information on slot n, the collection can be classified into different sub-groups
according to their various values on slot n, and the collection’s entropy is increased.
Information gain of slot n is defined as:

InformattonGaln(slot —_ n) = Entropy(Shuve—mr'nrmalinn—abmu—xlm_n) - Entropy(Shave-uu-inl'nrmall'on—abﬂul—.\'h)l_n)
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Different slots have different information gain. The larger the information gain
one slot has, the more information it can provide if we know the value for this slot.
That is, to find the most informative question is to find the slot with the largest
information gain.

For instance, there is a candidate component collection with the number of 100,
and there are two unknown slots in the new case, “has-image-file-type” and “has-
image-color-space”. According to the different values of the slot “has-image-file-
type”, appearing in the candidate components, “BMP”, “TIFF” and “JPEG”, the
collection can be divided into three sub-groups with the numbers, 30, 30 and 40
respectively. According to the different values on ‘“has-image-color-space”, “RGB”
and “XYZ”, the collection can be divided into two sub-groups with the numbers, 30
and 70 respectively. In this case, the information gains of these two slots are
calculated using the above formulae:

InformationGain(S,,, imag- fie-wge) =1-5711  InformationGain(S,,, imag.- cotor-spacec) = 0-8814
So the question based on the slot “has-image-file-type” is more Informative than

that of “has-image-color-space”. The question, “what type of images do you want to
deal with in this component?” is displayed to users with three possible answers,
“BMP”, “TIFF”, or “JPEG”.

4. RELATED RESEARCH AND DISCUSSION

Software is used to resolve practical problems, and software components
are existing solutions to previous problems, so component reuse can be
described as “trying to use the solutions to previous similar problems to help
solve the current problem”. Therefore, it is very natural to use CBR methods
to support component reuse. In fact, various types of CBR methods have
been explored and found useful for component reuse.

Object Reuse Assistant (ORA)® is a hybrid framework to use CBR to
locate appropriate components in an object-oriented software library (small-
talk component library). In this framework, both small-talk classes and
small-talk methods take the form of stored cases. The concepts in small-talk,
for instance, c-class, c-method and c-data-spec, and their instantiated objects
are connected together as a conceptual hierarchy. Though the conceptual
hierarchy can be seen as a representation method combining case-specific
knowledge and general knowledge, the retrieval process is knowledge-poor
(a new case is compared with stored cases based on how many attributes two
cases have in common).

IBROW? is an automated software application configuration project.
Users’ tasks (queries) can be decomposed into sub-tasks by matched task
decomposers, and sub-tasks can be decomposed further. Tasks or subtasks
can finally be solved by matched stored components. Both task decomposers
and components are referred to as PSMs (problem solving methods). The
output is an application configuration composed of stored components,
which satisfies users’ query. CBR is used at two levels in IBROW. The high
level is called constructive adaptation. In this level, PSMs take the form of
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cases, which are represented using feature terms, and a knowledge-poor
matching method (term subsumption) is adopted when searching the
possibly applied PSMs. At the low level, CBR is used as a heuristic
algorithm to realize the best-first searching strategy. Previously solved
configurations are stored as cases, and represented as feature terms. For each
intermediate state, the newly added PSM is considered. The stored
configurations in which the same PSM appears as a part are identified, and
the similarities between each of these configurations and the new problem
are calculated. The most similar configuration is selected, and its similarity
value is taken as the heuristic value to the involved intermediate state. As the
ORA system, IBROW uses a knowledge-poor retrieval process and only
supports tentative and manual interactions between users and the system.

Compared with these two CBR-based component retrieval systems, our
proposed conversational component retrieval model (CCRM) has two
advantages:

The first is that components are selected based on both their syntactical
similarities and semantic similarities. Selecting components based on their
semantic similarities with users’ query rather than only on syntactical
similarities is a promising research topic. However, the existing research
concerned with this topic mainly use domain knowledge to refine users’
queries before the searching process™ '" 2. In CCRM, besides the query
refinement using general thesaurus and domain-ontology, a special type of
knowledge-intensive CBR method, explanation-driven CBR, is adopted to
explore components’ context-based semantic similarities with a query during
the retrieval process.

The second is that users’ requirements are acquired interactively and
incrementally. Normally, component users prefer to provide their initial
query only based on their necessary requirements in order to avoid excluding
possibly appropriate components. Because of the looseness of the initial
query and the large number of available components, users usually still get
numerous candidate components. In CCRM, instead of letting users guess
and try what requirements they should specify further, an information gain
algorithm is used to provide users with the most discriminative questions to
refine their query interactively and incrementally.

A limitation of our method is its dependence on knowledge engineering.
The knowledge base combining both component specific cases and general
domain knowledge is assumed to exist initially. The construction of this
initial knowledge base puts a significant workload on the knowledge
engineering process.
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5. FUTURE WORK

The evaluation of CCRM is in process. The knowledge-intensive
similarity measuring process has been realized in the CREEK system, and
the conversational process is being added. We are building a knowledge base
for the components existing in the Dynamiclmager system, a visual and
dynamic image processing experimentation environment, in which there are
about 200 different image operating components.

Our current research focus is to use the knowledge-intensive method to
facilitate the discriminative question selection. Though the information gain
algorithm can select the most discriminative question automatically and
incrementally, it is knowledge-poor essentially. We plan to use knowledge-
intensive methods, especially the explanation-driven method, to remove the
candidate slots (questions) whose values can be inferred from users’ initial
query or previously answered questions, and to adjust the priorities between
slots which represent semantic relations, such as, abstraction, causality,
dependency and part-of relations. The hypothesis is that this will help to
identify the most informative question, shorten dialog length, and reduce
users’ cognitive workload.
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