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Abstract. Wetland, as one of the weakest ecosystems in the world, is 

deteriorating rapidly in many regions. Longfeng wetland is the biggest urban 

wetland in China, located in the inner of Daqing city, Heilongjiang Province. It 

is divided into two areas by Wolong road, the east is provincial natural reserve 

and the west is unprotected. This paper describes a remote sensing change 

detection approach used to assess Longfeng wetland change. Four images were 

used, i.e., Landsat MSS in August 1979, Landsat TM in July 1990 and in 

August 2001, LISS-III in July 2006. Linear spectral mixture model (LSMM) 

method was used to classify the wetland and the results were satisfying. The 

results showed that the land cover types of Longfeng wetland had been greatly 

affected by human civilities (such as city extension and fishery), which was 

more deeply in unprotected area than in natural reserve.  
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1   Introduction 

Wetlands account for only three to six percent of the earth's land surface, but they 

provide service of great value to human beings, for example, they can control flood, 

protect coastal zones, replay water supplies, improve water quality, produce 

agricultural product, and provide plant and wildlife habitat [1,2,3]. Despite these 

proven advantages, wetlands have been one of the weakest ecosystems in the world. 

In many regions wetlands are deteriorating rapidly [3,4]. 

The Longfeng wetland is located in the inner of Daqing city, Heilongjiang 

Province of China (figure 1). It is the biggest urban wetland in China. It is divided 
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into two areas by Wolong road, the east is provincial natural reserve and the west is 

unprotected. Daqing city is the largest petrochemical industry base in China. Over the 

last two decades (1985–2005), Daqing has undergone a high-speed economic 

development and environmental deterioration as well.  

The objective of the present study was to monitor the changes of Longfeng wetland 

using multi-temporal and multi-source remote sensing data, to understand its change 

patterns, and to analyze the relationships between natural and human factors and the 

deterioration of Longfeng wetland. To achieve this goal, the following 3 objectives 

were presented: 

1) Choose appropriate methods to classify these four multi-temporal images, and 

evaluate the classification accuracy; 

2) Monitor Longfeng wetland dynamics using four classified remote sensing 

images;  

3) Study the urban wetland dynamics; analyze the relationship between natural and 

human factors and these changes. 

2  Study site  

The printing area is 122 mm × 193 mm. The text should be justified to occupy the 

full line width, so that the right margin is not ragged, with words hyphenated as 

appropriate. Please fill pages so that the length of the text is no less than 180 mm, if 

possible. 

Covering an area of 8,000 ha, the Longfeng wetland is located in the middle of 

Songnen Plain in Heilongjiang Province in the northeast of China, between 46°35′

—46°41′ N latitudes and 125°20′—125°26′ E longitudes(figure 1). The 

study area has typical characteristics of continental monsoon climate. 

Longfeng wetland is encompassed by two districts of Daqing city, i.e., Longfeng 

and Wolitun, traversed by Wolong road and Binzhou railway, approximately 8km 

from the centre of Daqing city. It is very helpful to improve and maintain ecological 

system and environment of Daqing city. However, the fast development of Daqing 

city leads to the rapid reduction and deterioration of the Longfeng wetland. 

 
Fig. 1. Location of Longfeng wetland in Heilongjiang province, China. 



3 Methodology 

In our papers, one hybrid classification approach was used. Firstly, based on the 

linear spectral mixture model (LSMM), the imagery was transformed into 

corresponding end-member bands (including water body, bare land, and green 

vegetation). In the result of linear spectral unmixing, three classes, i.e. water body, 

bare land and green vegetation, can be easily extracted, because the pixel values of 

these three classes are highest in corresponding band. To make change detection, only 

three classes are not far enough. According to the characteristics of Longfeng wetland, 

the imagery would be classified into 6 classes, and the ranges of corresponding pixel 

value of the 6 classes were shown in table 3. Through comparing the value of 3 end-

member bands of each pixel, the 6 classes were very easily classified. 

3.1 LSMM method 

Linear spectral mixture model is based on the idea that a continuous scene can be 

modeled as the sum of the radiometric interactions of individual cover types weighted 

by their relative proportions [5]. Mathematically, the linear spectral mixture analysis 

framework can be expressed as follows:  
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Where Ri is the composite reflectance of the mixed spectrum in band i, f is the 

weight of end-member(i) in the mixture, Rj is the reflectance of that end-member in 

band j, j is the number of end-members, i   is the error in the sensor band i. Eq.(3) 

constraints the weight and the sum of the weight is allowed to be between 0 to 1. 

According to these formulas the value of a pixel must equal the sum of the values 

of the end-members times their abundance. The fit of the model can be assessed by 

the root mean square error (RMSE): 
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Where i is the number of bands used in the spectral unmixing. Higher values of 

RMSE indicate regions that could contain lacking end-members. 

3.2 End-members selection 

The key to a successful mixture model is the selection of appropriate end-members 

[6,7]. These end-members principally being pure reflectance spectra that are derived 

by a specific target material with no mixing with any other materials are usually 

selected either from spectral libraries built from field surveys [8] or from the image 

data. 



In Longfeng wetland, bare land (BL), water body (WB) and green vegetation (GV) 

were chosen to represent the spectral variability. In order to successfully complete the 

spectral unmixing, it was very essential to accurately estimate the spectral end-

members for each component of 3 end-members. These end-members were 

determined from the two-dimensional scatter plot of RED and NIR bands. In order to 

get the purest pixels, the MNF transformation was employed to the four images, and 

then PPI was computed. Those pixels with PPI great than 10 were extracted and 

projected to the two-dimension of RED and NIR bands. The PPI images and two-

dimensional scatter plot were shown in figure 2. Figure 2 (b) showed that rather 

symmetrical patterns in pixel distributions allowed the appropriate identification of 

three dominant spectral end-members, bare land (BL), green vegetation (GV) and 

water body (WB), at the extremes of image feature space of red (MSS B2, LISS-III 

B2, TM B3) and NIR (MSS B4, LISS-III B3, TM B4) bands. An average of pixels of 

these vertices were calculated and used in LSMM. The BL end-member was 

identified at the top right vertex while GV end-member on the left vertex of the 

scatter plots. The WB end-member was selected from the pixels at the origin of the 

scatter plots. 

End-member spectra were shown in figure 3, and used in the LSMM. After using 

image normalization and the same end-member selection method, the end-member 

spectra of 4 dates were very similar. Therefore, using these end-member spectra to 

analyze 4 scenes assured that the 4 LSMM results had more comparability. 
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Fig. 2. PPI images (a) and the corresponding two-dimensional scatter plots of red and NIR bands(b). a1, a2, 

a3 and a4 denote 1979 MSS, 1990 TM, 2001 TM and 2006 LISS-III image. In b1, red band is MSS B2 and 

NIR is MSS B4; In b2 and b3, red band is TM B3 and NIR is TM B4; In b4, red band is LISS-III B2 and 
NIR is LISS-III B3. End-members derive from b1, b2, b3 and b4.  

 

Fig. 3. End-member spectra used in LSMM. These end-member spectra were respectively derived from 4 

temporal images. (a) is the spectra of bare land (BL); (b) is the spectra of green vegetation (GV); (c) is the 
spectra of water body (GV). 

3.3 LSMM result 

The primary results of LSMM were separate images for each of the end-members 

(BL, GV and WB) containing an estimate of the percentage of that end-member in 

each pixel. When the model was run, each pixel value corresponded to the fraction of 



BL, GV and WB in that pixel and the range of fraction values was between 0 and 1. 

Figure 4 illustrated the fraction images of the 4 dates. 

After achieving LSMM results of the 4 date’s images, the six classes were 

identified in LSMM results. Some samples of 6 classes were extracted from the 2006 

image, based on the investigated ground truth information and GPS location. Then the 

characteristics of 6 classes were obtained from 2006 image. According to these 

characteristics, other dates’ samples of 6 classes were chosen, and the spectral curve 

of 6 classes at each temporal were extracted. Figure 5 is the spectral curve of 6 classes 

at the end-member band in 2006 LSMM result. 

Table 1.  The classification algorithm 

Classes Algorithm* Step 

Bare land and construction (BLC) BL > 1  1 

Dense reed (DR) GV > 1 1 

Open water (include fishpond) (OW) WB > 1 1 

Sparse reed (SR) BL < WB & BL < GV 2 

Dry grassland (DG) WB <BL & WB < GV 2 

Muddy area (MA) GV < BL & GV < WB 2 

* ‘BL’, ‘GV’ and ‘WB’ represent the pixel value normalized in corresponding band. 

 

 

Fig. 4. Fraction images for three end-members, bare land (BL) in red, green vegetation (GV) in green and 

water body (WB) in blue, obtained by LSMM. 
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Fig. 5. Mean curves of 6 classes at the end-member band in 2006 LSMM result. 

4   Results and discussion 

4.1   Land cover change result 

 

We had only survey data in 2006, and land types in wetland changed greatly, so only 

the error in 2006 was analyzed. Because of the consistent classification method, 

classification accuracy of other years cannot be low. Error matrices were used to 

assess classification accuracy, shown in table 5 for 2006. The overall accuracy for 

2006 was 90.49%, with Kappa statistics of 88.57%. User and producer accuracies of 

individual classes were consistently high, ranging from 75% to 100%.(Table 4) 

 

Table 2.  The error matrices of classification for 2006 

Class BLC DR OW MA SR DG Total 
User 

Acc. 

BLC 171 0 0 0 0 0 171 100 

DR 0 218 0 0 23 34 275 79.27 

OW 0 0 181 0 0 0 181 100 

MA 1 0 0 198 26 0 225 88 

SR 0 1 30 0 153 0 184 83.15 

DG 0 0 0 0 0 173 173 100 

Total 172 219 211 198 202 207 1209   



Prod. 

Acc. 
99.42 99.54 85.78 100 75.74 83.57   

Overall Accuracy = 90.49% 

Kappa Coefficient = 88.57% 

 

Classification maps were generated for all four years (figure 4) and the individual 

class area and change statistics for the four years were summarized in table 6.  

From 1979 to 2006, bare land and construction land increased approximately 500 

ha, and open water increased 850 ha while muddy area decreased 1650 ha. Relatively, 

bare land and construction land increased 185.20% from 1979 to 2006, with the 

greatest increase occurring from 1990 to 2001;open water increased 494.41%, while 

muddy area decreased 57.36%. Compared to the changes with the former mentioned 

three land uses, dense reed, sparse reed and dry grassland changed slightly between 

1979 and 2006. In 1979, the proportion of these three classes was, respectively, 

15.37%, 24.18% and 19.19% and changed to 18.87%, 27.31% and 16.77% in 2006. 

The variations were only 3.5%, 3.13% and 2.42%. 

To further evaluate the results of land cover conversions, matrices of land cover 

changes from 1979 to 1990, 1990 to 2001, and 2001 to 2006 were created (Table 5). 

In the table, unchanged percentages were located along the major diagonal of the 

matrix. These results indicated that the muddy area had the most variation with the 

least unchanged percentage in three periods, respectively, 12, 0 and 14. From figure 6, 

we also found this great change. For instance, highlighted area a (a1 and a2) in figure 

6, indicated the change process MA→BLC; b (b1 and b2) showed the process MA→

DR or SR→OW; c illustrated MA→DG, and d was MA→BLC→MA. 

Table 5 showed the BLC was stable with almost highest unchanged percentage in 

three periods. This stabilization owed to the construction in BLC, which supported by 

highlighted a (figure 6). In highlighted area a, approved by field survey, a1 was the 

urban expansion of Wolitun, and a2 was a fishing workshop. Highlighted area showed 

if the MA were changed to BLC then the changed area were not transition but only 

expanded. Nevertheless, we also found the BLC conversion to other classes. In the 

study area, bare land was formed as a result of salinization, and its variation had close 

relation with rainfall. A example is highlighted area d (figure 6), showing the process 

MA→BLC→MA. 

Table 3.  Transition between the major land use types (area in %) in the Longfeng wetland. 

Land use type BLC DR OW MA SR DG 

1979-1990             

BLC 38  2  24  16  8  8  

DR 5  21  15  7  44  7  

OW 0  35  43  1  20  1  

MA 7  11  27  12  33  10  

SR 1  26  21  2  44  5  

DG 3  28  22  6  35  6  



1990-2001             

BLC 82  0  1  0  4  12  

DR 1  38  2  7  51  2  

OW 10  17  12  7  48  6  

MA 40  2  7  0  19  31  

SR 3  28  3  10  54  2  

DG 17  7  1  0  25  48  

2001-2006             

BLC 47  2  10  14  9  15  

DR 1  47  7  13  24  8  

OW 9  5  55  13  16  2  

MA 2  8  23  14  50  3  

SR 4  16  11  17  37  15  

DG 6  3  5  12  6  67  

5   Conclusion 

Longfeng wetland located in Daqing city is one of the biggest wetlands in China. 

Because of the fast development of Daqing city, this wetland had been destroyed and 

occupied to some extent. This paper analyzed quantitatively the change pattern of 

Longfeng wetland using multi-temporal remote sensing data. This research aimed to 

explore the long-term dynamics in land cover and the change driving forces in 

Longfeng wetland, and revealed that there were substantial land use changes in the 

area from 1979 to 2006. General patterns and trends of land use change in the area 

were evaluated by: (1) classifying images used LSMM method and get satisfying 

result; (2) comparing the classified results of 4 dates; (3) analyzing the major changes 

in the whole area and these changes in relation to natural and human factors. In 

addition, the different change patterns between protected area and unprotected area 

were compared, which indicated the influence of human activities on this area and the 

protection function of natural reserve. 

The drawback of this research is that there are not so many classes, owing to the 

limits of remote sensing image. Especially, caused by spectral similarity, it is very 

difficult to separate bare land into construction and water into rearing pond, which 

affects the correlation analysis between changes and human activity. However, in this 

research, according to the field survey result and the special imagery characteristics 

(there are many roads between ponds or constructions), the influence is minimized. 

This study showed that the ecosystem of Longfeng wetland had been threatened by 

the rapid development of Daqing city. In unprotected area, many areas had been filled 

with rearing pond and urban expansion. However, in natural reserve, the wetland had 

been protected very well, the areas of dense reeds had consistently increased, and the 

urban expansion did not occupy the areas of natural reserve (figure 8). Therefore, 



establishment of natural reserve is a good method to prevent the degradation and 

improve the ecosystem of wetland. 
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