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Abstract. The disease detection by means of hyperspectral reflectance is 

influenced by the spectral differences between frontside (adaxial surface) and 

backside (abaxial surface) of a leaf inevitably. Taking yellow rust as an 

example, this study investigated the spectral differences between frontside and 

backside of healthy and diseased wheat leaves at grain filling stage using large 

size samples. We attempted to detect yellow rust with reflectance that was 

sensitive to the disease and insensitive to the orientation of leaves. The spectral 

difference between frontside and backside of leaves was analyzed by band 

ratioing and a pairwise t-test. The bands that were insensitive to the orientation 

of leaves were identified with a thresholding method. Then, with the aid of an 

independent t-test analysis, we recognized the bands that were sensitive to the 

disease. The overlapped bands were applied for developing models that 

quantifying disease severity by fisher linear discrimination analysis (FLDA). 

The results suggested that the bands within 606-697nm and 740-1000nm were 

suitable for disease detection yet insensitive to the orientation of leaves. Based 

on these bands, the model accuracies reached 71% for FLDA. These bands can 

be used as a basis for further selection of appropriate bands to detect yellow rust 

at canopy level.  
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1 Introduction 

Winter wheat (Triticum aestivum L.) is one of the most important crops in China. 

Yellow rust disease which is induced by Puccinia striiformis f. sp. Tritici, is one of 

the most destructive diseases that has a severe impact on both yield and grain quality 

of winter wheat [1-2]. Currently, scouting by human being is the widely used method 

for crop diseases inspection, which is not only time consuming and labor intensive, 

but also expensive and subjective. As the only way in obtaining the disease 

distribution information spatially, remote sensing is a promising alternative to 

traditional methods in disease monitoring [3]. A number of studies were conducted in 

understanding the spectral characteristics of yellow rust [4-7]. The wavelengths at 

446-725 nm and 1380-1600 nm were identified as sensitive bands for disease 

detection [8]; Based on the spectral reflectance at 680 nm, 725 nm and 750 nm, 



Moshou et al. [9-10] successfully distinguished infected wheat leaves from healthy 

ones at an early infection stage. It should be noted that in most of the studies that were 

conducted at leaf level, the leaf spectra were measured only for the frontside of 

leaves. However, in fact, due to the curling of leaves, the frontside and backside of 

leaves are presenting in a mixed pattern in the nadir view at canopy level. The 

spectral difference between the frontside and backside of leaves may complicate the 

spectral response at canopy level and even lead to the failure of disease detection. 

Therefore, it is necessary to understand the spectral difference between frontside and 

backside of healthy and diseased leaves, and search for those bands that were 

sensitive to the disease yet insensitive to the orientation of leaves. However, the 

spectral difference of frontside and backside of leaves is rarely reported for healthy or 

diseased wheat plants. Our objectives were: (1) to analyze the spectral difference 

between frontside and backside of leaves at grain filling stage, and to identify bands 

that were insensitive to the orientation of leaves, (2) to identify those bands that were 

sensitive to the occurrence of disease, and (3) to develop model for disease detection 

based on those identified bands. 

2 Materials and methods 

2.1 Study area and yellow rust inoculation 

The experiment was conducted at Beijing Xiaotangshan Precision Agriculture 

Experimental Base, in Changping district, Beijing (40°10.6’ N, 116°26.3’ E) on the 

2010-2011 growing season. The cultivar of winter wheat was ‘Jingdong 9843’, which 

was moderately susceptible to yellow rust. The soil at this site is a silt-clay loam. The 

average topsoil nutrient status (0-0.30 m depth) was as follows: organic matter 

1.42-1.48%, total nitrogen 0.08-0.10%, alkali-hydrolysis nitrogen 58.6-68.0 mg kg
-1

, 

available phosphorus 20.1-55.4 mg kg
-1

, and rapidly available potassium 117.6-129.1 

mg kg
-1

. The experimental field received 200 kg ha-1 nitrogen and 450 m3 ha
-1

 water, 

which was a recommended rate for this cultivar. Spray method was used in 

inoculating yellow rust spores to wheat plants. Two different concentrations of spore 

solutions were applied to generate various infection levels. 

2.2 Inspection of disease severity 

The disease severity of each sample was determined by visual estimation of the cover 

percentage of pustules on the leaf [11-12]. To minimize the error induced by 

investigator, the diseased leaves were inspected by one investigator. In this study, the 

disease severity of leaves was determined on the basis of the proportion of infected 

region on the leaf (0-100%). Apart from the healthy leaves, all diseased leaves were 

grouped into 3 severity classes: slight for proportion within 5-25%, moderate for 

proportion within 25-60%, and heavy for proportion over 60%. Since those leaves 

with an infected proportion less than 5% were actually difficult to be visually 

separated from healthy ones, they are classified as healthy leaves. 



2.3 Leaf sampling and spectral measurement 

The leaf sampling and measurement were conducted on May 23 (grain filling stage) 

in the year of 2011. The spectra of frontside and backside were measured for each 

leaf. The leaves were cut from the plants in the fields with scissors. After that, the 

samples were immediately packed with ice bags and transported to a nearby indoor 

laboratory to be measured. A total of 91 leaf samples were measured, including 26 

healthy leaves and 65 diseased leaves. All samples were separated for model 

calibration (60%) and validation (40%) randomly. 

Leaf spectral measurements were made by a FieldSpec® UV/VNIR 

spectroradiometer (ASD Inc., Boulder, Colorado, USA) over the 350-2500 nm 

wavelengths, coupling with an ASD Leaf Clip. The spectrum of a white Spectralon 

reference panel (99% reflectance) was measured once for every 10 leaf 

measurements. Ten readings were recorded and then averaged to obtain a spectral 

measurement for each leaf. 

2.4 Comparison between frontside and backside of leaves 

Apart from comparing the frontside and backside of leaves by their original spectra, 

the band ratioing and pairwise t-test were adopted for the spectral comparison. The 

band ratioing was used to emphasize the spectral difference between frontside and 

backside of leaves, whereas the pairwise t-test provided a more explicit way to 

quantify the spectral differences between two sides.   

2.5 Band selection and disease severity estimation 

The significance level of spectral differences between healthy and diseased leaves 

was quantified by an independent t-test analysis for each band, whereas the 

significance level of spectral differences between the frontside and backside of leaves 

was quantified by a pairwise t-test. To eliminate the impact from the leaf orientation, 

only those bands that were sensitive to disease yet insensitive to the orientation of 

leaves were chosen. Such band selection was facilitated by an overlapping procedure 

based on the results from the independent t-test and pairwise t-test as illustrated 

above. The efficiency of these overlapped bands was then tested by comparing the 

disease severity estimates generated by a Fisher linear discriminate analysis (FLDA) 

with the measured value [13]. Five measures, overall accuracy (OAA), average 

accuracy (AA), producer's accuracy, user's accuracy, and kappa coefficient were 

calculated from confusion matrix to evaluate the accuracies of the discriminate model. 



3   Results 

3.1   Spectral differences between frontside and backside of leaves 

The curves of raw reflectance, band ratios between frontside and backside, and 

corresponding p-values of pairwise t-test were summarized in Fig. 1. From the ratio 

curves, it is obvious that the spectral differences between the frontside and backside 

of healthy leaves showed a similar pattern with diseased leaves. The spectral 

reflectance of backside was higher than the frontside in most of the bands, except for 

the bands at 646-690 nm. For the results of pairwise t-test, a threshold of 

p-value<0.05 was used to identify those insensitive bands to the orientation of leaves. 

The identified bands differed greatly in their positions between healthy and diseased 

samples. The bands within 741-923 nm were found to be orientation insensitive for 

healthy leaves, whereas the bands within 606-697 nm and 740-1000 nm were 

identified as orientation insensitive for diseased leaves. It should be noted that most of 

these bands were located at some specific positions that were responsible for the 

absorption of chlorophyll and water, and cellular structure. 
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Fig. 1. Curves of original reflectance, band ratios between frontside and backside and their 

corresponding p-values based on pairwise t-test  

(a, b) curves of original reflectance; (c, d) curves of band ratio; (e, f) curves of p-value. “H” 

indicates the healthy leaf samples; “D” indicates the diseased leaf samples. (+) indicates the 

frontside of leaves, (-) indicates the backside of leaves 

 

3.2   Selection of effective wavelengths and disease severity determination 

As shown in Fig. 2, the spectral difference for most bands reached the significant 

level except for several bands at the beginning of the spectrum. This phenomenon 



indicated that the disease can induce a clear spectral response within a wide spectral 

region from visible to shortwave near infrared regions. Combining with the bands that 

were selected in section 3.1, it is possible to generate bands that were sensitive the 

disease yet insensitive to leaf orientation through an overlapping procedure. As shown 

in Fig.3, only the bands at 606-697 nm and 740-1000 nm were retained. These 

overlapped bands are theoretically suitable for disease detection since they are able to 

suppress the disturbance from the leaf orientation when monitoring yellow rust 

disease. Based on these bands, the FLDA model was established based on the 

calibration dataset (Table 1). The model accuracies were satisfactory in general, with 

OAA of 0.71 and kappa coefficient of 0.61 for calibration samples, and OAA of 0.70 

and kappa coefficient of 0.59 for validation samples (Table 1). 
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Fig. 2. Curves of the p-values of independent t-test between disease severity and band 

reflectance 

(+) indicates the frontside of leaves, (-) indicates the backside of leaves, (+&-) indicates the 

pooled of both. 
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Fig. 3. Overlapping band selection  

“Insensitive(+&-)” represent bands that are insensitive to the orientation; whereas 

“Sensitive(D&H)” represent bands that are sensitive to the yellow rust. 

Table 1. Confusion matrices created based on the FLDA models 

Healthy Slight Moderat

e

Heavy Sum U.'s a. (%) OAA AA Kappa

Healthy 25 4 1 0 30 83.33 0.71 0.73 0.61

Slight 5 23 5 0 33 69.70

Moderate 2 5 12 1 20 60.00

Heavy 0 2 6 17 25 68.00

Sum 32 34 24 18 108

P.'s a. (%) 78.13 67.65 50.00 94.44

Healthy 16 4 0 0 20 80.00 0.70 0.73 0.60

Slight 2 16 4 0 22 72.73

Moderate 2 4 8 0 14 57.14

Heavy 0 0 6 12 18 66.67

Sum 20 24 18 12 74

P.'s a. (%) 80.00 66.67 44.44 100

Validation

Reference

Calibration

 
OAA is overall accuracy; AA is average accuracy; P.'s a. represents producer's accuracy; U.'s a. 

represents user's accuracy 

3 Discussion and Conclusion 

In this study, based on the leaf spectra data with a large sample size, the reflectance of 

frontside and backside were found to be with significant difference at several bands. 

This finding was in good agreement with Zhou and Wang (2002)’s study, which 

compared the reflectance of frontside and backside of rice leaves under different 

nitrogen treatments [14]. Differences in surface reflectance were attributed to the 

dorsiventral morphology of wheat leaves. This might related with the larger portion of 

sclerenchyma, vascular bundle and bulliform cells on the upper leaf side of 

graminaceae [15-16]. The absolute difference of reflectance between the two surfaces 

was about 4% for the healthy leaves, and 3% for the diseased leaves, which means 

that the occurrence of disease diminished the spectral difference between frontside 

and backside of leaves. It was found that the reflectance of yellow rust pustules was 

higher than healthy positions at visible spectral region [17]. The appearance of those 

pustules at both surfaces for diseased leaves may whiten the spectral difference 

between the frontside and backside for healthy positions, which thereby lead to a 

reduction of spectral difference for those diseased leaves. The spectral difference 



between frontside and backside was relatively weak, comparing with the spectral 

signals that were induced by disease. 

With a spectral overlapping procedure, the spectral reflectance at 606-697 nm and 

740-1000 nm bands were selected for the detection of yellow rust since it can 

eliminate the impact from the orientation of leaves. However, it should be noted that 

the present study was conducted at leaf scale, which did not consider more 

complicated situations that might existed at canopy scale. For example some leaves 

may present as partially frontside and partially backside. To account for this situation, 

the spectral imaging techniques and some radiometric transferring models, such as 

PROSPECT+SAIL should be incorporated for mechanism study and model 

development. 
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