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Abstract. The standardized precipitation index (SPI) was used to quantify the 

classification of drought in the Guanzhong Plain, China. The autoregressive 

integrated moving average (ARIMA) models were developed to fit and forecast 

the SPI series. Most of the selected ARIMA models are seasonal models 

(SARIMA). The forecast results show that the forecasting power of the ARIMA 

models increases with the increase of the time scales, and the ARIMA models 

are more powerful in short-term forecasting. Further study was made on the 

correlation coefficient between the actual SPIs and the predicted ones for the 

forecasting. It is shown that the ARIMA models can be used to forecast 1-

month leading values of all SPI series, and 6-month leading values for SPI with 

time scales of 9, 12 and 24 months. Our study shows that the ARIMA models 

developed in the Guanzhong Plain can be effectively used in drought 

forecasting.  
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1 Introduction 

Drought is a slow-onset and creeping natural hazard that occurs in all regions of the 

world. Prolonged multiyear drought has caused significant damages in natural 

environment as well as in human lives. The Estimation for the cost of drought in the 
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United States ranges from $6 to $8 billion annually [1]. In China, the amount of loss 

caused by drought ranks the first in all natural hazards. With the increase of the 

population and the severity of drought, an effective mitigation of the impacts caused 

by drought is imperative. 

In 1965, Palmer presented a drought index that incorporated antecedent precipitation, 

moisture supply, and the pioneering evapotranspiration [2]. McKee et al. developed 

the SPI as an alternative to the Palmer Index for Colorado [3]. The SPI is considered 

to have several advantages over the PDSI [3,4,5]. The first advantage is that the SPI is 

based only on precipitation [3]. Due to this reason, the SPI is also not adversely 

affected by topography. Second, the SPI is calculated on various timescales, which 

allows it to describe the various types of droughts: the shorter time scales for 

meteorological and agricultural droughts, and the longer ones for hydrological 

drought. Third, because the SPI is normally distributed, the frequencies of drought 

events at any location for any time scale are consistent. Hayes et al. argued that the 

SPI detects moisture deficits more rapidly than the PDSI, which has a response time 

scale of approximately 8 to 12 months [5]. Paulo et al. used several drought indices in 

Portugal, and found that the SPI showed its superiority for the purpose of drought 

monitoring [6,7]. Labedzki used SPI to analyse the local meteorological drought and 

evaluate the drought risk in Bydgoszcz, Poland [8]. 

The time series forecasting has been widely applied and become an important 

approach of drought forecasting. One of the most widely used time series model is the 

autoregressive integrated moving average (ARIMA) model [9]. The wide application 

of the ARIMA model in many areas is due to its flexibility and systematic search 

(identification, estimation and diagnostic check) in each stage for an appropriate 

model [10]. The ARIMA model has several advantages over other approaches, such 

as moving average, exponential smoothing, neural network, and in particular, its 

forecasting capability and its richer information on time-related changes [11, 12]. The 

ARIMA models have also been used to analyze and model hydrologic time series 

[11,13,14]. Fernandz et al. used SARIMA model to forecast stream-flow in a small 

watershed in Galicia [15]. Durdu developed linear stochastic models for forecasting 

droughts in Turkey using SPI series as drought index [16]. 

The Guanzhong Plain is located in the northwest of China. This area is subjected to 

water stress and drought conditions. The frequency of drought is on average about 

once in 7 years [17]. The Plain has flat terra and fertile soil, and is the political and 

economical center of Shaanxi Province. Drought forecasting for this area can help to 

mitigate the effects of drought, and is in favor of effective water resource 

management. In this paper, The SPI is used as a drought index to describe the drought 

condition of the Guanzhong Plain. The SPI time series of multiple time scales in the 

Guanzhong Plain are calculated. The ARIMA models are applied to simulate and 

forecast the SPI series. 



2 SPI time series forecasting models 

The SPI time series of multiple time scales can be computed (typically 3, 6, 9, 12 and 

24 months) according to the McKee’s method[4]. The classification of dry and wet 

spells resulting from the values of the SPI is shown in table 1. 

Table 1. Drought classification of SPI. 

SPI value Class 

>=2 Extremely wet 

1.5 to 1.99 Very wet 

1.0 to 1.49 Moderately wet 

-0.99 to 0.99 Near normal 

-1 to -1.49 Moderately dry 

-1.5 to -1.99 Severely dry 

<=-2 Extremely dry 

 

The SPI data set from 1966 to 2003 is used for model development. The data set of 

2004 is used for model validation. Based on the steps for developing the ARIMA 

models [18,19], the ARIMA models fit for SPI3, SPI9, SPI12 and SPI24 are identified 

respectively. They are SPI3, MA(2); SPI6, ARIMA(1,0,0)(0,0,1)6; SPI9, 

ARIMA(1,0,0)(0,0,1)9;  SPI12, ARIMA(1,0,0)(0,0,1)12; and SPI24, 

ARIMA(0,1,0)(2,1,1)24. It is observed that most of the SPI time series have the 

seasonal features. As the time scale increases, the seasonal feature is more and more 

distinct, and the series need to be seasonally differenced.  

The forecast is done for 12 leading months using the selected models, i.e., forecast the 

SPI values in 2004. By comparing the predicted data with the original data, the 

forecasting capability of the models is discussed. 

 

3 Results and discussion 

SPI3, SPI6, SPI9, SPI12 and SPI24 are respectively fitted by the selected best models 

from historical data. The forecast is done with 12-month lead-time. The values of SPI 

in 2004 are predicted. Fig. 1 shows the plots of fitting (forecasts for 1966-2003) and 

forecasting (forecasts for 2004) using the chosen ARIMA models, in which only the 

values of SPI in 1990-2004 are displayed for clarity.  

 



 

 
 

Fig. 1. The SPI series, the fitted series and the forecasts for 12 months ahead (1990-2004). The 

curve with stars is for the calculated SPI. The one without stars is for fitting and forecasting. 

The predicted values of SPI for 2004 are on the right side of the reference line. 

Observing the fitting figure, how well the chosen model fits the data series is 

indirectly shown. In Fig. 1, it is obvious that the fitted data follow the original data 

very closely, especially for higher SPI series (SPI12 and SPI24). This indicates that 

the chosen best ARIMA models capture the patterns of the SPI series. However, the 

models that fit the data well do not all have good forecasting capability. The 

predicting power of the ARIMA models should be valuated. The forecast with 12-

month lead-time are analyzed. It is found that the predicted SPI values fit the original 

ones better and better with the increase of the time scale in Fig. 1. The values of SPI3 

predicted for 2004 tend to be constant. However, this situation is changed in SPI6, 

SPI9, SPI12 and SPI24. The predicted data gradually tends to present the stochastic 

change of the SPI series. It indicates that the forecasting power of the ARIMA models 

is improved as the time scale increases. 

By comparing the calculated values with the predicted ones, the absolute percentage 

errors (APE, 100/)ˆ(  iii XXX ) are calculated as an analysis on the forecasting 

power, as shown in Table 2. It is obvious that all SPI series have less APEs on 1-

month ahead forecasting. The mean absolute percentage error (MAPE) is 5.8. This 

demonstrates that the ARIMA models have better result on short-term forecasting. 

The APEs seem to be less for higher SPI series (SPI12 and SPI24). For 1-month 

ahead, the APEs of all SPI series decrease with the increase of the time scale. For 1-9 

month ahead, the APEs of SPI12 are all less than 6, and the APEs of SPI24 are 

generally less than 10, with only two exceptions (13.3 and 17.4). These results 

indicate that if the SPI series have a longer time scale, the ARIMA models will have a 

better forecasting power. 



Table 2. Absolute percentage errors of SPI3, SPI6, SPI9, SPI12 and SPI24 for 12-month lead-

time. Only values less than 20 are shown.  

 

In order to exactly determine how good the forecasting power of the ARIMA models 

is, the forecasts are done with 1-month to 8-month lead-time. For example, 2-month 

lead-time forecast means that during March 2004 the forecast for May 2004 is 

performed. The correlation coefficients between the actual SPIs and the predicted 

ones from the ARIMA models are used as the criteria to evaluate the fit. Table 3 

provides the coefficients for 1-8 month lead-time. It is observed that with more and 

more longer lead-time the coefficient decreases. To a given lead-time, the coefficient 

gradually increases with the increasing of the time scale, which shows that the 

ARIMA model is an appropriate model for the SPI series, and its power of forecasting 

is better for higher SPI series (SPI9, SPI12 and SPI24). Evidently, the ARIMA 

models give good forecast results for 1-month lead-time with the correlation 

coefficients ranging from 0.873 to 0.980. For high SPI series (SPI9, SPI12 and 

SPI24), the forecasts have good results up to 6-month lead-time with the correlation 

coefficients larger than 0.7. Therefore, the selected ARIMA models have a better 

power of forecasting for the SPI series. The ARIMA models can be used to forecast 

the change of the series of SPI3 and SPI6 one to two months ahead, and the future 

change of the series of SPI9, SPI12 and SPI24, six months ahead. The ARIMA model 

therefore exhibits a strong forecasting capability. 

Table 3. Correlation coefficients of different lead-time. Blank cells are for the non-existing 

correlation coefficients. 
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SPI

24 

0.98

0 

0.885 0.876 0.852 0.821 0.77

5 
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4  Conclusions 

The Guanzhong Plain is one of the areas subjected to drought. In this study, the 

ARIMA models are developed to forecast drought using the SPI as the drought index. 

The results show that the selected ARIMA models are appropriate for the SPI series. 

Exactly the same as in many other applications[10,14], the ARIMA models 

demonstrate better capability in short-term forecasting. The absolute percentage errors 

(APE) between the actual SPIs and the predicted ones for 12-month lead-time are all 

less on 1-month ahead forecasting. The correlation coefficients between the actual 

data and the predicted ones are all larger on 1-2 month lead-time forecasting. 

Moreover, in this study, the ARIMA models also demonstrate a better forecasting 

power even on 6 month leading values for SPI9, SPI12 and SPI24. The study also 

shows that the ARIMA models have a good forecasting capability for the SPI series 

with longer time scales. The APEs are less for higher SPI series (SPI12 and SPI24). 

To a given lead-time, the correlation coefficient gradually increases with the time 

scale increasing. This may be because the increase in the length of the time scale 

effectively reduces the noise of the SPI series. Therefore, the selected best ARIMA 

models developed from the SPI time series can be used for drought forecasting in the 

Guanzhong Plain. 

This study contributes to the exploration of a feasible way on drought forecasting in 

the Plain. The results demonstrate that the developed ARIMA models have a good 

forecasting power and can be used for drought forecasting. Further study should be 

focused on improving the precision of the model forecasting, and on studying the 

types of droughts described by the SPI series with different time scales, which will 

effectively assist the local authorities to mitigate the impacts caused by drought, and 

to reasonably use the water resources. 
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