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Abstract. Remote sensing based phenology detection method has been 

employed to study agriculture, forestry and other vegetations for its potential to 

reflect the variations in climate change. These studies usually utilized time 

series Normalized Difference Vegetation Index (NDVI) generated from various 

sensors through a Maximum Value Compositing (MVC) process, which 

minimized the contamination from cloud and simultaneously introduce 

degradation of temporal accuracy. In this study, we assess the impact of 

temporal resolution on crop phenology derivation researches by comparing 

three different Moderate Resolution Imaging Spectroradiometer (MODIS) 

datasets: daily surface reflectance, 8 day composited surface reflectance and 16 

day composited NDVI. The surface reflectance data were first filtered by 

employing auxiliary data which contained quality and viewing geometry 

information, and then used to calculate NDVI with specific date. A least square 

method was taken to fit the survival data points to double logistic function. And 

finally, seven time-related metrics were obtained and matched with field 

observation crop phenology stages. These remote sensing derivate phenology 

dates were compared to National Agricultural Statistics Service (NASS) weekly 

crop progress reports to evaluate the capability of these datasets in temporal 

sensitive studies. The results illustrated that daily surface reflectance datasets 

were the most accurate source for time-sensitive studies. However, extra 

ancillary datum and appropriate denoising techniques should be applied to 

reconstruct the time series curve. Phenology matching process is a necessary 

step before detecting phenological information from remote sensing imagery 

for specific land cover type since same phenological stages of different crop 

types might have different counterparts on time series curve. 

Keywords. Crop phenology; temporal resolution evaluation; least square; 

double logistic function fitting 
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1. Introduction 

Remote sensing based phenology detection techniques offer great opportunity for 

many climate change related researches, such as land surface vegetation dynamics 

(Beck et al., 2006), agriculture management (Garrigues et al., 2008), forestry 

monitoring (Ahl et al., 2006) and global warming (Parmesan, 2007). Phenology is 

the study of the timing of cyclical events in nature such as springtime vegetation 

budburst or seasonal bird migrations (Badeck et al., 2004), while crop phenology 

refers to the developments, differentiation and initiation of organs of a crop 

(Hodges, 1991). Many researchers have studied phenological change using field-

collected data, which is prohibitive for large scale monitoring due to the need for 

repeat data collection in order to monitor change from previous years (Thayn and 

Price, 2008). The situation has been totally changed after satellite sensor imagery, 

which record multi-scale (spatial or temporal) information of ground surface, was 

applied to monitor land vegetation dynamics. 

A number of research works have been conducted to monitor „generic or 

mixed‟ vegetation phenological events (Justice et al., 1985; Reed et al., 1994; 

Zhang et al., 2003; Fisher et al., 2006; White and Nemani, 2006; Stöckli et al., 
2008), and many efforts have been made to develop a general procedure for 

remote sensing based crop phenology detection. Sakamoto et al. (Sakamoto et al., 

2005) generated planted, heading and harvest dates of rice paddy in Japan using 

time series MODIS Enhanced Vegetation Index (EVI) datasets. Vina et al. (Vina 

et al., 2004) presented a visible atmospherically resistant index (VARI) and 

accumulated growing degree days (AGDD) to detect maize physiological 

transitions that undetectable from NDVI. Duchemin et al. (Duchemin et al., 2006) 

monitored wheat phenology through the analysis of relationship among 

evapotranspiration, crop coefficients, leaf area index (LAI) and NDVI. Islam and 

Bala (Islam and Bala, 2008) made use of NDVI and LAI to evaluate potato 

phenological characteristics by modeling its essential phenological metrics. Each 

of these pioneering works has its special contribution to remotely-sensed crop 

phenology estimation research. 

However, the majority of above-mentioned studies utilized multi-temporal 

NDVI/EVI/LAI values processed with the MVC technique (Holben, 1986), which 

effectively removed the cloud-contaminated data points in original observations 

series.  The maximum value of the composited period (usually range from 8 to 16 

days) was assigned to this multiday period rather than the date when this value 

was captured (Thayn and Price, 2008). This processing step imbedded  a temporal 

error of 8 (or 4) days in average and 15 (or 7) days maximum because a 

maximum value in 16 (or 8) days is selected and assigned to all of 16 (or 8) days. 

This could not be neglected in time-sensitive studies, especially for crop 

phenology detection. Therefore, it is essential to assess the effect of this 

composited process on crop phenology estimation accuracy and seek out an 

appropriate strategy for the remote sensing based crop phenology estimation. 

The objectives of this paper are to: a) check the feasibility of employing daily 

surface reflectance datasets and its corresponding ancillary data to generate NDVI 
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curve and consequently calculate crop phenology dates; b) make a quantitative 

comparison between different temporal resolutions (daily, 8 day and 16 day 

composited) with fixed spatial scale (250m*250m / pixel) about their effects on 

phenological stages detection studies; c) attempt to  develop a framework for 

matching „specific‟ phenology stages with curve-generated Julian dates. Two crop 

types (corn and soybean) have been tested on 50 sites distributing over US Corn 

Belt in this experiment. For each test site, seven Julian dates related potential 

phenology stages have been generated and matched with specific crop 

phenological events. 

2. Data Description 

2.1. Study sites 

In this study, the State of Iowa (range from 40°23′N to 43°30′N and 90°

8′W to 96°38′W) in U.S. Corn Belt is selected for experiment because it is a 

predominant corn and soybean state and it is one of the most important corn and 

soybean production areas in United States. Iowa locates in the middle of 

American and its terrain is mainly dominated by plain. All these facts will help us 

to simplify the study and to keep focus on the method for phenological 

information extraction from the MODIS products. In this study, 50 sites (25 sites 

each for corn and soybean) within Iowa State, as shown in figure 1, were selected 

for method and data experiments. 

2.2. Datasets description and preprocessing 

Three MODIS products have been used in this experiment: Surface Reflectance 

Daily L2G Global 250m (MOD09GQ), Surface Reflectance 8-Day L3 Global 

250m (MOD09Q1) and Vegetation Indices 16-Day L3 Global 250m (MOD13Q1). 

The MOD09GQ product provides an estimate of the surface spectral reflectance 

as it would be measured at ground level in the absence of atmospheric scattering 

or absorption. Low-level data can be corrected for atmospheric gases and aerosols, 

yielding a level-2 basis for several higher-order gridded level-2 (L2G) and level-3 

products. Bands 1 (RED) and 2 (near infrared (NIR)) are provided at a 250-meter 

resolution in a daily gridded L2G product in the Sinusoidal projection. This 

product is meant to be used in conjunction with the Surface Reflectance Daily 

L2G Global 1km and 500m (MOD09GA) where important quality and viewing 

geometry information is stored. MOD09Q1  is a 8-day gridded level-3 product 

that stores an estimate of the surface spectral reflectance. Each MOD09Q1 pixel 

contains the best possible L2G observation during an 8-day period as selected on 
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the basis of high observation coverage, low view angle, the absence of clouds or 

cloud shadow, and aerosol loading.  MOD09GQ and MOD09Q1 are first 

calculated NDVI through the following formula: NDVI = (NIR-RED) / 

(NIR+RED). MOD13Q1, unlike MOD09GQ and MOD09Q1, is designed to 

provide consistent spatial and temporal comparisons of vegetation conditions. 

Blue, red, and near-infrared reflectance are used to determine the MODIS daily 

vegetation indices. The MODIS NDVI complements NOAA's Advanced Very 

High Resolution Radiometer (AVHRR) NDVI products and provides continuity 

for time series historical applications. Although MODIS also includes EVI that 

minimizes canopy background variations and maintains sensitivity over dense 

vegetation conditions, we only extract NDVI values for comparison purpose 

(USGS, 2009). All these datasets are captured between March 31 and December 

11 from 2006 to 2008. This period includes 256 yeardays and totally covers the 

growing season for both corn and soybean in each year according to the statistical 

information published by United State Department of Agriculture (USDA).  

 

Fig. 1. Distribution of test sites in Iowa State, United States . Filled symbol pentagram (★) and 

triangle (▲ ) represented corn and soybean respectively. The background color gradient 

indicates the general condition of elevation. 

 

Many criterions, besides cloud status information recorded in quality flag, have 

been presented previously to remove noisy data points affected by thick clouds, 

gaseous and aerosol scattering as well as bidirectional reflectance distribution 

function (BRDF) distortion. For example, Sakamoto et al. (Sakamoto et al., 2005) 

considered the pixels whose blue band reflectance was greater than 10% or whose 

sensor zenith angle was more than 32.25°should be removed as abnormal data. 

Points with a random NDVI increase greater than 0.4 during 20 days are also 

rejected as misleading data (Chen et al., 2004). We adopt these extra criterions to 

reserve the pixels in time-series of a test site for above-mentioned three datasets: 

a) the cloud and cloud shadow status should be „clear‟; b) the blue band value 

should be lower than 0.1; c) the sensor zenith angle is smaller than 30°and d) 
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difference between survival data point and its Inverse Distance Weighted (IDW) 

estimation should be small than 0.1(Lu et al., 2007). These standards could ensure 

that the survival sensor recorded reflectance values are not influenced by cloud or 

other noises. 

 

Fig. 2. Time-series datasets of MOD09GQ (open circle ‘ｏ’), MOD09Q1 (dotted line) and 

MOD13Q1 (solid line) after preprocessing. Many MOD09GQ cloud-contaminated data points 

are removed and replaced with NAN so the time series looks like discrete. 

The National Agricultural Statistics Service (NASS), the USDA data collection 

arm,conducts hundreds of surveys every year and prepares weekly crop progress 

report containing crop planting and emergence percentage estimates. Crop 

progress data to be used for validation were acquired from the weekly 2006-2008 

Crop Progress reports produced by the NASS for Iowa. (These reports are 

publicly available at 

http://www.nass.usda.gov/Statistics_by_State/Iowa/Publications/Crop_Progress_

&_Condition/index.asp.) According to these reports, there are nine districts in 

Iowa State: northwest (NW), north center (NC), northeast (NE), west center (WC), 

center (C), east center (EC), southwest (SW), south center (SC) and southeast 

(SE). Each of these districts has its own validation information (planted, emerged, 

silking, etc.) for different kinds of crops. Each stage was described as a period as 

its percentage covers from 0 to 100. Generally, the 50 percent corresponding 

Julian date of each stage could be selected as final validation information 

(Wardlow et al., 2006). For corn, the report offered nine phenology stages: 

planted, emerged, tasseled, silking, milk, dough, dent, mature and harvest. For 

soybean, there are seven stages: planted, emerged, blooming, setting pods, leaf 

turning color, mature and harvest. All phenological stage definitions could be 

accessed at 

http://www.nass.usda.gov/Charts_and_Maps/Crop_Progress_&_Condition/Terms/

index.asp. The Cropland Data Layer (CDL) program 

(http://www.nass.usda.gov/research/Cropland/SARS1a.htm), also offered by 

NASS, provides the information about what kind of crop has been planted on a 

specific field with coordinate information.  USDA NASS online products are the 

http://www.nass.usda.gov/research/Cropland/SARS1a.htm
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main source of our experiment validation information. 

3 Methodologies 

3.1. Curve fitting strategy for daily data 

After preprocessing steps, the time series are usually not equal-spaced or 

continuous since some abnormal pixels have been removed (as shown in Figure 

2). Meanwhile, even those survival points are still contain some undefined noise 

(soil background, water content, moisture, saturation, pre-crop vegetation, etc.). 

Curve fitting is proved to be one of the most effective strategies to eliminate those 

noises (Bradley et al., 2007). 

Various techniques have been implemented to model the survival data points 

and to reconstruct the removed values, such as Best Index Slope Extraction (BISE) 

(Viovy et al., 1992), Fourier analysis (Roerink et al., 2000; Geerken et al., 2005), 

Savitzky–Golay filter and its improvement (Savitzky and Golay, 1964; Chen et al., 

2004), Support Vector Machine (Sun et al., 2006), asymmetric Gaussian function 

(Jönsson and Eklundh, 2002), mean-value iteration  (MVI) (Ma and Veroustraete, 

2006), wavelet transformation and its improvements (Sakamoto et al., 2005; Lu et 

al., 2007) and logistic function (Zhang et al., 2003; Jönsson and Eklundh, 2004; 

Beck et al., 2006; Beck et al., 2007). Hird and McDermid (Hird and McDermid, 

2009) made a model-based empirical comparison of some frequently-used NDVI 

time series denoising techniques and concluded that double logistic function 

fitting strategy demonstrated the superiority over other methods. The formula 

could be expressed as equation (1), where wNDVI  stands for minimum NDVI 

value (often arose in winter) of the final curve fitting time series. In this test, 
wNDVI  represents bare soil or pre-crop vegetation NDVI value. This value is 

often represented as geometric mean of NDVI values in non-growing season 

(winter or bare soil background)(Beck et al., 2006). According to the NASS crop 

progress reports; there is no crop or plant available in the corn or soybean fields 

before April from 2006-2008. This means that we could set the non-growing 

season as the date before the 120th day of the year. mNDVI  denotes the 

maximum NDVI and its difference with wNDVI represents the amplitude of 

NDVI time series; mS  and S  are variables relating to the inflection point in 

vegetative growing season, while mA  and A  are referred to senescence season. 

Their relationship as shown in Figure 3 could be expressed (Beck et al., 2007). 

( ) ( )

1 1
( ) ( 1)

1 1
t mS t S mA t A

NDVI wNDVI mNDVI wNDVI
e e  

     
 

     (1) 
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Fig. 3. Example of the double logistic function tNDVI
 (equation (1)) used to model the 

yearly NDVI time series. It is defined by six parameters: the minimum and maximum NDVI 

( wNDVI and mNDVI ), two inflection points ( S and A ), and the rate of increase or 

decrease in NDVI at S and A , respectively ( mS  and mA ) (Beck et al., 2007). Feature 

points G, P, Q and E stand for four characteristic curvature values, while M is the point when 

the NDVI reaches its maximum (or the central points of NDVI saturation period in case of 

maximum value continues during a period). 

Least square method is commonly applied in function fitting to select the „best 

fit‟ parameters (Steinier et al., 1972; Sun et al., 2006; Markwardt, 2008) and often 

expressed as follows: 

 
22

1

n

i i ti

i

w NDVI NDVI


         (2) 

Where iw
is the weight of ith NDVI value. When 

2
 reaches its minimum, the 

parameters are optimal. Beck et al. (Beck et al., 2006) presented a two-step 

schema to determine weight, which was supposed to get the upper envelop of the 

survival data. First, all weights were set equally as 1 to obtain the reference curve 

line. In the second step, the weights were reassigned different values according to 

relative relationship between original values and the reference curve line: if the 

original value is above (below) the reference curve line, it gets a higher (lower) 

weight. iNDVI
 is the ith originally  calculated NDVI value, and tiNDVI

 is the 

corresponding  estimated value. Since there are contaminated data in daily NDVI, 

we have made a little adjustment to this schema: set all contaminated points as 

zero and then applied Beck‟s two-step weighting strategy. The weights of those 

contaminated data were set to zero throughout the whole weighting process. This 

ensures that those contaminated points will not affect the phenology estimation. 

To get more accurate phenology estimation, the composited products have been 

linearly interpolated to reconstruct contaminated daily data with ENVI Interactive 

Data Language (IDL) routine „interpol‟. However, all interpolated values are 

weighted as zero during the weighting process to keep the „original‟ survival 
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points‟ affect on resultant NDVI curve. 

3.2. Phenology stage estimation based on NDVI curve feature points 

As shown in Figure 3, a NDVI curve could be characterized with seven curve 

feature points: G, S, P, M, Q, A, E. The inflection points S and A could be obtained 

from the maximum and minimum of the first derivate of estimated NDVI curve. 

The point M represents the date of the maximum NDVI value. If there exist more 

than one date, M will be the central point of these maximum-value dates. Points S, 
P, M, Q, and A divided the estimated NDVI curve into four parts. In each of these 

four parts, the maximum curvature could be obtained and marked as G, P, Q and E 

according to the following formula: 

  
3/ 2

2
1

t

t

NDVI

NDVI








              (3) 

Julian date t  is the independent variable. These seven temporal points will be 

used to match with actual phenological dates. 

After calculating seven feature point dates for each test site, these dates should 

be matched with statistical stages to identify the relationship between curve-

derived dates and specific statistical phenological event dates (treated as actual 

phenology stages). Before matching, these remote sensing derived dates could be 

grouped as set G, set S, set P, set M and set Q. We also marked the statistical 

validation phenology dates (planted, emerged, silking, milk, mature and harvest, 

etc.) as phenology stage A, stage B, stage C, stage D, etc. By calculating root-

mean-square error (RMSE) between each set and stage, an error matrix was 

produced through formula (4), in which εi,j was the RMSE between ith set ,i kSet
 

and jth phenology stage Stagej (includes m test sites, k was the serial number of 

test sites).  

 
2

,

1
,

m

i k j

k
i j

Set Stage

m
 






            (4) 

All RMSE matrices  for nine districts were first computed with test sites that 

falls into each district, and the state-level RMSE matrix was then obtained by 

weighting every district matrix. The weight of each district-level matrix is the 

proportion of district test site numbers to the total test sites. Figure 4 illustrates 

the whole process of final matching pair generation and error analysis. 

Here are three basic principles to determine the intermediate match pairs for 

each dataset: 1) smaller RMSE, the minimum εi,j was selected to determine the 

first match pair, for example, Setp and Stageq; 2) time line consistency, the sets 
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before (or after) Setp will only be matched with stages before (or after) Stageq, 

which is proposed to keep the consistency over time line. The final matching pair 

is generated by considering daily, 8-day and 16-day intermediate matching results, 

which should abide by the 3) majority rule: first we pick out the matching pairs in 

which these three datasets have three same intermediate results. Then we choose 

the matching pairs that two of these three datasets have same matching pairs and 

the other dataset has different result which will be re-decided same as the former 

two counterparts. If one stage refers to three different datasets, the result will be 

determined by the minimum RMSE value. The second rule, time line consistency, 

is simultaneously applied during this process. 

 

Fig. 4. Flowchart of matching pairs determination and error analysis. It includes 5 steps, step 1: 

calculating district level RMSE matrix, step 2: integrating 9 district results into state level 

RMSE matrix; step 3: determining intermediate matching pairs for daily, 8-day and 16-day 

datasets; step 4: reaching a final matching pair for corn and soybean and step 5: conducting 

error analysis by using matching pair results in step 3 and 4. 

3.3. Evaluation methods 

We used two complementary approaches to evaluate the performance of each data 

set: phenology matching accuracy and phenology estimation error. First, we 

define three intermediate matching results and the final matching pair as: Imp01, 

Imp08, Imp16 and Fmp. They record the matching pairs as phenology “milk” to 

metric “M‟‟, phenology “mature”  to metric “A‟‟, etc. We interpreted phenology 

matching accuracy (εi,j) as ratio between number of final matching pairs (Fmp) 

and the number of intersection of intermediate matching pairs (Imp01, Imp08 or 

Imp16) and the final matching pairs (Fmp). The matching accuracy reflects the 

degree of matching between intermediate matching results and the final matching 
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pairs, εmi equal to 1 means the intermediate result is the same as the final result. 

The bigger the εmi  is, the worse they coincide with each other. The formula 

could be expressed as:   

( )

( )
mi

i

N Fmp

N Fmp Imp
 


                 (5) 

where εmi  stands for the phenology matching accuracy of datasets i, N  is the 

function that extract the number of a set. Impi represents Imp01, Imp08 or Imp16 

and symbol   means the intersection of the two datasets. 

The phenology estimation error (εi,j) refers to the summation of final matching 

pair estimation errors, which is determined by the ratio of RMSE and the mean of 

the matching pairs‟ RMSE. For phenology estimation error εi,j, it happened 

between different datasets and could be listed as the ratio of final matching 

RMSE value RMSEij to the mean of its counterparts RMSEij (of different 

datasets). Formula 6  defines phenology estimation error. 

0

01,08,16

1

3

m
ij

ei

j
ij

i

RMSE

RMSE












               (6) 

The final error is the summation of matching error and estimation error. And it 

can be expressed as: 

i mi eia b                      (7) 

Where a and b are the weight for phenology matching error and phenology 

estimation error. Here we consider these two kinds of error have the same 

contribution to the final total error, which sets both a and b as 1.0. 

4. Results and Discussion 

According to the basic rules described in section 3.2, we got the final matching 

pairs for these three different temporal resolution datasets in 2006-2008 (figure 

5 ). For corn, the final matching pairs in 2007 and 2008 are the same: field 

observation phenology stage „planted‟ corresponds to remote sensing derived first 

metric „G‟; emerged to „S‟; tasseled to „P‟; milked to „M‟; dough to ‟Q‟; mature 

to „A‟ and harvest to „E‟. There is no metrics corresponded to phenology stage 

corn silking and dent in these two years. However, in 2006, the matching pairs 

seem slightly different: the stage emerged refers to metric „G‟ and there is no 

stage matching with metrics „S‟; and for metric „A‟, the correspondent 

phenological stage is dent, not dough. Other matching pairs are the same with the 

following two years. According to the statistical observation information obtained 
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from NASS, the maize dough phenology stage is recorded 5 (South center of 

IOWA, 2007) to 15 (North center of IOWA, 2007) days before dent stage. When 

comparing to the RMSE error between remote sensing derived phenological dates 

and the validation information (in table 1 and 2), the duration between dough and 

dent is somewhat negligible. This indicates that the matching results are not  

varying greatly across different years since phenology changes every year. 

Comparing with vegetation types, comprehensive human being participation 

(seed selection, field management, irrigation status, etc.) is the most important 

factor of crop land cover development, which is sensitive to both natural and 

manmade microenvironment. 

 

Fig. 5. Final matching pairs for corn (left) and soybean (right) in 2006-2008. 

Table 1. State level RMSE result for corn in 2007 (days) 

 
 Planted Emerged tasseled Silking milk Dough Dent Mature Harvest 

01G 7.6 11.3 64. 9 69.4 84.2 96.2 108. 6 127.4 171.0 

01S 26.4 16.6 39. 8 44.3 59.1 71.1 83. 5 102.4 144.4 

01P 53.1 43.3 15.3 19.3 33.3 45.1 57.3 76.1 118.0 

01M 78.0 68.2 15.4 12.3 11.4 21.0 32. 9 51.4 93.2 

01Q 99.3 89.4 34.5 30.1 16.3 9.9 15.5 31.4 72.4 

01A 133.3 123.4 68.0 63.6 48.9 37.1 25.3 11.5 39.3 

01E 127.9 125.7 94. 6 90.1 75.4 63.6 51.6 33. 7 22.8 

08G 13. 8 9. 6 55. 8 60.3 75.0 87.0 99.3 118.2 150.2 

08S 35.3 25.6 31.8 36.2 50.9 62.8 75.1 94.0 135.9 

08P 61.1 51.3 11.5 13.9 26.7 38.1 50.1 68.7 110. 5 

08M 85.2 75.4 21. 4 17.4 9.8 15.7 26.5 44.6 86.3 

08Q 103.7 93.7 38.7 34.3 20.2 10.6 10.6 26.5 67.7 

08A 135.6 125.7 70.2 65.7 51.0 39.1 27.0 10.5 36.2 

08E 140.8 134.5 95.1 90.6 75.9 64.0 51.9 33.7 19.7 

16G 8.2 14.1 68.7 73.2 88.1 100.1 112.5 131.4 152.0 

16S 22.0 12.8 44.4 48.9 63.7 75.8 88.1 107.0 149.0 

16P 46. 7 36.9 20.9 25.1 39.6 51.5 63.7 82.5 124.5 

16M 76.4 66.6 15.8 13.3 15.4 24.5 54.0 95. 6 35.8 

16Q 97.5 87.7 34.0 30.1 17.7 11.5 17.5 34.4 75.3 

16A 129.5 119.6 64. 2 59. 7 44.9 33.1 21.2 7.8 42.2 

16E 149.4 144.1 88. 6 84.1 69.3 57.3 45.2 27.0 21.2 
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Table 2. State level RMSE result for soybean in 2007 (days) 

   Planted Emerged Blooming Set pods Coloring Drop leaf Harvest 

01G 14.5 21.4 60.4 76.9 119.2 128.5 147.5 

01S 20. 5 11.0 32.7 49.2 91.6 100.9 120.0 

01P 52.2 42.1 13.3 20. 9 60.7 69.8 88.7 

01M 76.6 66.3 25.3 11.6 35.0 44.2 63.2 

01Q 99.7 89.4 48.4 31. 9 16.9 22.6 40.7 

01A 132.6 122.4 81.4 64.8 24.4 19.3 18.9 

01E 173.0 148.9 107.9 91.4 49.8 41.0 28.5 

08G 14.5 24.3 65.1 81.8 124.4 133.6 152.7 

08S 14. 5 4.9 37. 6 54.2 96. 9 106.2 125.3 

08P 44.8 34. 7 14.0 26.3 67.6 76. 8 95. 8 

08M 71.7 61.5 21. 5 10.6 40.8 49.9 68.8 

08Q 93. 7 83.5 43.3 27.8 23.7 31.1 48.9 

08A 128.1 117.8 76.9 60.5 22.3 19.3 22.3 

08E 129.4 120.0 103.6 87.1 45.8 37.3 28.8 

16G 18.7 28. 6 69.4 86.1 128.7 137.9 157.0 

16S 12.0 3.0 39.6 56.3 99.0 108.3 127.4 

16P 53.1 43.2 20.9 27. 2 61.3 70.3 89.0 

16M 73.2 63.2 24.1 15. 2 41.0 49.8 68. 5 

16Q 94. 9 84. 7 44.3 28.6 24. 0 29.6 47. 4 

16A 126.4 116.2 75.2 58.7 20.1 17.2 21.4 

16E 128. 8 141.4 100.3 83. 7 41.8 32.9 22.4 

For soybean, year 2006 and 2008 have the same matching pairs: planted to „G‟; 

emerged to „S‟; blooming to „P‟; setting pods to „M‟; leaves turning color to ‟Q‟ 

and harvest to „A‟. Remote sensing derived metric „A‟ refers to dropping leaf 

rather than harvest in 2007. The inter-annual matching error often happened at 

beginning or end of growing season. We believe that, besides the different 

cultivate conditions mentioned above, the limitation of NDVI at low vegetation 

density might be responsible for this experiment matching results. Another matter 

of concern was that, even using the same definition, stage „harvest‟ is matched 

with metric „E‟ for corn and „A‟ for soybean. This indicates that soybean was 

harvested when NDVI descended dramatically. This is consistent with the reality: 

soybean is harvestable after it dries completely (soybean has less than 15% 

moisture). At this stage, soybean plant turns completely brown. However, when 

corn reaches harvestable stage, its stem is usually still green. For corn and 

soybean, the 2007 state level RMSE results are listed in table 1 and 2 respectively, 

in which normal italic RMSE values (with or without underlines) are intermediate 

matching pairs for each datasets, while final matching results are highlighted by 

underlines. The RMSE range for corn is from 7.6 (between planted and „G‟, daily 

surface reflectance) to 25.6 (between emerged and „S‟, 8-day composited surface 

reflectance) days. The average difference between NASS observation and remote 

sensing results for these three datasets are 13.5, 14.4 and 13.9 days.  For soybean, 

the RMSE ranges from 3.0 (between emerged and „S‟, 16 day composited 

vegetation product) to 23.9 (between turning color and „Q‟, 16 day composited 

vegetation product) days. And the average difference between statistical 

phenology stages and NDVI curve based estimates for these datasets are 14.4, 
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14.5 and 16.5 days. MODIS Daily surface reflectance improves the remote 

sensing estimation results in 1-2 days when compared with MODIS MVC 

products. 

The total errors for three datasets are displayed in figure 6. Generally the daily 

surface reflectance product performs better than other two datasets when being 

applied to crop phenology estimation studies in 2006-2008. The 8-day 

composited surface reflectance dataset works better than MODIS vegetation 

production (MOD13Q1) overall except a little irregularity for corn in 2007. 

Moreover, there is no obvious conclusion could be reached for crop-specific 

difference between corn and soybean. 

 

Fig. 6. RMSE result for corn and soybean calculates form different datasets. 

5. Conclusion 

Remote sensing based phenology detection is highly related to the temporal 

resolution of datasets. We have evaluated the effect of different datum which has 

different temporal resolution for two crop types: corn and soybean. USDA NASS 

crop progress reports have been used as ground truth data to assess the 

performance of different datum. Several conclusions could be drawn from above 

analysis: 1) Daily surface reflectance dataset could be employed to detect 

phenology information and had slight advantage to the composited data products, 

however, extra ancillary data and appropriate denoising and reconstruct 

techniques should be applied to eliminate the contaminated points. Double 

logistic function fitting method would be highly recommended; 2) The MVC 

process brought additional temporal error to final time series trend curve by 

removing contaminated points. This had a negative effect on time-sensitive 

remote sensing applications, for example, crop phenology estimation; 3) 

phenology matching is a necessary step when detecting specific stage for specific 
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land cover type. Even some phenological stage have the same name, for example, 

emerged or harvest, they might corresponded to different segments of the final 

time series curve because of differences in cropping practice. Furthermore, 

phenology is a multi-factor dependent index to describe plant growth; NDVI has 

its own limitations to work as the only factor, other factors, like precipitation, 

temperature and soil moisture, et al. should be considered as part of the 

phenology model. 
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