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Abstract. Photosynthetic pigment concentration has strong relationship with 

nitrogen (N) concentration which is an essential element of plant growth and 

plays an important role in estimating the net primary productivity (NPP) in 

terrestrial ecosystem research and precision agriculture (PA). In this study, 

hyperspectral reflectance and pigment concentration of the upper three leaves of 

rice crop (Oryza sativa L.) with five N fertilization rates were measured in the 

laboratory. The results showed that there was no significant difference between 

the leaf hyperspectral reflectance and pigment concentrations in the visible and 

near-infrared (NIR) spectral regions at each leaf position. But in the shortwave 

infrared (SWIR) region, the difference of each two of the three leaf positions 

was obviously significant at level 0.05. The integrated hyperspectral index 

MCARI/OSAVI[670,800] had been proved to be better linear related with leaf 

pigment concentrations at different leave position. The result demonstrated that 

MCARI/OSAVI[670,800] was a reliable and stable hyperspectral index for 

estimating pigment concentration at leaf level..  
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1   Introduction 

Net primary productivity (NPP) is a function of an efficiency coefficient defining the 

carbon dioxide (CO2) fixed in short-lived (foliage and fine roots) and long-lived 

(wood) tissue per unit area and time
[1-2]

, which plays a vital role in essential materials 

and suitable environments for human society
[3-4]

. The precise estimation of NPP over 

a continental and global scale would facilitate an improved interpretation of dynamic 

physiological processes within terrestrial ecosystems research and precise agriculture 

(PA) management, and is also crucial for the research on the relationship between 

global climate change and carbon cycling processes
[5-6]

.  



 

 

NPP has been shown to be related to the fraction of absorbed photosynthetically 

active radiation (fapar) which is a function of the sum of the concentrations, and more 

precisely the molar extinctions, of chlorophyll a (Chl a hereafter), chlorophyll b (Chl 

b), and the carotenoids (Cars). In addition, leaf characteristics, especially nitrogen (N) 

content, and specific leaf area affect NPP directly by constraining photosynthesis and 

transpiration rates
[7-9]

. Moreover, N is an essential element for plant growth and is 

frequently the major limit nutrient in most agricultural soils. Excessive N fertilizer 

may move into surface water and groundwater and accelerate eutrophication of lakes 

and streams
[10]

. Farmers must balance the competing goals of supplying enough N to 

their crops in PA management while minimizing the loss of N to the environment, 

which represents both a threat to water quality and an economic loss. Since N is the 

component element of chlorophyll molecules, there is a close link between leaf 

chlorophyll content and leaf N content
[11]

. Thus remote sensing techniques have the 

potential to evaluate the chlorophyll variability over large fields quickly
[12]

. 

Developments in hyperspectral remote sensing made it possible to estimate N and 

NPP variability through quantifying individual photosynthetic pigments within 

vegetation. Spectral reflectance measurements of corn (Zea mays L.) and wheat 

(Triticum aestivum L.) canopies have been used to detect characteristic of different N 

status of crop and provide reliable information for developing variable-rate fertilizer 

N application technique
[13-15]

. The variety of N treatments resulted in the differences 

in leaf chlorophyll content, leaf area index (LAI), biomass, and foliage cover which 

contributed to the differences in spectral reflectance at the leaf and canopy scales. The 

relatively subtle differences in leaf and canopy reflectance associated with changes in 

leaf chlorophyll are often confounded with major changes in plant growth and 

development due to N treatments
[12]

. 

Vegetation indices (VIs) have been developed as an attempt to reduce spectral 

effects caused by external factors such as the atmosphere and the soil background
[16]

. 

Peñuelas et al.
[17]

 have advocated a shift towards narrow-band VIs for estimating the 

absolute and relative concentrations of Chl a, Chl b, and Cars in plant leaves. Zarco-

Tejada et al.
[18] 

performed a study of VIs for chlorophyll estimation in open-canopy 

forest from leaf level to the canopy through SAIL and Kuusk canopy reflectance 

model and demonstrated that nominal canopy reflectance model parameters appear to 

be sufficient to allow accurate application of the optical index/bioindicator algorithm 

to airborne data. Research by Wu et al.
[19] 

suggested that the integrated VIs, namely, 

TCARI/OSAVI [705,750] and MCARI/OSAVI[705,750], were most appropriate for 

chlorophyll estimation with high correlation coefficients R
2
 of 0.881 and 0.941, 

respectively, because more disturbances such as shadow, soil reflectance and 

nonphotosynthetic materials were taken into account. 

Therefore, this study aims at examining the performance of integrated hyperspectra 

indices MCARI/OSAVI[670,800] developed by Rondeaux et al.
[20]

 and Daughtry et al.
 [12] 

in photosynthetic pigment concentration estimation within the rice leaf. Meanwhile, 

the feedback response of leaf spectral characteristics to leaf pigment concentration 

due to N treatments will be investigated. 



 

 

2 Materials and Methods 

2.1 Field Experiment 

The field experiment was conducted on sandy loam soil from early June to late 

October in 2008 at the research farm of Xiaoshan Agricultural Science Research 

Institute (30°20′N latitude, 120°31′E longitude and altitude approximately 6m), 

Hangzhou, Zhejiang Province, China. The original soil had 13.1g/kg organic C, 

5.6mg/kg bicarbonate extractable P, 35.2mg/kg exchangeable K, 1.26g/kg total N and 

Ph 7.5 (soil: water = 1:1 (w/v)). Three rice (Oryza sativa L.) cultivars, namely, 

Yongyou 8, Zhongzheyou 1, and Zhejiang 22, were employed in this study.  

A random block design was employed with the three rice cultivars and five N 

fertilization rates (0, 75, 180, 285 and 390 kg/ha). Forty percent of the N fertilizer (i.e. 

urea) was fertilized during the pre-transplanting period, 30% at the tillering stage, and 

30% at the initial heading stage. Each treatment was replicated three times. The rice 

plants were transplanted on July 5
th

, 2008 and harvested on October 31
st
, 2008. 

2.2 Hyperspectral Reflectance Data Acquisition 

One whole rice plant from each plot was collected, placed in a plastic bucket with 

water, and transported to the laboratory for spectral measurement on August 21
st
, 

September 27
th

, and October 10
th

, 2008. The first, second and third uppermost leaves 

were cut from the main stem of rice plant and referred to as L1, L2 and L3, 

respectively. The hyperspectral reflectance of L1, L2 and L3 was measured with a 

portable spectrophotometer (Analytical Spectral Devices, Inc., Colorado, CO, USA) 

in the wavelength range of 350-2500 nm. The spectral resolution of the instrument is 

3 nm for the region of 350-1000 nm and 10 nm for the region of 1000-2500 nm. 

Rice leaves were positioned on a dark background so that the fiber optic sensor 

with a 25° instantaneous field of view (IFOV) vertically pointed to centre of the leaf 

surface with about 3.5 cm height, equivalent to 1.9 cm
2
 observed area. An incidence 

angle of 45°was maintained at a standard distance of 50 cm throughout the study in 

a closed chamber with a halogen lamp (50 Watt). A sampling spectrum was consisted 

of ten readings for each leaf. The average spectra derived from the sampling spectra 

represented each leaf using ViewSpec Pro (version 5.6.10).  

2.3 Foliar Pigment Concentration Acquisition 

After the hyperspectral measurements, a leaf disk with a weight of 0.1 g was cut 

from each leaf for pigment analysis. Each leaf disk was crushed, and dipped in 20 ml 

solution (acetone: ethanol: distilled water = 4.5:4.5:1) for 24 hours in the dark 

environment to extract pigment. The optical density (OD) of the extraction solution 

was measured at 440 nm, 645 nm, and 663 nm by spectrophotometer (Shimadzu UV 

2550, Tokyo, Japan). Pigment consists of Chl a, Chl b, and Car in the study. The 



 

 

formula of pigment concentration (mg/g) was referenced the literature of Tang et 

al.
[21]

. 

2.4 Data Analysis 

2.4.1 Data Preprocessing 

The hyperspectral reflectance was smoothed with a five step moving average to 

suppress instrumental and environmental noise before these data were further 

analyzed
[22]

. Then, the raw hyperspectral reflectance less than 400 nm and more than 

2400 nm were ineffective due to severe instrument and system noise
[23]

. 

2.4.2 Statistical Analysis 

Analysis of variance (ANOVA) is useful for assessing what proportions of the 

variations in a dependent variable can be accounted for by one or more independent 

variables
[20, 24]

. The hyperspectral reflectance (Table 1) and pigment concentration 

(Table 2) were expressed as mean and standard deviation (SD) for the remote sensing 

and biophysical data and were analyzed by ANOVA, followed by Duncan’s multiple-

range test when appropriate. Differences between groups were considered significant 

when p<0.05. Pearson’s linear regression coupled to ANOVA was used to verify the 

effects of pigment concentration on hyperspectral reflectance and integrated 

hyperspectral VIs. Values of the determination coefficients were obtained by the 

linear regression analysis (Fig.3). ANOVA was then performed with SPSS software 

(Statistical Package for the Social Science, version 16.0.0). 

2.4.3 Integrated Hyperspectral index 

The chlorophyll absorption ration index (CARI) developed by Kim
[25]

 could minimize 

the effects of nonphotosynthetically materials on spectral estimates of absorbed 

photosynthetically active radiation (PAR). Daughtry et al.
 [12]

 simplified the 

calculation equation of CARI to obtain the modified CARI (MCARI). MCARI is the 

depth of chlorophyll absorption at 670 nm relative to the reflectance at 550 nm and 

700 nm and is defined as the following equation: 

700
[670,700] 700 550700 670

670

R
MCARI =[(R -R )-0.2(R -R )]

R
   (1) 

Rondeaux et al.
[20]

 concluded that the optimized soil-adjusted vegetation index 

(OSAVI) could reduce the sensitivity of object reflectance to the underlying soil. 

OSAVI is defined as follows: 

800 670

[670,800]

800 670

(1 0.16)(R -R )
OSAVI

(R +R 0.16)






   (2) 

Therefore, the integrated form of MCAI and OSAVI could be defined as 



 

 

700 550 700 670700 670

800 670 800 670

[(R -R )-0.2(R -R )](R /R )MCARI
[670,800]

OSAVI (1 0.16)(R -R ) /(R +R 0.16)


 

  (3) 

Wu et al.
[19]

 proved that MCARI/OSAVI is one of the most appropriated integrated 

hyperspectral indices for chlorophyll estimation because more disturbances such as 

shadow, soil reflectance and nonphotosynthetic materials are taken into account. 

3 Results 

3.1 Leaf Hyperspectral Reflectance 

The mean (n = 45) hyperspectra reflectance of L1, L2, and L3 of rice crops collected 

on three sampling dates for three cultivators at five N fertilization rates were shown in 

Fig.1. They showed very little detail information in the full wavelength range (400-

2400 nm), especially in the visible region.  

To get more specific information on the difference between different leaf positions 

in leaf hyperspectral reflectance due to changes of leaf pigment concentration, the 

hyperspectral reflectance as waveband means was calculated to simulate the 

Enhanced Thematic Mapper Plus (ETM+) of Landsat-7 (Table 1). ANOVA followed 

by Duncan’s test with 0.05 of alpha was used to verify the effects of pigment 

concentration at different leaf positions on hyperspectral reflectance (Table 1 and 2). 

 

Fig.1 Mean hyperspectral reflectance of rice crop at the first, second and third uppermost leaf 

(L1, L2 and L3) collected on August 21st (a)，September 27th (b) and October 10th (c), 2008. 
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Table 1 Average hyperspectral reflectance of rice crop at the first, second and third uppermost 

leaves (L1, L2 and L3) at six wavelength intervals denoting the Enhanced Thematic Mapper 

Plus (ETM+) of Landsat-7 (Unit :%)* 

Specta range 

(nm) 
August 21

st
, 2008 September 27

th
, 2008 October 10

th
, 2008 

L1 L2 L3 L1 L2 L3 L1 L2 L3 

Blue(450-515) 6.0a 5.8a 6.0a 7.5a 7.5a 7.1a 8.0a 8.2a 7.7a 

Green(525-605) 11.8a 11.2a 11.5a 16.0a 15.8a 14.9a 18.7a 19.3a 19.3a 

Red(630-690) 6.4a 6.1a 6.5a 8.1a 8.1a 7.7a 10.2a 10.6a 11.1a 

NIR(775-900) 72.7a 73.1a 72.4a 57.4a 55.1b 52.2c 71.2a 71.8a 70.0a 
SWIR1(1550-1750) 43.6b 44.7a 45.0a 41.4a 39.3a,b 37.7b 48.6a 47.7a,b 45.9b 

SWIR2(2090-2350) 19.9b 20.5a 21.4a 26.9a 25.5a,b 24.4b 28.4a 27.1a 24.8b 

* Means followed by the same letter in each row are not significantly different from each other by Duncan test at 

alpha = 0.05. 

Table 2 Statistical description of pigment concentration for the first, second and third 

uppermost leaves (L1, L2 and L3)  

Date 
Pigment Chlorophyll a  Chlorophyll b  Carotenoids 

Position L1 L2 L3  L1 L2 L3  L1 L2 L3 

08/21 
Mean 1.97a 2.12a 2.07a  0.66b 0.71a,b 0.75a  0.74b 0.81a 0.80a 
SD 0.32 0.33 0.45  0.12 0.14 0.16  0.12 0.12 0.13 

09/27 
Mean 2.40a 2.19a 2.11a  0.82a 0.80a 0.81a  0.91a 0.81a 0.81a 
SD 0.82 0.89 0.80  0.31 0.36 0.35  0.27 0.26 0.26 

10/10 
Mean 1.63a 1.39a 1.02b  0.53a 0.48a 0.37b  0.75a 0.65a 0.50b 
SD 0.76 0.74 0.55  0.28 0.27 0.22  0.27 0.28 0.21 

*Means followed by the same letter in each row are not significantly different from each other by Duncan test at 

alpha = 0.05. 

Photosynthetic pigments control the hyperspectral reflectance and transmittance in 

the visible region. Because there was almost no significant difference among L1, L2 

and L3 in concentration of Chl a, Chl b and Cars (Table 2), the hyperspectral 

reflectance had no corresponding significant difference in the visible blue-green (450-

515nm), green (525-605nm), red (630-690nm), near-infrared (NIR, 775-900nm) 

spectral regions except the samples collected on September 27
th

, 2008 as shown in 

Table 1.  

In the shortwave infrared spectral region (SWIR1:1550-1750nm; SWIR2:2090-

2350nm), the differences between L1 and L2, and between L2 and L3 were 

significant only for the latter two sampling dates. Comparing with L1 collected on 

September 27
th

, 2008, the hyperspectral reflectance of L2 decreased 5.1% and 5.2% in 

SWIR1 and SWIR2 regions, respectively; and comparing with L2, the hyperspectral 

reflectance of L3 decreased 4.1% and 5.3% in SWIR1 and SWIR2 regions, 

respectively(Fig.1 b and Table 1). Same phenomena occurred for the third sampling 

date (Fig.1 c and Table 1). But the very reverse changes in hyperspectral reflectance 

appeared for the first sampling date (Fig.1 a and Table 1). 

3.2 Relationship Between Hyperspectral Reflectance and Leaf Pigment 

Concentration 

The correlation between the hyperspectral reflectance and the leaf pigment 

concentrations was investigated to interpret the changes of spectral characteristics 

through the full wavelength range (400-2400 nm) (Fig.2).  



 

 

As shown in Fig.2(a), the hyperspectral reflectance in the green light region had 

greatest negative correlation with leaf pigment concentrations. The correlation 

coefficients were 0.735, 0.660 and 0.708 for Chl a, Chl b and Cars, respectively; and 

the corresponding wavebands of the former pigment located at 560nm, the latter two 

pigments at 545nm. In the red light region, the highest and lowest coefficients of 

hyperspectral reflectance with leaf pigment concentrations appeared near 667nm and 

694nm wavebands, respectively. The inflexion points of correlation coefficient in the 

NIR region came forth near 760nm. The highest and lowest coefficients in SWIR 

region rose near 1458nm and 1650nm, but the former waveband would in the vapor 

absorption region if the hyperspectral reflectance was measured at the canopy level 

from the airborne or spaceborne platforms. Although the growth stages were different 

(Fig.2 a-d), the sensitive wavebands of hyperspectral reflectance to leaf pigment 

concentrations always occurred near 550nm, 670nm, 700nm and 1450-1460nm in the 

green, red, NIR and SWIR regions, respectively. 
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Fig.2 Correlograms of hyperspectral reflectance to leaf pigment concentration collected on 

August 21st (a)，September 27th (b) and October 10th (c), 2008, and all the three sampling dates 

(d). The dashed line denoted obviously significant level at p<0.001. 

3.3 Regression Between Pigment Concentration and Integrated Hyperspectral 

Index 

As analyzed above, the sensitive wavebands were consistent with the applied 

wavebands of integrated hyperspectral index (MCARI/OSAVI[670,800]). 

MCARI/OSAVI [670,800] had better linear relationship with leaf pigment concentrations 

(Fig.3). As shown in Fig.3 (a) to (l), the correlation between MCARI/OSAVI [670,800] 

and leaf pigment concentrations were obviously significant (p<0.05) in any leaf 

positions and total samples. Strong correlation existed for all the data collected in the 

three sampling dates (Fig.3 m-p). MCARI/OSAVI[670,800] were most appropriate for 

Chl a estimation with high determination coefficient (R
2
) of 0.749 for L1 collected on 

August 21
st
, 2008 (Fig.3 a). It was worst appropriate for all the data collected in the 

three sampling dates without regard to leaf positions (Fig.3 p). The determination 

coefficients of total samples for any sampling dates (Fig.3 d, h, l and p) were always 

lower than those of each leaf position (Fig.3 a-c, e-g, i-k and m-o).  
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Fig.3 Linear relationship between foliar chlorophyll a concentration of rice crop and the 

integrated index (MCARI/OSAVI[670,800 ]) 

4 Discussion and Conclusion 

In the present study, the hyperspectral reflectance were found that there was no 

significant difference (n=45 in each group) in the visible blue (450-515nm), green 

(525-605nm), red (630-690nm), near-infrared (NIR, 775-900nm) spectral regions for 

difference leaf positions (Fig.1, Talbe1) because the difference in concentrations of 

photosynthetic pigments Chl a, Chl b and Cars, which absorb the visible spectrum by 

electronic transitions among L1, L2 and L3 was almost not significant (Table 2). In 

SWIR regions, however, the difference was obviously significant (Duncan test at 

alpha = 0.05) by twos of all the three leaf positions (Table 1). The leaf hyperspectral 

reflectance in SWIR regions decresed gradationally from the top to below in the two 

out of three sampling dates (Fig.1, Table 1). Such results were similar to others 

reports by Zhao et al.
[3]

 who concluded that the hyperspectral reflectance of maize 

would change in different spectral regions due to N treatments. 

The correlation analysis of hyperspectral reflectance indicated that the most 

sensitive wavebands mainly located at near 550nm, 670nm, 700nm, 1460nm, and 

1650nm. These wavebands always presented the greatest correlation coefficient with 

significant difference (p<0.05) even very obviously significant difference (p<0.001). 

The result in this study was incompletely with the current research which suggested 

that the most sensitive wavebands distributed in the green (525-605nm) and yellow 

(605-650nm) regions, and the worst in SWIR region
[26]

. The waveband at 1460nm 

was efficient to estimate the absolute and relative concentration of photosynthetic 

pigments and other biophysical or biochemical parameters at leaf level in the 

laboratory condition, but it’s inefficient at the canopy level from the near ground, 

airborne and spaceborne platforms because of the presence of water vapor
[12,27]

.  

The integrated hyperspectral index MCARI/OSAVI[670,800] had the better linearity 

with leaf pigment concentrations(Fig.3). Perhaps because the component wavebands 

were derived from the aforementioned sensitive wavebands (Equ. (3)). As shown in 

Fig.3 (a) to (l), The regression analysis denoted that MCARI/OSAVI [670,800] had a 

great relationship with leaf pigment concentrations in any leaf positions and total 

samples. To take into account the leaf positions, MCARI/OSAVI[670,800] was a reliable 

hyperspectral index for estimating the pigment concentration.  
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However, there are more external factors including canopy structure, LAI, plant 

cover density, soil types, soil moisture, sunlight illumination, cloudy and plant 

shadow, and so forth, which coexist in the field
[23]

, and bring lots of noise in remote 

sensing application. Therefore, it will be necessary to make multiangular 

measurement to acquire more detailed information on plant structure than vertical 

measurement, and then the hyperspectral VIs will obtain high accuracy for estimating 

the concentration of photosynthetic pigments and other agricultural parameters. 
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