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Abstract. As a key hydrological parameter, daily reference evapotranspiration 

(ETo) determines the accuracy of the hydrological number of the crop, and, 

consequently, the regional optimization disposition of water resources. At 

present, the main methods for ETo estimation are the Penman-Monteith (PM) 

equation and its modified formula, both of which are based on climatic factors 

such as temperature, radiation, humidity, and wind velocity, among others. 

Unfortunately, these required data are not always available in Xinjiang Uighur 

Autonomous Region, China, which is a semiarid area. Hence, this paper puts 

forward, for the first time, a least squares support vector machine (LSSVM) 

model for estimating ETo. The LSSVM model used in this study considers 

climatic factors as input variables and the ETo calculated by the 

Penman-Monteith equation as an output variable. Compared with the artificial 

neural network (ANN) model, which was developed with the same data, 

LSSVM prediction shows higher accuracy, efficiency, and generalization 

performance. Therefore, it can be used as a complementary ETo estimation 

method. 
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1 Introduction 

Accurate evapotranspiration (ETo) estimates are necessary to determine the water 

requirement of crops for irrigation scheduling. The only recommended method for 

ETo estimation is the physically-based complex Penman-Monteith (PM) equation 

using complete meteorological data [1]. The ANN model has been successfully 

applied to evapotranspiration estimation. Kumar [2] built an ANN model for ETo 

estimation and concluded that it could predict ETo better than the conventional 

method, that is, the PM equation. Trajkovic [3] applied a sequentially adaptive radial 

basis function (RBF) network for ETo forecasting. As well, many studies have used 

neural networks to model ETo as a function of climatic variables [4–12]. 

The support vector machine (SVM) approach was recently recognized for its 

ability to capture nonlinear regression relationships between variables [13]. Eslamian 

and Kisi [13,14] investigated the accuracy of SVM in modeling ETo, and their 

comparison results revealed that the SVM could be successfully used in modeling the 

ETo process. 

This paper discusses ETo estimation by using a least squares support vector 

machine (LSSVM). In comparison with ANN and SVM, it shows higher accuracy, 

efficiency, and generalization performance. 

2 Materials and Methods  

2.1 Investigation Areas 

The 145th Regiment of Shihez Reclaimation Area, located south of the XinJiang 

Uighur Autonomous Region, was explored in the present study. The data sets were 

gathered from meteorological stations located at east longitude 86.05°, north latitude 

44.32°, and altitude of 443.7 m. Data for the following weather variables used for this 

study were gathered from 1998 to 2009: precipitation (mm), relative humidity (%), 

wind speed (m/s), and maximum and minimum temperature (
o
C). 



2.2 Estimation of Reference Evapotranspiration 

The Penman-Monteith equation for calculation of ETo proposed by Allen [1] is 

expressed as: 
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where ETo is the reference evapotranspiration [mm day
-1

], Rn is the net radiation at 

the crop surface [MJ m
-2 

day
-1

], G is the soil heat flux density [MJ m
-2

 day
-1

], T is the 

mean daily air temperature at 2 m height [°C], u2 is the wind speed at 2 m height [m 

s
-1

], es is the saturation vapor pressure [kPa], ea is the actual vapor pressure [kPa], 

es - ea is the saturation vapor pressure deficit [kPa], Δ is the slope vapour pressure 

curve [kPa °C
-1

], and γ is the psychrometric constant [kPa °C
-1

]. 

2.3 LSSVM and Models Evaluation [15, 16] 

Suppose that we are given a training data set of n data points 
n

iii yx 1},{  , where 

n

i Rx   is the i-th input vector and Ryi   is the corresponding i-th target. For 

binary classification problems, yi takes only two possible values {-1, +1}, whereas yi 

takes any real value for regression problems. The goal is to find a function 

yxV :  that minimizes the residuals for the given data and generalizes well with 

unseen data. We transform the input patterns into the reproducing kernel Hilbert space 

(RKHS) by a set of mapping functions )(x [16]. An inner product in the feature 

space has an equivalent kernel in input space, )}'(),({)',( xxxxK  , provided 

certain conditions hold. K is a symmetric positive definite function, which satisfies 

Mercer’s conditions. To learn the unknown function, we solve a Tikhonov functional 

of the special form: 
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where C > 0 is the regularization factor, ei is the residual between the output yi and 

f(xi), w is the weight vector, and b is called the bias term. 

 Using the Lagrangian multiplier method, the Lagrangian for (2) is: 
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where nii ,2,1,   are the Largrangian multipliers corresponding to (2). The 

Karush-Kuhn-Tucker (KKT) conditions (3) are: 
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In the numerical solution proposed by Suykens [12], the KKT conditions of (3) are 

reduced to a linear system by eliminating w and e, resulting in: 
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where      TT

n
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 . Note that 

ICxxK ji

1),(   is symmetric and positive definite since the matrix K is 

semi-positive definite and the diagonal term C
-1

 is positive. Solving (5) for α and b, 

the discriminate function can be obtained from 



n

i

i bxxKxf
1

),()(  . 

Four common choices of kernels are: zxzxK T),( (linear 

kernel),
dT zxrzxK )(),(  (polynomial kernel of degree d), 

2

2

2

),( 

zx

ezxK



 (RBF kernel), and )tanh(),( 21 kzxkzxK T  (multilayer 

perceptron kernel). 

The performance of the different models is evaluated based on the criteria of the 

root mean square error (RMSE) and square value of coefficient of correlation r. These 

two statistical parameters used for the performance evaluation are given as follows 

[11]:  

n

yy

RMSE

n

i

ep




 1

2)(

 
(6) 

 



 








n

i

n

i

eepp

n

i

eepp

yyyy

yyyy

r

1 1

22

1

)()(

))((

 (7) 

 

where yp and ye represent PM method and temperature-based model ETo values 

estimated for the i-th values,
p

y  and 
ey  represent the average values of the 

corresponding variables, and n represents the number of observations.  



2.4 Data Normalization 

In this study, limited climatic data gathered from 1998 to 2009 were used. Daily 

average data of these 12 years in the 145th Regiment, making up 2568 data points, 

were divided into three parts for the purposes of training (60%), validation (20%), and 

testing (20%). Note that only those data in the crop growth period 

(March–September) were used in this study. In order to overcome the negative result 

associated with extreme values, input and output data sets were scaled in the range [0, 

1] using the following equation: 

minmax
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yy
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where ynorm is the normalized dimensionless variable, yi is the observed value of 

variable, and ymin and ymax are the minimum and maximum values of the observed 

variable. 

3 Discussion of Results 

For similar bases of comparison, the same training and verification sets were used for 

the ANN and LSSVM models. RMSE and r
2
 were employed to evaluate the 

performances of the models developed. In this study, the ANN model architecture 

was 4–10–1, the Levenberg-Marquardt algorithm parameter was 0.002, and the 

LSSVM model kernel function used was RBF with parameters 

(C, ε, σ) = (50, 0.0001, 1.5). 

A summary of the statistical performances of the different models is presented in 

Table 1. Compared with the ANN model’s consumption time (119.78 s), the LSSVM 

model shows better performance (35.265 s). Results from the statistical criteria 

indicate nearly the same fitting degree r
2
 (0.986–0.987), but the LSSVM model 

performs better than ANN model in terms of RMSE. 

To illustrate the model estimation performance, Figure 1 shows ANN and LSSVM 

ETo estimates with 642 nodes (March 2006–April 2009) configuration and PM ETo. 

The figure shows that both ANN- and LSSVM-estimated ETo values agree closely 

with the PM-estimated value and follow the same trend. LSSVM also has less 



deviation around the ETo peak compared with ANN, and shows better generalization 

capacity due to its Vapnik-Chervonenkis (VC) theory base.  

Table 1. ANN and LSSVM models and their coefficients of correlation for the training and 

validation periods in the 145th regiment 

Model 
r2 RMSE Consumption 

Time(s) Training Validation Testing Training Validation Testing 

ANN 0.996 0.994 0.986 4.212 4.317 3.189 119.78 

LSSVM 0.996 0.995 0.987 0.112 0.115 0.117 35.265 

 









 

Fig. 1. Comparison of ETo values calculated by the proposed ANN, LSSVM, and PM methods  

Table 2. Comparison data in April 2009 

Date PM 
ANN LSSVM 

Testing Error Testing Error 

2009-4-1 2.954 2.985 -0.010 3.025 -0.024 

2009-4-2 2.413 2.465 -0.022 2.482 -0.029 

2009-4-3 1.779 1.833 -0.030 1.870 -0.051 

2009-4-4 3.783 3.912 -0.034 3.926 -0.038 

2009-4-5 2.645 2.730 -0.032 2.704 -0.022 

2009-4-6 2.320 2.425 -0.045 2.420 -0.043 

2009-4-7 3.499 3.542 -0.012 3.560 -0.017 

2009-4-8 1.058 1.038 0.019 1.004 0.051 

2009-4-9 2.179 2.174 0.002 2.163 0.007 

2009-4-10 3.572 3.537 0.010 3.612 -0.011 

2009-4-11 3.070 3.118 -0.016 3.112 -0.014 

2009-4-12 2.816 2.626 0.067 2.843 -0.009 



2009-4-13 3.044 2.894 0.049 3.097 -0.017 

2009-4-14 3.473 3.554 -0.023 3.578 -0.030 

2009-4-15 2.520 2.586 -0.026 2.571 -0.020 

2009-4-16 2.643 2.743 -0.038 2.690 -0.018 

2009-4-17 3.913 3.840 0.019 3.884 0.007 

2009-4-18 0.730 0.617 0.154 0.584 0.199 

2009-4-19 1.854 1.722 0.071 1.733 0.065 

2009-4-20 1.888 1.923 -0.019 1.796 0.048 

2009-4-21 2.621 2.586 0.013 2.568 0.021 

2009-4-22 3.826 3.991 -0.043 3.856 -0.008 

2009-4-23 2.321 2.358 -0.016 2.366 -0.019 

2009-4-24 2.885 2.904 -0.007 2.864 0.007 

2009-4-25 4.359 4.407 -0.011 4.417 -0.013 

2009-4-26 2.922 2.908 0.005 2.913 0.003 

2009-4-27 5.267 5.327 -0.011 5.319 -0.010 

2009-4-28 1.284 1.271 0.011 1.288 -0.003 

2009-4-29 1.678 1.586 0.055 1.580 0.058 

2009-4-30 1.420 1.360 0.042 1.363 0.040 

4 Conclusions 

In this work, LSSVM is proposed to be a novel technique for nonlinear function 

approximation. It is a very specific type of learning algorithm characterized by the 

capacity control of the decision function, the use of the kernel functions, and the 

sparseness of its solution. Established on the unique theory of structural risk 

minimization to estimate a function by minimizing the upper boundary of the 

generalization error, LSSVM is very resistant to the over-fitting problem, eventually 

achieving high generalization performance in solving various nonlinear function 

approximation problems. Another key property of LSSVM is that training it is 

equivalent to solving linear systems; its solution is always unique and globally 

optimal, unlike the training of other networks, which requires non-linear optimization 

with the danger of getting stuck with local minima.  

An LSSVM model was developed to estimate ETo based on an extensive number 

of data sets with limited climatic information. Its superiority was demonstrated by 



comparison with the ANN model. All the simulation results showed that the LSSVM 

model is more effective and efficient in estimating ETo than the ANN model. 

Although this paper showed the effectiveness of the LSSVM model, several issues 

require further investigation. Firstly, how to determine the hyperparameters of 

LSSVM is an important issue that needs to be addressed. Secondly, in this study, only 

the RBF kernel function was investigated. Additional research is necessary to explore 

more useful kernel functions to improve the performance of the LSSVM model. 
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