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Abstract. A position-velocity (PV) model and a multi-sensor system, consisted 

of a consumer application GPS, a MEMS gyro, two encoders, and a 

turning angle sensor, was constructed for the positioning system. The two 

encoders augmented the positioning accuracy greatly that the fluctuation of 

vehicle position was greatly smoothed comparing with a GPS-only system. The 

minimal fluctuation was falling from 2.21 m to 0.52 m (east direction), from 

0.68 m to 0.23 m (north direction). The maximum XTE was reduced from 2.5 

m to 0.77 m, and the RMS value was improved to 0.22m. The GPS bias error 

was the major difficulty to produce better performance.  
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1 Introduction 

Parallel tracking is the main operation method of agricultural vehicles. Global 

Positioning System (GPS) acts as an important role in navigating agricultural vehicles 

with parallel tracking. Some researches [1-3] have been reported to use high–accuracy 

GPS receivers, Real Time Kinematic Global Positioning System (RTK-GPS) or 

Carrier-Phase Differential GPS (CPD-GPS), to develop automated agricultural 

vehicles. However, both RTK-GPS and CPD-GPS are too expensive for its actually 

application in agriculture. Low-cost consumer application GPSs are now widely used 

in automobile industry, i.e., car navigator, path tracking, but their position accuracy, 

2-3 meters, could not be satisfied with requirement of agriculture application. 1 

Kalman filter has been extensively used to smooth raw DGPS signals [4-5], 

which improved the positioning accuracy, and more importantly, it provided reliable 

positioning information during a short period of time when the GPS signal is lost. For 
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example, Will
 
[1] constructed a position-attitude (PA) model-based extended Kalman 

filter. Han et al. [4] set up a position-velocity (PV) model for the Kalman filter. Guo 

et al.[5]
 
integrated IMU and DGPS data and formed a position-velocity-attitude 

(PVA) model for fusion algorithms. Fiengo et al.[6] developed a model for vehicle by 

combinating of a GPS, speed sensor, and a gyro sensor. Guo [7] developed a 

GPS/IMU/magnetometer integrated system with Kalman filtering for vehicles. The 

author [8] had integrated a vision sensor and two encoders to construct an extended 

Kalman filter. Those results showed that fusion system could decrease the cost of 

sensors while kept the necessary accuracy for agricultural applications. 

As sensor technology is developing rapidly, low-cost positioning system shows 

possible and attractive for agricultural vehicles. Rong Zhu et al.[9] developed an 

extended Kalman-based fusion algorithm for attitude estimation by using inexpensive 

micromachined gyroscopes, accelerometers and magnetometers. Akira Mizushima et 

al.[10] used low-cost sensors, three vibratory gyroscopes and two inclinometers, to 

estimate tilt angles (roll and pitch) by least-squares method. The drift error of the 

gyroscopes was estimated using the inclinometers. Ndjeng et al.[11] solved the 

problem of outdoor vehicle localization with Interacting Multiple Model (IMM) and 

Extended Kalman Filter (EKF) approaches, which allows the method to be optimized 

for highly dynamic vehicles with low-cost IMU-odometer-GPS composition. Zhi 

Shen et al.[12] integrated low-cost sensors, a MEMS-grade gyroscope, a vehicle built-

in odometer, and a GPS to provide 2D navigation for land vehicles. Fast Orthogonal 

Search is suggested for modeling the higher order of reduced inertial sensor system 

RISS errors. 

The objective of this research was developing a positioning system with low-cost 

guidance sensors for agricultural parallel tracking application. 

2. Materials and Methods 

A multi-sensors system was constructed on a rice transplanter (ZP60, ISEKI, Japan) 

as shown in figure 1, which consists of a consumer application GPS receiver (U-blox 

LEA-5S, Zoglab Inc., China), a MEMS gyro as heading angle sensor (GX1, Xunjie 

Inc.,China),two encoders as speed sensor (E6B2-CWZ6C, Omron Inc., Japan), and a 

precision potentiometer as turning angle sensor (Copal N35,Japan). The antenna of 

the U-blox GPS was mounted on a rigid frame in the front the vehicle 2.5 m above 

ground level. The receiver transmitted data at 1 Hz with Baud rate of 9600 bps. A 

RTK-GPS (S82E, South surveying & mapping instrument Inc, china) was used to 

record track of the vehicle with its antenna mounted beside the U-blox one. The gyro, 

measured angular velocity for yaw direction at maximum ability of ±70°/s, was 

installed on the body of vehicle. Two encoders, outputted 360 pulses per round, were 

driven by the left and right rear wheel through a pair of gear transmission with rate of 

1:1. The potentiometer, whose resistance is 5KΩ within rotary angle of 345°, was 

installed under the turning axis. A computer system consists of one embedded central 

computer (ECC) (ARM S3C2440 Developing board, Tianxiang Inc., China) and five 

electric circuit units (ECU) (PIC 16F873A Developing board, Microagriculture Inc., 

China), which were connected by a RS-485 net. The 1st ECU acted as transferring 



data from the GPS receiver to the ECC. The 2nd and 3rd ECUs acted as sampling 

tracking speed from the left encoder and right encoder at the left and right rear wheel 

correspondingly. The 4th ECU acted as sampling turning angle from the 

potentiometer and sampling heading angle from the gyro sensor, and the last one 

acted as controlling a step motor to steering the rice transplanter. The outputs of these 

sensors were acquired through a 10-bit analog/digital converter. The total cost of this 

attitude sensor was approximately $250, only 1/5 of a DGPS. 
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(a)                                                                          (b) 

Fig. 1. (a) configuration of the multi-sensor system; (b) the test platform on the ISEKI ZP60  

The GPS signal triggered all ECUs to begin sampling signal from corresponding 

sensors at the same time. When the ECU1 received the ‘$GPGGA’ frame, it extracted 

latitude and longitude and then sent them into the RS-485 net, which could be 

received by the ECC and all other ECUs, while the latter would sampled signal from 

corresponding sensors. The ECC processed the latitude and longitude after a button in 

its monitor, ‘START’, was pressed, and it got all sensor data by serial communication 

between one ECU and itself. The ECC transformed those data into significative 

decimal value, such as turning angle, left wheel speed. All data were then sent to the 

Kalman Filter for further processing.  

A local coordinate system was set up that the 1
st
 point in every test was thought as 

the origin point, and the x coordinate pointed to east direction and y coordinate 

pointed to north direction. Coordinate x and y of any position were transformed from 

the latitude and longitude of GPS according to Chang’s method [13]. Furthermore, the 

rice transplanter was modeled as a three-tyre vehicle as shown in figure 2. Relying on 

kinematics analysis, a position-velocity (PV) model was set up for the Kalman filter. 

It shows the angle between the road and y-axis is fixed value, α, while the heading 

angle, Ψ, offset, e, and speed, v1 and v2 , changed when driving the vehicle. 
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Fig. 2. The vehicle model, which is transformed into three-tyre vehicle, locates on the local 

coordinates. Point ‘C’ represents the estimated position point. 

The discrete Kalman filter recursive equations are [4]: 

kkkk wXX 1
 (1) 

kkkk vXHZ   (2) 

where 

Xk is the (n  1) process state vector at time tk 

k is the (n  n) state transition matrix 

kw is the (n  1) process noise vector with a known covariance Qk 

Zk is the (m  1) measurement vector at time tk 

Hk is the (m  n) measurement connection matrix 

vk is the (m  1) measurement noise vector with a known covariance Rk. 

Equation 1 is the process model, and equation 2 is the measurement model. Since the 

objective of this study was to improve the 2–D positioning accuracy, four state 

variables were set as following: 

T

kkkkk vyxX ],,,[   (3) 

where 

xk and yk are local coordinates to be estimated. 

Ψk is heading angle to be estimated. 

vk is velocity to be estimated. 

The state transition matrix was: 
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(4) 

The raw receiver outputs, xGPS and yGPS transformed from latitude and longitude 

by GPS, heading angle from gyro, speed from encoders, and turning angle from 

potentiometer, are the measurement variables. The measurement vector and the 

measurement connection matrix are: 

T
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The numerical solution to the discrete Kalman filter model is a step–wise 

procedure 
[4]

: 

Step 1: Compute the Kalman gain, Kk: 

1])1|([)1|()(  TT HkkPHRHkkPkK  (7) 

where Kk is the Kalman gain, Pk,k-1 is the initial error covariance matrix, and R  is the 

covariance matrix for the measurement noise vector. 

Step 2: Update the estimate, kkX ,
ˆ , with the measurement, Zk: 

)]1|(ˆ)()[()1|(ˆ)|(ˆ  kkXHkYkKkkXkkX  (8) 

where 1,
ˆ

kkX is the updated estimate, and is a priori estimate. 

Step 3: Compute the error covariance, Pk,k, for the updated estimate: 

)1|(])([)|(  kkPHkKIkkP  (9) 

where Pk,k-1 is a priori error covariance matrix. 

Step 4: Project ahead: 

)|(ˆ)()|1(ˆ kkXkkkX   (10) 

k
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where kkX ,1
ˆ

 and Pk1,k are the projected estimate and projected error covariance 

matrix that the next iteration requires. 

In the application of the above procedure, three matrices, the process noise 

covariance matrix Qk, the measurement noise covariance matrix Rk, and the initial 



error covariance matrix Pk,k-1 , need to be defined prior to the start of the iteration. We 

derived these matrices by trial : 
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The updated estimate, equation 8, is the best estimate of the current position. 

The first experiment was done on a road (50 meter long) located in campus of 

Ningbo Institute of Technology, Zhejiang University on Jan. 29, 2011, where tracks 

of right wheel were drew by Chalks, and another one was done on a road (90 meter 

long) located in Jiangshan, NingBo on July 1, 2011, where tracks of the center of the 

vehicle were recorded by the RTK-GPS. The vehicle was driven along two parallel 

rows, transecting approximately 2.2 m in the former experiment, and 4.0 m in the 

later one. Data were recorded with a 1–s interval in all experiments. Every experiment 

was repeated 2 times with 3 travel speeds, 0.25m/s, 0.73 m/s, and 1.1 m/s.  

One program, including serial communication and Kalman filter module, was 

written, compiled and run real time in the ECC, and another Matlab program was 

written for data analysis. The record of chalk or RTK-GPS was used as a baseline 

(reference) to evaluate the performance of the filters. A cross–track error (XTE) [4] is 

defined as the distance between the currently measured GPS position and the desired 

track. Minimal fluctuation was defined as coordinates jumping in east direction or 

north direction to evaluate performance of the kalman filter when RTK-GPS was not 

available. 

3. Results and Discussion 

Figure 3 shows one results by drawing line on ground. It shows that the Kalman filter 

improves the positioning system. The state variables, coordinates x, y, and heading 

angle Ψ were smoothed. In these experiments, the minimal fluctuation was falling 

from 2.21m to 0.52 m (east direction), from 0.68 m to 0.23 m (north direction). 

However, the absolute bias still could not be evaluated by drawing line on ground. 



 
(a)                                                             (b) 
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Fig. 3. Experiment data by drawing line on ground, (a)original GPS position, estimated position 

and track of right wheel; (b) original gyro data and estimated heading angle; (c) left encoder 

and right encoder data; (d) turning angle sensor data 

The truth was exposed when receiving position data both from the U-blox GPS 

and the RTK-GPS at the same time. Figure 4 shows one result of this kind of 

experiments. The first point got by the RTK-GPS was also the original point of the U-

blox coordinates system, where the first point got by U-blox deviated to coordinates 

(2.610747, 2.771199). Though positioning coordinates were smoothed by the Kalman 

filter, they deviated in most time that the mean bias was 2.32m, and the RMS is 

0.72m, and the difference between the maximum and minimum XTE is 5.30m. The 

two lines formed by the U-blox GPS are not parallel. Compared with the former 

experiments, bad performance might be caused by close distance of the two antennas. 



 

Fig. 4. experiment data by using the two GPSs together. The track go and back are nearly 

parallel, but whether the U-blox GPS or the estimated coordinates are not parallel. 

Results shows high accuracy sensors improve performance of positioning system. 

A close look at the GPS data we found the least GPS data changing is 1.5 m in x axis, 

and 0.45 m in y axis, the original GPS output could hardly be used to navigate an 

agriculture vehicle. After Kalman filter, the average data changing decreases to 0.45 

m in x axis, and 0.20 m in y axis. This improvement owes to two encoders as they 

provide high accuracy tracking distance. The turning angle sensor is another high 

precision sensor; however, its output was not used as state variable yet, so it hardly 

contributed to improve positioning system. If it will be added as a state variable in 

future work, it will then bring more positive effect.  

Another way to improve accuracy is speeding up the update of sensors. The 

maximum ability of this GPS receiver is 4Hz, while the working frequency was 1Hz 

only in this experiment due to stability of serial communication. Moreover, the gyro 

could update its output in 10 Hz. So software should be improved in future work to 

obtain more accuracy positioning data. 

This experiment also certified that combine of some low cost guidance sensors 

could produce high accuracy position. The most expensive sensor in this system is the 

gyro, $100, and the total sensor cost is less than $250. It is important to use one or 

two low cost, high precision sensor, such as encoder, to improve the performance. 

The experiments showed that Kalman filter does not work when the vehicle is turning 

around which Han [4] mentioned. In our experiments, estimated position might move 

to wrong direction when starting turning, and heading angle will lag behind the gyro 

data greatly. Solution to this difficulty is closing the Kalman filter when turning, and 

initializing it when it goes into a new row. If using a local coordinate system, we 

could set the first GPS data in the first row as the origin, and set the initial state 

variable with changed x and y, as well as adjust the state transition matrix, whose sign 

of encoder should be reversed. 



4. Conclusions 

A low-cost positioning system, consisted of a consumer application GPS receiver, a 

MEMS gyro, two encoders and one turning angle sensor, was developed to improve 

positioning accuracy of the GPS by using Kalman filter. A computer system 

embedded on vehicles was constructed, which composed of an ECC (ARM embed 

computer), 5 ECUs (PIC16 microcomputer), and a RS-485 net. Local coordinates, 

heading angle, and vehicle speed were set as state variables in the Kalman filter. 

Experiment results show positioning coordinates got by the GPS were improved after 

filter processing that they were smoothed, but bias of the GPS made the estimated 

coordinates uncertainty. The minimal fluctuation was falling from 2.21 m to 0.52 m 

(east direction), from 0.68 m to 0.23 m (north direction). The maximum XTE was 

reduced from 2.5 m to 0.77 m, and the RMS value was improved to 0.22m. However, 

the Kalman filter could not remove bias of GPS. In addition, the proposed Kalman 

filter makes inaccurate position estimates when turning around. Further work should 

be on reducing the GPS bias error for parallel tracking applications. 
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