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Abstract. Precipitation is important factor affecting vegetation and controlling 
key ecological processes. In order to quantify spatial patterns of precipitation in 
Chongqing tobacco planting region, China, under ArcGIS platform, three 
multivariate geostatistical methods including cokriging, small grid and 
regression kriging, coupled with auxiliary topographic factors extracted from a 
1:100000 DEM  were applied to predict spatial distribution of precipitation for 
January (the least month), June (the richest month) and the whole year. The 
results showed that cokriging was the best for prediction precipitation of 
January, which could explain 58% of the total variation. Small grid simulation 
with IDW interpolation exhibited higher accuracy for both June precipitation 
and annual precipitation, which explained 72% and 61% of the total variation 
respectively. Generally, multivariate geostatistics accounted for most of the 
spatial variability in mean precipitation and especially could exhibit great 
improvement for estimating precipitation in areas where topography has a 
major influence on the precipitation.  
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1   Introduction 

Precipitation is a very important climatic characteristic used in determining site 
suitability for agricultural and forest crops[1, 2], and it is also important in 
parameterizing the habitat of plant species and determining the patterns of vegetation 
zonatio [3].However, accurate precipitation data only exist for point locations, the 
meteorological stations, as a result of which values at any other point in the terrain 
must be inferred from neighboring stations or from relationships with other 
variables[4]. Therefore, spatial modeling of precipitation is of importance for 
understanding and supporting agricultural sustainability development. 
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 Over the past decades, a number of methods have been proposed for modeling the 
spatial distribution of precipitation. The simplest approach is Thiessen polygon 
method which amounts at drawing around each gage a polygon of influence with the 
boundaries at a distance halfway between gage pairs [5]. Although the Thiessen 
polygon method is essentially used for estimation of areal rainfall, it has been applied 
to the interpolation of point measurements [6]. Meanwhile inverse distance 
interpolation that makes unknown rainfall depth as a weighted average of surrounding 
values and the weights being reciprocal to the square distance from the unsampled 
location is also widely applied in many regions [6, 7]. However, for both Thiessen 
polygon method and inverse distance interpolation weighting method, they do not 
consider topographic variables such as elevation, altitude or latitude influences on 
precipitation, which rather is believed to be important factors especially in mountain 
regions with complex terrain. In order to overcome this deficiency, some researchers 
develop the relationships between precipitation and a range of topographic variables 
and used regression analysis and GIS techniques to model rainfall spatial pattern [1, 
8-10].But the method heavily depends on the accuracy of regression model and rarely 
consider spatial relationships among sample points. 
 Multivariate Geostatistics which is based on the theory of regionalized variables 

[11], is recently increasingly preferred because it allows one to capitalize on the 
spatial correlation between neighboring observations to predict attributes values at 
unsampled locations, and also can be complemented by ancillary attributes [7, 12, 13]. 
Several authors have shown that the multivariate geostatistical prediction provides 
better estimates of rainfall than conventional methods or single ordinary kriging.For 
example Goovaerts[8] used cokriging for incorporating elevation to predict mean 
monthly rainfall spatial distribution of Algarve, Portugal and compared that with 
Thiessen polygon, inverse square distance as well as ordinary kriging ,found that 
cokriging could achieve better estimation results. Lapen[3] used regression kriging to 
spatially model the total precipitation normals in the Great Lakers. Hussain[14] 
interpolated precipitation during monsoon periods in Pakistan. Ouyang 
[15]incorporated altitude, latitude, elevation, slope, aspect components and used small 
grid interpolation to calculate annual precipitation distribution of Beijing mountain 
area, china and the result showed the error tolerance was within 40mm.  

Chongqing tobacco planting region, which locates in the southwest China and 
mostly is covered by hilly and mountains. Understanding the spatial pattern of 
precipitation especially increasing the accuracy of spatial prediction would be very 
important for local tobacco planting precise plan and management. In this study, we 
present an application of cokriging, small grid interpolation, regression kriging 
respectively for modeling precipitation in January (least), June (most) and the whole 
year of this region. Topographic variables including elevation, altitude, latitude, slope 
and aspect were used as auxiliary data. Mean squared error (MSE) and root mean 
squared standardized effect (RMMSE) as performance evaluation indicators were 
investigated to determine which approach is appropriate for predicting regional 
precipitation spatial distribution within different periods. 

This paper is organized as follows. Following the introduction, some theory and 
methods used in this study are described in Section 2 .The study area and data 
resources are depicted in Section 3. In section 4, results and discussion are illustrated. 
Conclusions are finally made in Section 5. 



2   Theory and Method 

2.1   Cokriging  

Multivariate geostatistics comprise a set of techniques and estimators which use the 
spatial variability, multivariate variables and correlation of a continuous spaced-
distributed phenomenon to predict unsampled locations. In this section, we briefly 
introduce three methods used in this paper. 
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Where h  is a vector, the lag. For v  also, the expected difference is zero and its 

autovariogram is ( )hvvγ .The two variables have a cross-variogram ( )huvγ , defined as 
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Which describes the way in which u  is spatially related to v . 
To compute the usual cross-variogram, there must be sites where both u  and v  

have been measured. The experimental cross-variogram ( )
^

hruv can be estimated by 
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Where uz and vz have been measured at sites ix  and hxi + , and ( )hm  is the 

number of pairs of data points separated by the particular lag vector h . 
The cross-variogram can be modeled in the same way as the autovariogram but 

there is an added condition. Any linear combination of the variables itself should be a 
regionalized variable, and its variance must be positive or zero. This is ensured if we 
adopt the linear model of coregionalization. For any pair of variables u and v , the 
variogram is 
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Where the k
uvb  represents the variances, for example the nugget or sill variances. 

( )hgk  is the spatial autocorrelation function which must be the same for both 
analyzed variables. 

The ordinary punctual cokriging prediction of the primary variable 
∧

uZ is obtained 
from the linear sum 
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Where there are V variables, Vl ,...,2,1=  of which u  is the one to be predicted 

and the subscript i  refers to the sites of which there is ln  in the search 
neighborhood where the variable l  has been measured. The ilλ  represents the 
weights, which in the case of ‘classical ’cokriging (Goovaerts, 1997)  satisfy 
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There are non-bias conditions and the weights ilλ which minimize the estimation 

variance of ^

uZ for a point 0x are found by solving the kriging system for all 
Vv ,...,2,1= and all vnj ,...2,1= . The weights iλ are inserted into Eq. (5) to 

estimate ^

0 )( xZ u . 
 

2.2   Small grid simulation  

Small grid simulation is based on a linear regression between a target variable such as 
certain climatic property ( Z ) and a secondary or third variable such as elevation or 
slope ( iY ).The regression model so obtained is used to predict Z to the locations of 
the prediction grid at which iY is known. The residuals from the regression ε  are 
interpolated deterministically to the prediction grid. Since there is still no any 
deterministic interpolation proved to fit all variables. In this paper, we used IDW and 
Spline respectively and determined the proper one by calibration and comparison. The 
predicted values ^

RZ and the interpolated values of the residuals 
^
ε  are summed to 

give the predicted values of the target variable ^
Z . 

 



( ) ( ) ( )xxZxZ R

^^^
ε+=  

(7) 

 

2.3   Regression Kriging 

Odeh et al [16]described three types of regression kriging: model A, B and C which 
are the developments of the general theme. In this study, we used model C. Like small 
grid simulation, the method is also based on a linear regression between a target 
variable and a secondary or third variable. But the residuals from the regression ε are 
kriged stochastically to the prediction grid using the variogram computed from the 
residuals. The predicted values ^

RZ and the kriged values of the residuals ^

okε are then 
summed to give the predicted values of the target variable ^

RKZ . in the author index. 
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2.4   Performance evaluation indicators  

In order to evaluate the performance of different multivariate geostatistical methods, 
mean squared error (MSE) and root mean squared standardized effect (RMSSE) in 
this paper, are used as performance measure indicators. 

The mean squared error (MSE) is expressed as 
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The root mean squared standardized effect (RMSSE) is expressed as 
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Where ( )ixz1 is standardized site true value and ( )ixz2 represents standardized 

site prediction value, l is the number of validation sites. When MSE is more close to 
0 and RMSSE more approaches 1, the accuracy of prediction is regarded better. 



3   The Study Area and Data Source  

3.1   The study area 

The study area is located in the east part of Chongqing between north latitude 
28°09′and 32°12′and east longitudes 106°23′and 110°11′(Fig. 1).The landform of this 
area is dominated by hills, low mountains and medium mountains. Generally, it is 
undulating with slopes ranging from 0 to 84 °and altitudes within the range from 100 
to 2750.92 m. Due to weak transportation and poor economy development, tobacco 
planting has been one of local dominant crops productions. 
 

 
 

 Fig. 1. Location of the study area 

3.2   Data sources 

Precipitation data were obtained from 34 meteorology stations of the Chongqing 
Meteorological Institute monitored monthly from 1977 to 2006, and 13 additional 
stations belonging to other organizations, irregularly dispersed throughout the whole 
region. From the observations, 10 sites randomly selected, were kept aside for 
validation. As precipitation of this region is strongly seasonal (Fig. 2.), and in this 
study we just model mean monthly precipitation for the least rainfall (January), the 
richest rainfall (July), as well as the whole year.    
  A DEM was constructed using ArcMAP Version 9.2 (ESRI).50×50m DEM data 
were derived from automated image matching of scanned panchromatic aerial 
photograph based on AUNDEM. Primary topology attributes including elevation, 
slope and aspect. Latitude and longitude were available by Binary ACCII 
interpolation. 
 



 

Fig. 2. Mean monthly precipitations of the stations over past thirty years in study area 

4   Results and Discussion  

4.1   Exploratory data analysis 

The Pearson correlation coefficients were calculated between precipitations and the 
independent topographic variables to determine the influence of different terrain 
elements on rainfalls. It was shown in Table 1.For precipitations within three different 
periods, they were all related to elevation and aspect. And precipitation generally 
increased with elevation, but aspect otherwise inversely. For longitude, only annual 
precipitation showed strong positive correlation and both precipitation in January and 
that in July rather showed negative correlation whereas annual precipitation is likely 
to be indirect. Except precipitation of July, the precipitations of other periods had no 
obvious links with slope. 

 Table 1. Bivariate correlations between the independent topographic variables and 
precipitation data within different periods 

 January July Annual 
Longitude -0.086 0.233 0.461(**) 
Altitude -.693** -.401* -0.212 

Elevation 0.521** 0.466* 0.415* 
Slope -0.03 -0.381* -0.021 

Aspect -0.471* -0.416* -0.423* 



4.2   Cokriging 

Experimental cross- and auto-variograms were obtained by applying Eq. (4) using the 
longitude, altitude, elevation, slope and aspect at the observation sites for 
precipitations. It was shown as in Table 2.  

Table 2. Variogram model parameters with longitude, altitude, elevation, slope and aspect of 
different precipitations 

Item Variable Model Nugget Sill Range(km) 
Longitude Linear  1.2 - - 
Altitude Exponential    0.7 0.9 141.16 

Elevation Gaussian    1.2 1.2 320.60 
Slope Linear  1.2 - - 

January 

Aspect Spherical    0.7 0.8 118.19 
Longitude Linear    1.4 - - 
Altitude Exponential  0.7 1.1 320.67 

Elevation Exponential    0.6 0.8 117.37 
Slope Spherical  1.2 1.3 340.70 

June 

Aspect Exponential    0.6 0.8 117.37 
Longitude Gaussian  0.7 0.9 116.19 
Altitude Linear  0.9 - - 

Elevation Exponential  0.6 1.0 121.04 
Slope Linear  0.7 - - 

Annual 

Aspect Spherical  1.1 1.4 326.70 
 
It was indicated that the two sets variograms of elevation, aspect for precipitation 

within different periods were all bounded and were fitted by Gaussian, Spherical and 
Exponential, Exponential, Exponential as well as Spherical respectively. The 
variograms of longitude for precipitation of January and June were both unbounded, 
whereas it was bounded for annual precipitation with the range set to 116.19 km. The 
variogram of slope was bounded for precipitation of July whereas it was unbounded 
for both June and Annual. Under the ArcGIS platform, altitude, elevation and aspect 
were associated as covariances for precipitation of January and altitude, elevation, 
slope as well as aspect were associated as covariances for precipitation of July. 
Longitude, elevation and aspect acted as covariances for the spatial prediction of 
annual precipitation. The whole prediction maps were shown in Fig. 3. 

 



 
Fig. 3. Spatial predictions for precipitations within different periods with cokriging 

4.3   Small grid interpolation 

Linear regressions of precipitations of January, July and Annual were done. The 
equations were depicted as follows: 
 

881.41005.0167.0008.0888.4124.11 ++−+−= ϕφλβαy    ( 790.02 =r )  

081.272004.0339.0009.0542.14246.82 −−−+−= ϕφλβαy    ( 638.02 =r )  

142.287059.0938.2118.0698.30520.453 −+−+−= ϕφλβαy    ( 573.03 =r )  

 
Where 1y , 2y and 3y represents precipitation of January, July and Annual 

respectively, ϕφλβα ,,,,  represents longitude, altitude, elevation, slope and aspect. 
The residuals of regression models calculations were interpolated by IDW and 

Spline respectively, and then summarized with regression predicted values. The 
whole spatial prediction maps were displayed in Fig. 4. 



 
Fig. 4. Spatial predictions for precipitations within different periods with small grid simulation 

 



4.4   Regression Kriging 

Regression modeling is the same with small grid interpolation, and an experimental 
variogram was computed on the residuals of precipitations within different periods 
from the regressions at each site. It was shown in Table 3. 

Table 3. Parameters for the fittest residuals theoretical models of precipitation within different 
periods 

Item Model Nugget Sill Range(km)
 R2 

Spherical 0 0.093 411.1 0.631 
Exponential 0 0.079 411.1 0.652 January 

Gaussian 0.011 0.107 411.1 0.724 
Spherical 0.002 0.014 388.9 0.713 

Exponential 0.001 0.014 411.1 0.762 June 
Gaussian 0.004 0.016 358.3 0.714 
Spherical 0.004 0.009 354.8 0.841 

Exponential 0.001 0.009 411.1 0.784 Annual 
Gaussian 0.003 0.010 301.6 0.843 

 
It was found that the highest determined coefficient (R2) existed in Gaussian, 

Exponential and Gaussian model for precipitation of January, June, Annual 
respectively. The whole spatial prediction maps were displayed in Fig. 5. 

 

 



Fig. 5. Spatial predictions for precipitations within different periods with regression kriging 

4.5   Discussion 

The prediction residuals and MSEs as well as RMMSEs for the precipitations of 
January, June and Annual were given in the Table 4 for each method of spatial 
prediction 

In terms of prediction residuals, for precipitation of January, cokriging was the 
smallest, followed by the small grid (Spline interpolation), small grid (IDW 
interpolation), and last was the regression kriging. And cokriging could explain 58% 
of total variation. The MSEs Variation for different methods showed same trend. The 
RMSSE of being close to 1 was ranked by cokriging, small grid (Spline interpolation), 
small grid (IDW interpolation) and regression kriging. Fig.3, Fig.4 and Fig.5 have 
showed the spatial prediction maps with different methods. Generally, the major 
patterns of variation were evident but the detail was different.  

Table 4 showed that small grid (IDW interpolation) was the most accurate method 
of prediction for precipitation of June, which could explain the 72% of total variation, 
followed by small grid (Spline interpolation), cokriging. And the regression kriging 
was the worst in this spatial variability of January, June and Annual mean case. The 
less accurate predictions from regression kriging probably reflected regression model 
less good determined coefficient 

For annual precipitation, the prediction accuracy rank showed similar pattern with 
June but the least accuracy method was cokriging and the explained percentage of 
total variation by small grid (IDW interpolation) simulation was 61%. 

 

Table 4.  Prediction accuracy at validation points 

Item  Cokriging Small 
Grid(Spline)

Small 
Grid( IDW)

Regression 
Kriging 

TSSa 10947 10947 10947 10947 
SSRb 4598 5255 5692 6568 
MSE 0.074 0.087 0.092 0.093 

January 

RMSSE 0.891 0.851 0.871 0.832 
TSSa 961037 961037 961037 961037 
SSRb 451687 374804 269090 470908 
MSE 0.034 0.031 0.027 0.072 

June 

RMSSE 0.911 0.952 0.973 0.897 
TSSa 32921134 32921134 32921134 32921134 
SSRb 17448201 15143722 12839242 16131356 
MSE 0.065 0.051 0.042 0.057 

Annual 

RMSSE 0.872 0.897 0.925 0.887 
a TSS represents the total sum of residuals  
b SSR represents the sum of squares of residuals  



5   Conclusion 

Understanding the spatial variation of climatic factors is very important for crops 
planting planning and management. Increasing the accuracy of the spatial predictions 
of precipitation with the aid of available ancillary data is quiet environmental 
typically in complex terrain mountain areas, where topographic factors usually have 
influence on precipitation spatial pattern. This study predicted the spatial distributions 
of precipitations within different periods with three multivariate geostatistical 
methods including cokriging, small grid and regression kriging in Chongqing tobacco 
planting area. And the methods showed good advantage which enabled us to describe 
58-72% of the precipitation. However, it should be noted that although ancillary data 
have been proved to contribute to improving prediction results, there is still no single 
optimal method for all regions. The coregionalization and the relations between the 
deterministic components of the variation still should be carefully examined before 
deciding on the most appropriate methods of prediction. 
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