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Abstract:     In this work an adaptive linear filter model in a autoregressive moving average 
(ARMA) topology for forecasting time series is presented. The time series are 
composed by observations of the accumulative rainfall every month during 
several years. The learning rule used to adjust the filter coefficients is mainly 
based on the gradient-descendent method. In function of the long and short 
term stochastic dependence of the time series, we propose an on-line heuristic 
law to set the training process and to modify the filter topology. The input 
patterns for the predictor filter are the values of the time series after applying a 
time-delay   operator.   Hence,   the   filter’s   output   will   tend   to   approximate   the  
current value available from the data series. The approach is tested over a time 
series obtained from measures of the monthly accumulative rainfall from La 
Perla, Córdoba, Argentina. The performance of the presented approach is 
shown by forecasting the following 18 months from a hypothetical actual time 
for four time series of 102 data length. 
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1. INTRODUCTION 

This work presents an approach to the future rainfall water availability 
problem for agricultural purposes. There are several approaches based on 
non linear autoregressive moving average filters that face the rainfall 
forecast problem for water availability by taking an ensemble of 
measurement points (Liu and Lee, 1999; Masulli et al., 2001). Here, the 
proposed approach is based on the classical linear autoregressive filter 
moving average using time lagged feedforward approach, by considering the 
historical data from one geographical point. One of the motivations for this 
study follows the closed-loop control scheme (Pucheta et al., 2007a) where 
the controller considers future conditions   for   the   control   law’s   design   as  
shown Fig. 1. In that scheme the controller takes into account the actual state 
of the crop by a state observer and the monthly accumulative rainfall. 
However, this paper presents only the controller portion concerning with the 
rainfall forecast. The controller design is inspired on the one presented in 
(Pucheta et al., 2007a). 

The main contribution of this work lies on the tuning process and filter 
structure, which employs the gradient descendent rule and considers the long 
and short term stochastic dependence of passed values of the time series to 
adjust at each time-stage the number of patterns, the number of iterations, 
and the length of the tapped-delay  line,  in  function  of  the  Hurst’s  value  (H)  
of the time series. According to the stochastic characteristics of each series, 
H can be greater or smaller than 0.5, which means that each series tends to 
present long or short term dependence, respectively. In order to adjust the 
design parameters and see the performance of the proposed prediction model, 
sinusoidal and square signals are used. Then, the predictor filter is applied to 
the monthly accumulative rainfall from La Perla -Córdoba, Argentina- as the 
time series to forecast the next 18 values given a historical data set. 

 PC -B A SE D  SY ST E M  

 
C O N T R O L L E R  

 
C U L T IV A T IO N  u(x ,k ,{R o}) 

x (k)  

ST A T E  
O B SE R V E R  

CH A RA CTERISTICS  

R o 
 

Fig. 1. PC-based control approach, which considers an accumulative rainfall Ro. 
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1.1 Overview on Fractional Brownian motion 

In   this  work   the  Hurst’s  value   is   used   in   the   learning process to modify 
on-line the number of patterns and number of iterations presented. The H 
parameter is useful for the definition of the Fractional Brownian Motion 
(fBm). The fBm is defined in the pioneering work by Mandelbrot (1983), 
through its stochastic representation 
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where, *(·) represents the Gamma function 

                                                (2) 
and 0<H<1 is called the Hurst parameter. The integrator B is a stochastic 

process, ordinary Brownian motion. Note, that B is recovered by taking 
H=1/2 in                     (1). Here, it is assumed that B is defined on some 
probability space (:, F, P), where :, F and P are the sample space, the 
sigma algebra (event space) and the probability measure, respectively. So, an 
fBm is a continuous-time Gaussian process depending on the so-called Hurst 
parameter 0<H<1. It generalizes the ordinary Brownian motion 
corresponding to H=0.5, and whose derivative is the white noise. The fBm is 
self-similar in distribution and the variance of the increments is given by 

� � � �� � H

HH stsBtBVar
2

� � Q                                       (3) 

where, v is a positive constant. This special form of the variance of the 
increments suggests various ways to estimate the parameter H. In fact, there 
are different methods for computing the parameter H associated to Brownian 
Motion (Dieker, 2004). In this work, the algorithm uses a wavelet-based 
method for estimating H from a trace path of the fBm with parameter H 
(Abry et al., 2003; Dieker, 2004). Three trace path from fBm with different 
values of H are shown in Fig. 2, where can be noted the difference in the 
velocity and the amount of its increments. 
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Fig. 2. Three sample path from fractional Brownian motion for three values of H. 

2. PROBLEM STATEMENT 

The classical prediction problem may be formulated as follow. Given past 
values of a process that are uniformly spaced in time, as shown by x(n-T), 
x(n-2T), . . . , x(n-mT), where T is the sampling period and m is the 
prediction order, it is desired to predict the present value x(n) of such 
process. Therefore, obtain the best prediction (in some sense) of the present 
values from a random (or pseudo-random) time series is desired. 

The predictor system may be implemented using an ARMA linear filter. 
Here, the model follows the classic linear schemme (Ljung, 1999). The 
linear model structure is self tuned in such a way that smaller the prediction 
error is (in a statistical sense), the better the filter serves as model of the 
underlying physical process responsible for generating the data. In this work, 
time lagged feedforward scheme are used. Thus, the present value of the 
time series is used as the desired response for the adaptive filter, and the past 
values of the signal supply as input of the adaptive filter. Then, the adaptive 
filter output will be the one-step prediction signal. In Fig. 3 the block 
diagram of the linear prediction scheme based on a ARMA filter is shown. 
Here, a prediction device is designed such that starting from a given 
sequence {xn} at time n corresponding to a time series it can be obtained the 
best prediction {xe} for the following 18 values sequence. Hence, it is 
proposed a predictor filter with an input vector lx, which is obtained by 
applying the delay operator, Z-1, to the sequence {xn}. Then, the filter output 
will generate xe as the next value, that will be equal to the present value xn. 
So, the prediction error at time k can be evaluated as 

� � � � � �kxkxke en � , 

which   is  used   for   the   learning   rule   to  adjust   the   filter’s  coefficients. The 
coefficients of the filter are adjusted on-line in the learning process, by 
considering a criterion that modifies at each time-stage the number of 
patterns, the number of iterations, and the length of the tapped-delay line, in 
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function  of  the  Hurst’s  value  (H)  calculated  from  the  time  series. According 
to the stochastic behavior of the series, H can be greater or smaller than 0.5, 
which means that the series tends to present long or short term dependence, 
respectively. A similar algorithm was presented in (Pucheta et al., 2007b). 

 

Estimation of 
prediction error 

Z-1 I Error-correction 
signal 

One-step 
prediction  

ARMA Filter 

Input signal 

 
Fig. 3. Block diagram of the linear prediction. 

3. PROPOSED APPROACH FOR PREDICTION 

3.1 Autoregressive Linear Model 

Now, a linear autoregressive filter model (Haykin, 1999; Ljung, 1991) is 
proposed. The filter used is a time lagged feedforward type. The filter 
topology consists of one input with lx taps, and one output. The rule used in 
the tuning process is based on the standard descendent gradient (Ljung, 
1991). The tuning rule modifies the number of patterns and the number of 
iterations at each time-stage   according   to   the   Hurst’s   parameter   H,   which  
gives short and long term dependence of the sequence {xn} or —from a 
practical point of view, it gives the ruggedness of the time series. In order to 
predict the sequence {xe} one-step ahead, the first delay taken off from the 
tapped-line xn is used as input. Therefore, the output prediction can be 
denoted by 

� � ^ `� �� �npe xIZFnx 11 � �                                           (4) 

where, Fp is the nonlinear predictor filter operator, and xe(n+1) the output 
prediction at n+1. 

3.2 The Proposed Learning Process 

The   filter’s   coefficients   are   tuned   by   means   of   the   gradient-descendent 
rule in a batch scheme, which in turn considers the long and short term 
stochastic dependence of the time series measured  by  the  Hurst’s  parameter  
H. The proposed learning process consists on changing both the number of 
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patterns and the number of iterations in function of the parameter H for each 
corresponding time series. Here, the tuning process is performed using a 
batch model. In this case the update of the coefficients is being performed 
after the presentation of all tuning examples, which forms an epoch. The 
pairs of the used input-output patterns are 

� � pN1,2,....,i     ,  ii yx                                                 (5) 

where, xi and yi are the corresponding input and output pattern 
respectively, and Np is the number of input-output patterns presented at each 
epoch. 

Here, the input vector is define as 

^ `� �,1
ii xIZX �                                                             (6) 

and its corresponding output vector as 

,ii xY                                                                             (7) 

Furthermore, the index i is within the range of Np given by 

xpx l4Nl �dd , 

where, lx is the dimension of the input vector. 
In addition, through each epoch the number of iterations performed it is 

given by 

xtx l4il dd . 

The proposed criterion to modify the pair (it, Np) is given by the statistical 
dependence of the time series {xn}, supposing that is an fBm. The 
dependence   is   evaluated   by   the   Hurst’s   parameter   H,   which   is   computed  
using a wavelet-based method (Abry et al., 2003). 

Then, a heuristic adjustment for the pair (it, Np) in function of H according 
to the membership functions shown in Fig. 4 is proposed. Finally, the 
number of inputs of the filter is tuned —that is the length of tapped-delay 
line, according to the following heuristic criterion. After the training process 
is completed, both sequences —{xn} and {{xn},{xe}}, should have the same 
H parameter. The error between H({xn}) and H({{xn},{xe}}) is used for 
tuning the value of lx, by mean of a well-known PID scheme. Thus, lx is 
updated by, 

� �.HDHPxx eKeKroundll �����                               (8) 

where KP, KD are constants, and eH is defined as 

^ `� � ^ ` ^ `^ `� �.x,xH-xHe ennH                                        (9) 

Thus, the objective is to forecast the time series in such a way that the 
predicted time series and the data time series present the same H. 
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Fig. 4. Heuristic adjustment of (it, Np) in terms of H. 

4. MAIN RESULTS 

4.1 Set-up of Filter and Tuning Process 

Table 1.  Initial condition of the tuning algorithm. 
Variable Initial Condition 

lx 12 
it 5.lx  
H 0.5 
K 0.1 

The initial conditions for the filter and tuning algorithm are shown in 
Table 1. Note that the initial number of iteration is set in function of the 
input number. The variable K is the step-size of the gradient descendent 
method, used for tuning the filter parameter. These initial conditions of the 
tuning algorithm were used for forecasting the monthly accumulative rainfall 
time series, whose sizes have a length of 102 values each. 

4.2 Preliminary Results Using Test Time Series 

In order to test the proposed design procedure of the linear predictor, an 
experiment with sinusoidal and square signals was carried out. The 
performance of the filter is evaluated using the mean Symmetric Mean 
Absolute Percent Error (SMAPE): 

� �
100

21.0

1

1

�
��

�
 ¦

 

n

t tt

tt
S FX

FX

n
SMAPE                  (10) 

where, t is the time observation, n is the (Data series) test set size, s each 
time series, Xt and Ft are the actual and the forecast time series values at time 
t respectively. The shortcoming arise when the denominator is 0 in 
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include the value 0.1 mm of accumulative rainfall as a dummy minimum 

only for evaluating 
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n
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to avoid the division by zero. The SMAPE of each series s calculates the 
symmetric absolute error in percent between the actual Xt and its 
corresponding forecast Ft value, across all observations t of the test set of 
size n for each time series s. Fig. 5 (a) shows the filter response, when it 
forecasts the 18 future values for a sinusoidal time series. The used sine time 
series has a period T=0.48 s, and it is sampled at T0=0.05 s. The initial length 
of the tapped-delay line was set-up at 12 taps and at the end of the tuning 
process was equal to 12, given that Eq � �.HDHPxx eKeKroundll �����                               
(8) does not apply because H equals 1 for all the trials. For a square time 
series, Fig. 5 (b) presents the forecasted 18 values. Here the value of H, 
across for the complete time series {xn} and {xe}, differs at a 5%. To 
improve the forecasting performance of the H-dependent filter, it is used as 
initial condition lx= 15, in order to increase H of the {xe}. The new results 
are shown in Fig. 5 (c) and Fig. 5 (d), where the percentage is declined in the 
order of 1%. 
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(a) Sine.                                                       (b)  Square. 
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Fig. 5. Algorithm performance on test series. 

4.3 Prediction Results for the Rainfall Time Series 

Each one of the time series are composed by observations from the 
monthly rainfall, which over ten years are yields 120 values. However, the 
18 last values where used to validate the performance of the prediction 
system. So, 102 values forms the Data set, and the Forecasted set are 120, 
and the Real data are 18 values. The Data was obtained along 4 decades, 
which is the laps from January, 1962 to December, 1971, from Jan 1972 to 
Dec 1981, and so on up to Dec 2001. Obtained results are show in Fig. 6. 
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(a) Forecast for a time series                       (b)  Algorithm’s  performance 

Fig. 6. Performance on the prediction of rainfall time series. 
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4.4 Comparative Results 

The performance of the ARMA predictor filter is evaluated by 

Eq. � �
100

21.0

1

1
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�
 ¦

 

n

t tt
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S FX

FX

n
SMAPE

                 (10) across the 
accumulative rainfall time series measured at La Perla (Córdoba, Argentina). 
Fig. 6 (b) shows by red trace the evolution of the SMAPE index for an H-
independent filter, which uses a tuning algorithm with fixed parameters. The 
other filter, labeled H-dependent filter is proposed in this work and use the H 
parameter  to  adjust  heuristically  either  the  filter’s  structure  or  parameters  of  
the learning rule -black trace in Fig. 6 (b). It can be noted the improvement 
since the SMAPE index diminish from 86.3 to 81.29, averaging over the four 
time series. 

5. DISCUSSION 

The evaluation of the obtained results has been realized by comparing the 
performance of the proposed filter against that of the classic filter, both 
based on linear scheme. Although the difference between both filters only 
resides in the adjustment algorithm, the coefficients that each filter has 
perform different behaviors. In the four analyzed cases, the generation of 18 
future values from 102 present values was made by each algorithm. The 
same initial parameters were used for each algorithm, although such 
parameters  and  filter’s  structure  are  changed  by  the  proposed  algorithm  but  
they are not modified by the classic algorithm. In the algorithm of 
adjustment for the proposed filter, the coefficients and the structure of the 
filter are tuned by considering their stochastic dependency. It can be noted 
that in figures Fig. 5 and Fig. 6 the computed value of  the  Hurst’s  parameter  
is denoted either He or H when it is obtained from the Forecasted time series 
or from the Data series, respectively, since the Real (future time series) are 
unknown. Index SMAPE is computed between Data series and the 
Forecasted one, as indicates the Ec. 
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                 (10). 

6. CONCLUSION 

In this work a statistically dependent linear filter for forecasting time 
series has been presented. The tuning rule proposed to adjust the filter 
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coefficient is based on the standard gradient-descendent method. 
Furthermore, in function of the long and short term stochastic dependence of 
the time series evaluated by the Hurst parameter H, an on-line heuristic 
adaptive law was proposed to update the filer topology at each time-stage, 
which is the number of input taps, the number of patterns and the number of 
iterations. The main result shows a good performance of the predictor 
system applied to the accumulative rainfall time series when the 
observations are taken from a single point, due to similar roughness for both 
the original and the forecasted time series, evaluated by H and He 
respectively was obtained. These results encourage one to go on working 
with this new tuning algorithm, applying to other filter models (such as non 
linear autoregressive moving average), due to the time series generated by 
humans interaction presents short and long term stochastic dependence. 
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