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1. INTRODUCTION 

The Profile HMM is composed by a Markov chain including matching, 
insertion, delete states, and an observable stochastic process namely as 
observation chain. The state chain depicts the transfer relationship among 
different state. The observation chain represents the statistical association 
between the state and observation. Generally, the state in Markov process 
cannot be observed directly. It can only be understood through the 
observable process. The Profile HMM model was introduced to 
bioinformatics by Krogh (1994), and now was widely used in the Alignment 
of biological sequence. 
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A one grade Profile HHM with matching range as L is illustrated as 
Figure 1. This is a linear model. It progress only one direction from left to 
right. There are 3L+1 system states in the system namely as matching (M), 
insertion (I), and delete (D) respectively. For convenience in coding the 

program, two extra states, say as beginning ( 0M ) and ending ( +1LM ), are 

involved in the model. They do not output any character to influence the 
model activity. The character set depends on the concerning object. For 
example, there are four characters in DNA sequence denoted by A, G, C, and 
T, and twenty characters for amino acid sequence. In the Figure 1, rectangle, 
diamond, and circle denote matching, insertion and delete state respectively. 
The arrow connected different states indicates the state transfer relation and 
direction. In an ascertain model, the transfer probability and character 
release between different state is wholly determinate.  

 
Figure 1 Model of one grade Profile HHM with matching range as L 

2. COMPRESSION FORMS OF PROFILE HMM 
PARAMETERS 

Based on the stochastic processes theory, a Profile HHM can be totally 

ascertained if ( ), , , ,S Ωλ λ= A B π  is known. Where S denotes as state set, Ω 

is observation set, A is state transfer probability matrix, B is character output 
probability matrix, and π is initial state probability distribution function, 
respectively. Suppose a Profile HMM has matching range as L. Then the 
number of elements for S is 3 1N L= + . If two extra state, beginning and 
ending stats, are also included, the number of elements for S become 
as 3( 1)N L= + . So the order of state transfer matrix A is 3( 1) 3( 1)L L+ × + . It 

can be found from Figure 1, at any state such as 
lM , three front states as 

inputs of the state are at the most. They locate at same layer, say as l-1. This 

means only three occasions, 1 1,l l l lM M I M− − and 1l lD M− , can turn up when the 

state transfer from 1lM − to lM . Similarly, only three occasions, 

, ,l l l l l lM I I I D I  and 1 1 1, ,l l l l l lM D I D D D− − −  for lI  and lD  state occur 

respectively. Remembering none of character output for delete state, the 
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state transfer probability matrix as order as 3( 1) 3( 1)L L+ × +  can be 

compressed to 9× (L+1) without lost any information: 
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Where 0 0 1 1 1 2 2 2 1{ , , , , , , , , , , , }L L L LS M I M I D M I D M I D M += L  are state set, 

and [ ]i ja X Y  represents the one step transfer probability from iX  to jY . The 

elements sign as “0” means no corresponding state transfer, and elements in l 
column denote the probability of one step state transfer ending at l layer. Let 

9 ( 1) 9 ( 1)( )L ij La× + × +≡A [ ]ij d ja a X Y= , 1 9i≤ ≤ 1 1j L≤ ≤ + , then following 

relations can be obtained  

(1) 

1,

mod3 2,

0,

X M

i X I

X D

=
= =
 =

                                                                    (2-1) 

(2) 

( 1, ) 1 3

( , ) ( , ) 4 6

( 1, ) 7 9

j M if i

d Y j I if i

j D if i

− ≤ ≤
= ≤ ≤
 − ≤ ≤

                                                      (2-2) 

(3)  31 91 4( 1) 9( 1) 0L La a a a+ += = = = =L                                                   (2-3) 

(4)  ( 3)( 1) ( 6) 1, 1,2,3; 2,3,4ij i j i ja a a i j+ − ++ + = = =                                    (2-4) 

Similarly, let 1 2{ , , , }KΩ ω ω ω= L is observation character set, then 

character output probability matrix (3 1)K L× +B  can be compressed as 

( 2 1)K L× + =B
0 1 1 1 1 1 2 1 2 1 1 1
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Where [ ]X

j kb ω  is the probability of output kω  at the state jX . 

Let ( 2 1) (2 1)( )K L ij K Lb× + × +≡B ( )X

ij d ib b ω=  1 i K≤ ≤ 1 2 1j L≤ ≤ + , 

following relations can be obtained   

1
1, ( , ) ( , )

2mod 2

0, ( , ) ( , )
2

j
X d I

j
j

X d M

− == 
 =


                                                          (2-

6) 
Therefore a profile HMM can be simplified by the compression state 

transfer probability matrix with order of 9× (L+1) and the compression 
character output probability matrix with order of K× (2L+1).  

3.  FORWARD ALGORITHM 

Let us consider the observation sequence 1 2( , , , )TO o o o= L . The 

matching range is L in Profile HMM ( λ ). Based on compress state transfer 

probability matrix 9 ( 1)L× +A  and character output probability matrix (2 1)K L× +B , 

forward algorithm can be obtained. 

Definition 1 Let 1 2( ) ( , , , ,end of | ), , ,X

l t lt P o o o X X M I Dα λ= =L  be the 

probability when part sequence 1 2( , , )t tO o o o= L  output in lX  state at l 

(1 l L≤ ≤ ) layer. Then ( ( ), ( ), ( ))M I D T

l l lt t tα α α  is the probability vector for l 

layer, denoted as ( )l tα . 

Definition 2 Let T
1 1 1( ) ( [ ], [ ], [ ])r r r r r r rX a M X a I X a D Xϕ − − −= ,X M D=  

be a column vector composed by one step transfer probability from state 

1rX −  to rX , and 
T( ) ( [ ], [ ], [ ])q q q q q q qI a M I a I I a D Iϕ =  also be a column 

vector composed by one step transfer probability from state 1qI −  to qI . 

Thus T
1 2 3( ) ( , , )p p p pM a a a=ϕϕϕϕ , T

4 5 6( ) ( , , )q q q qI a a a=ϕϕϕϕ  and T
7 8 9( ) ( , , )r r r rD a a a=ϕϕϕϕ , if 

compress state transfer probability matrix is 9 ( 1)L× +A  and character output 

probability matrix is (2 1)K L× +B . 

Now the forward algorithm for Profile HMM can be express as, 

1) Initiation  

T
0 (0) (1,0,0)=α  

T
0 ( ) (0,0,0) , 1,2, , 1t t T= = +α L                                                             (3-1) 
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T(0) (0,0,0) , 1,2, , 1l l L= = +α L  

2) Recursion calculation 

T
1

T

T
1

( 1) ( ) ( )

( ) ( 1) ( ) ( )

( ) ( )

M

l l l t

I

l l l l t

l l

t M b o

t t I b o

t D

−

−

 −
 

= − 
 
 

α
α α

α

ϕϕϕϕ
ϕϕϕϕ

ϕϕϕϕ
  1,2, ,t T= L 1,2, ,l L= L   (3-

2) 

where (2 ) (2 1)( ) , ( )M I

d t i d l t i db o b b o b += = , when t io w= .  

3) Ending 

Thus    

1 1( 1) 2( 1) 3( 1)( 1) ( ) ( ) ( )M M I D

L L L L L L LT T a T a T aα α α α+ + + ++ = + +                   (3-

3) 
and the probability is 

1( | ) ( 1)M

LP O Tλ α += +                                                          (3-4) 

4. APPLICATION OF PROFILE HMM 

An example of compress state transfer probability matrix and character 
output probability matrix for known multiple sequence comparison is shown 
below. Suppose DAN sequences have be aliment as Table 1. Matching states 
locate in first, second, and sixth column. Thus m is 5, T is 6 and L is 3. The 
corresponding Profile HMM framework is depicted in Figure 2. 

Table 7 Alignment of multiple DNA sequence 

 1 2 3 4 5 6 

bat A G _ _ _ C 

rat A _ A G _ C 

cat A G _ A A _ 

gnat _ _ A A A C 

goat A G _ _ _ C 

In order to avoid zero in probability calculation, pseudo counting is 
adapted. For example, character A appears 4 times in first column, the 

probability to output A for this state is 
1

4 1
( ) 0.625

4 4
Mb A

+
= =

+
. Character G 

does not show up and the probability to output G is 
1

0 1
( ) 0.125

4 4
Mb G

+
= =

+
. 
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Table 2 list character output probability at the state in which state transfer 
real occurs. As the same rule used, the compress state transfer probability 
matrix can be obtained as matrix (4-1). 

 

0I 3I
2I1I

3D
2D1D

3M
2M1M

0M 4M
 

Figure 7 Profile HMM frameworks for the case of three states 

Table 2. Frequency of character output 

 1 ( )M

kb ω  2 ( )M

kb ω  2 ( )I

kb ω  3 ( )M

kb ω  

A 0.625 0.143 0.333 0.125 

G 0.125 0.571 0.333 0.125 

C 0.125 0.143 0.111 0.625 

T 0.125 0.143 0.222 0.125 

 

0.625 0.571 0.500 0.833 

0.333 0.333 0.500 0.500 

0.000 0.250 0.200 0.667 

0.143 0.333 0.167 0.000 

0.333 0.167 0.500 0.000 

0.250 0.600 0.333 0.000 

0.250 0.286 0.167 0.000 

0.333 0.333 0.333 0.000 

0.000 

=A

0.500 0.200 0.000 

 
 
 
 
 
 
 
 
 
 
 
 
  
 

                                       (4-1) 

In practical application, the observation sequence can be classed 
according to its probability for different model iλ that established by 

corresponding training data. 
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Suppose O AGC=  is a new observation sequence. Thus the probability 
that the sequence can be observed by using the model as shown above  
is ( | ) 0.0373P O λ �   
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