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Abstract: Shadows have been one of the most serious problems for vegetation 
segmetation, espescially under conditions of natural random airflow and 
human or vehicle disturbance. A video sequence processing method has 
developed in this paper to identify and eliminate crop shadows. The method 
comprises pixel models and algorithms explained in a probable learning 
framework. Expectation maximization (EM) for mixture models is established 
and an incremental EM method is proposed. This method performs a probable 
reasoning unsupervised classification of pixels for real-time implementation. 
The results show that the method is quite robust and can successfully remove 
shadows under natural lighting conditions. 
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1. INTRODUCTION 

In earlier work of remote sensing technology as part of the agriculture 
related, it was shown that images acquired from satellites or aircrafts can 
provide effective help in agricultural related information such as woods, 
cropland, soil, and plant density.  

Recently, precision agriculture (PA) is popular as a management strategy 
that uses information technologies to bring data from multiple sources to 
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bear on decisions associated with agricultural production (NRC, 1997; 
Robert, 2002). In addition, PA needs low altitude images (Vioix et al., 
2002), even images very close to examine crops (Shrestha et al., 2003), 
which have been acquired for analysis. 

Advances in computer technology and digital video technology had 
increasingly opened up using video cameras in real-time field application for 
the economical acquisition of images. (Easton and Easton, 1996) developed 
a mechanical sensing system for counting young corn plants, which was 
mounted on a one-wheeled, human-powered cart. (Shrestha et al., 2003) 
developed a machine vision-based corn plant population sensing system to 
measure early growth stage corn population. Video was acquired from a 
vehicle-mounted digital video camera under different daylight conditions. 
(Steward et al., 1999) mounted a video camera at a height of 3.35 m on a 
custom-made camera boom and took video streams at a slow forward travel 
speed to keep the full horizontal resolution available in the video signal. 

The next step after image acquisition was segmentation of vegetation from 
background. Different methods were available for separating vegetation 
from non-vegetation regions. (Pérez et al., 2000) used a normalized 
difference index (NDI) along with morphological operations for plant 
segmentation. (Tang et al., 2003) used Gabor wavelets and an artificial 
neural network for classification of broadleaf and grass weeds. (Steward et 
al., 2004) developed a method called reduced-dimension clustering (RDC) 
for vegetation segmentation. Besides, segmentation of monochrome field 
scene images were typically accomplished by thresholding the intensity 
histograms, which typically had bimodal distributions of pixel gray levels 
(Meyer et al., 1998; Andreasen et al., 1997).   

Various vegetation segmentation researches, however, had little to do with 
shadows. Some researchers tried to avoid shadows by taking top down video 
(Steward et al., 2004; Steward et al., 1999; Shrestha et al., 2003; Vioix et al., 
2002). 

We learn that shadows are significant consideration in vegetation 
segmentation. Since sunshine cast is not always perpendicular, vegetation 
must have naturally shadows. Shadows pose serious difficulty in correct 
segmentation (see Figure1). Eliminating shadows can improve qualities of 
segmentation. Also, with the help of shadows elimination approach, the field 
observation time can be prolonged. Although sunshine casts have usually 
angles, we need not await special sunshine. 
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Figure1. The left image has significant shadow components; obviously, the right image 
was segmented imprecisely because of existence of shadows. (Steward et al., 1999) 

Furthermore, there are other natural conditions. For example, in the field, 
wind and breeze are common. At those cases when video acquisition 
processing needs human or vehicle participation, which should unavoidably 
disturb airflow, crop will swing. Then shadows are also not still. 

Most researchers utilized video cameras for just acquiring still image 
frames, whose practices didn’t exploit video camera capabilities fully. A 
video sequence provides various possibilities for improving field image 
processing. In fact, multiple temporal consecutive frames of images 
produced by video cameras can be used in removing noise, subtracting 
images from the background and so on. In this paper, we propose a video-
processing-based approach to remove crop shadows. By using a probable 
reasoning method, our approach is quite robust and can successfully remove 
shadows under conditions of natural random airflow and human or vehicle 
disturbance. 

“Background subtraction” is an old technique for finding moving objects 
in a video sequence. It succeeds not only in detecting moving object, but also 
their shadows. Each pixel must be classified before being used to update the 
background model. We show how this can be done properly, using a 
probabilistic classifier and a stable updating algorithm. 

2. METHOD 

2.1 Pixel model 

Consider a single pixel and the distribution of its values over time. Some 
of the time it will be in its “normal” background state. Some of the time it 
may be in the shadow of swinging plants, and some of the time it may be 

part of a plant. Thus, we can think of the distribution of values yxi ,  of a pixel 

(x, y) as the weighted sum of three distributions yxc , (crop), yxf , (field), and 

yxs , (shadow):  
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The model for pixel (x, y) is parameterized by the parameters 
}},,{:,,{ sfcllll ∈∑=Θ µω  so that ),,(, sfcyxw ωωω= , ),(~, ffyx Nf ∑µ , 

and so on. For clarity, we omit the subscript x, y from the names of these 
parameters.  

Let i  be a pixel value. Let L be a random variable denoting the label of 

the pixel in this image. Our model defines the probability that lL =  and 
ityxI =),,(  to be: 
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Where ),,( tyxI is the instantaneous pixel value for the (x, y) pixel at 

time t . 
Given these probabilities, we can classify the pixel value. Namely, we 

choose the class l with highest posterior probability )),,(|( tyxIlLP = . 

2.2 Algorithms 

2.2.1 EM for mixture models 

 Suppose we observe a sequence of pictures 1,…, T, and that ),,( tyxI is 

the value of pixel (x, y) in the t-th image. We want to learn the parameters of 

the distribution yxc , , yxf , , and yxs , , as well as the relative weights yxw , . 

Then, we define the likelihood of a set of parameters Θ to be the probability 

of the data given ∏ =
Θ=Θ
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parameters that maximize the likelihood. The sufficient statistics for this 

mixture estimation is lN , lM , and lZ , where  

lN  is the number of images for which lLt = ; 
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The likelihood with respect to the observable data is 

∏ =
Θ=Θ
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)|),,(()( . The EM algorithm explores a sequence of 

parameter setting, where each setting is found by using the previous one to 
classify the data. Formally, we compute the expected value of the sufficient 
statistics as follows: 
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Then defining 1+Θk  by using Equation 2-4 with the expected sufficient 
statistics. 

2.2.2 Incremental EM 

The standard EM procedure we just reviewed requires us to store the 
values of pixel (x, y) for all the images we have observed. This is clearly 
impractical for our application. We now describe an incremental variant of 
EM that does not require storing the data. This procedure was introduced by 
(Nowlan, 1991), and is best understood in terms of the results of (Neal and 
Hinton, 1993). 

Neal and Hinton show that we can think of the EM process as continually 
adjusting the sufficient statistics. In this view, on each iteration when we 
process an instance, we remove its previous contribution to the sum and 

replace it with a new one. Thus, for example, when we update lN , we 

remove )),,,(|(
'k

t tyxIlLP Θ= and )),,,(|( k
t tyxIlLP Θ= , where 

'kΘ are the 

parameter setting we used to compute the previous estimated statistics from 

),,( tyxI , and
kΘ  are the current parameter settings. Neal and Hinton show 

that after each instance is processed, the likelihood of the data increases. 
Whenever we observe a new instance, we add its contribution to the 
sufficient statistics. Thus, in the long run, this process converges to a local 
maximum with high probability.  

The resulting procedure for each pixel (x, y) has the following structure: 

Initialize parameters Θ . 



1034 Tanghai Liu , Xiaoping Cheng 
 

0←t  
for },,{ sfcl ∈  

ll kN ω←
 

lll kS µω ⋅←
 

T
lllll kZ µµω ⋅+∑←

 
Loop the following 
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Compute Θ from },,{ lll ZSN . 

The initialization step of the procedure sets the statistics to be the 

expected statistics for the initial choice of Θ . Then, in each iteration we add 
the expected statistics for the new instance to the accumulated statistics.  

3. EXPERIMENTS AND CONCLUSION  

For testing the performance of the method for eliminating shadows, we 
take several continuous video streams of maize crops. Figure 2 shows some 
typical frames. 

In order to distinguish shadows from vegetation, pixel models and 
incremental EM are determined. The related results are shown in Figure3. 

It can be seen from following examples; our real-time approach has quite 
good shadows elimination capability, which paves the way for further 
processing in various field applications. Also, our method has consistently 
high accuracy in different video streams, which means robustness desired in 
natural condition.  
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Figure 2. Frames from video sequences in which crop cast shadows. 

   

   
Figure 3. Shadows casting on soil are eliminated via our approach. 

However, our approach cannot deal with situation that shadows, which 
vegetation cast, cover vegetation. Our algorithm could be further integrated 
to eliminate shadows for robustness enhancement and possible accuracy 
improvement. We are quite sure our shadows identification method is a 
promising pre-processing technique for various agricultural applications. 
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