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Abstract: The need for rapid and inexpensive techniques for soil characterization has led 
to the investigation of modern technologies, and in particular those based on 
reflectance spectroscopy. While near-infrared has been traditionally used, mid-
infrared in the 400-4000 cm-1 range is becoming increasingly common due to 
the specificity of the absorbance bands in this spectral range. The present work 
discusses two methods based on mid-infrared spectroscopy for soil 
classification: attenuated total reflectance (ATR) and photoacoustic 
spectroscopy. The ATR method requires a soil sample close to water 
saturation, and as a result only the 800-1600 cm-1 interval of the spectrum 
yields a useful signal. Typical ATR soil spectra consist mostly of several 
broad bands in the 800-1200 cm-1 region and a calcium carbonate band 
around 1450 cm-1. By comparison, photoacoustic measurements are 
conducted with air-dried samples, and the photoacoustic spectra exhibit a 
larger number of clearly-defined bands. Both methods were tested on data sets 
containing over 100 samples of various soils commonly used in Israeli 
agriculture. Data analysis was conducted by wavelet decomposition and neural 
network classifiers. Very good classification performances were achieved, 
with correct classification rates of the validation samples typically above 95%. 

Key-Words: Fourier transforms infrared (FTIR); attenuated total reflectance (ATR); 
photoacoustic spectroscopy (PAS); wavelets; neural networks 

1. INTRODUCTION 

Precision farming and similar modern approaches for efficient 
management of land resources require fast and accurate methods for soil 



1148 Raphael Linker 
 
characterization. Standard laboratory techniques for soil analysis are labour- 
and time-consuming, and extensive research has been devoted to the 
development of new methods for rapid screening of large number of soil 
samples (Viscarra et al., 1998; McBratney et al., 2006). Among the 
approaches investigated, spectroscopy, both in the near-infrared (NIR) (Ben-
Dor et al., 1995; McCarty et al., 2002; Daniel et al., 2003) and mid-infrared 
ranges, has yield very promising results (Viscarra et al., 2006). While NIR 
spectra consist of non-specific overtones that are difficult to interpret, mid-
infrared spectra consist of specific bands that can be directly associated with 
soil constituents. With respect to soil analysis, most mid-infrared studies 
were conducted in transmittance (Haberhauer et al., 1998; Haberhauer et al., 
1999; Gerzabek et al., 2006), diffuse reflectance (DRIFT) (McCarty et al., 
2002; Haberhaue et al., 1999; Janik et al., 1998; Nguyen et al., 1991) and 
attenuated total reflectance (ATR) (Linker et al., 2004; Linker et al., 2005; 
Linker et al., 2006) modes. Transmittance studies revealed numerous 
absorbance bands that could be associated with organic as well as inorganic 
soil components. However, this technique requires the time-consuming 
preparation of KBr pellets and is not suitable for routine analysis of large 
amounts of samples. In addition, such measurements involve very small 
quantities of soil (typically less than 1 mg per sample), and the 
representativeness of the sample may be questionable.  Although some of 
these limitations are overcome with the DRIFT technique which does not 
strictly require the preparation of pellets, soil grinding and dilution with KBr 
usually improves the results significantly. By comparison, the ATR 
technique requires very minimal sample preparation. However, contrary to 
transmittance and DRIFT techniques, ATR requires very good contact 
between the sample and a crystal that serves as a waveguide for the IR beam 
(Fig. 1.). The IR beam is directed in such a way that it hits the crystal/sample 
interface several times. Each time, the evanescent wave penetrates a few 
microns into the sample, so that the signal that reaches the detector contains 
information about the absorbance of the sample. Since the penetration depth 
is limited to a few microns, very good contact between the sample and the 
crystal is required. For soil samples, this can be achieved by working with 
samples close to water saturation (Linker et al., 2004; Linker et al., 2005; 
Linker et al., 2006; Shaviv et al., 2003). Unfortunately, water exhibits very 
strong absorbance bands in the mid-IR range, which may distort or hide 
bands of interest.  
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Figure 4. Schematic description of ATR spectroscopy 

Changwen et al. (Changwen et al., Changwen et al.,) recently suggested 
the use of photoacoustic (PAS) mid-IR spectroscopy for soil identification. 
Photoacoustic spectroscopy is based on absorption-induced heating of the 
sample, which produces pressure fluctuations in a surrounding gas. These 
fluctuations are recorded by a microphone, and constitute the PAS signal 
(McClelland et al., 2001). The major advantage of photoacoustic 
spectroscopy is that it is suitable for highly absorbing samples, such as soils, 
without any special pre-treatment.  

Regardless of the method used to obtain the spectra, mathematical 
processing is required for automated soil classification. Due to the high 
dimensionality of the spectra, this typically involves a data-reduction stage 
followed by some classification tool. The most commonly used method for 
data reduction is principal component analysis (PCA) (Jolliffe, 1986) that 
performs a linear decomposition of the data. This approach was used by 
Linker et al. (Linker et al., 2006) and Chanwen et al. (Changwen et al,) for 
ATR and PAS soil spectra, respectively. Wavelet transform is another data-
reduction method that is becoming increasingly popular for spectrum 
analysis (Walczak et al., 1997; Trygg et al., 1998; Ehrentreich et al., 2002; 
Liu et al., 2004; Figueiredo et al., 2007). The main feature of wavelet 
decomposition is that the resulting coefficients contain information about 
both the location and shape (sharpness) of the spectral bands. With respect to 
spectroscopy, three types of wavelet-based methods have been investigated 
(continuous wavelet, discrete wavelet and wavelet packet transform), and 
details relative to each method can be found in the literature (Walczak et al., 
1997; Figueiredo et al., 2007; Leung et al., 1998; Jahn et al.,). Wavelet 
transformation by itself does not produce a compressed representation of the 
original data, and data reduction is achieved by eliminating the wavelet 
coefficients that do not contain valuable information. This is a non-trivial 
task and various approaches have been reported in the literature, such as 
eliminating all “small” coefficients using either simple thresholding 
(Ehrentreich et al., 2002; Liu et al., 2004; Figueiredo et al., 2007; Leung et 
al., 1998), mutual information (Alsberg et al., 1998) or genetic algorithms 
(Depczynski et al.,1999;  Zhang et al., 2003). 

The present paper presents a method based on wavelet decomposition and 
a neural network classifier for classification of both ATR and PAS spectra. 
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In this study, the approach recommended by Trygg and Wold (Trygg et al., 
1998), which consists in retaining the coefficients with the highest variance, 
was used. The selected coefficients were used as inputs to a neural network 
(NN) classifier. 

2. MATERIALS AND METHODS 

2.1 Sample preparation and spectroscopic 
measurements 

Details concerning sample preparation and spectroscopic measurements 
can be found in (Linker et al., 2006) and (Changwen et al.,; Changwen g et 
al.,) for ATR and PAS, respectively, and only crucial information is recalled 
here. The ATR measurements were conducted with 202 samples close to 
water saturation, representative of five soil types commonly encountered in 
Israeli agriculture (Table 1). For the PAS measurements, 160 air-dried 
samples of the same types of soils were used. Although these samples were 
not strictly identical to the ones used for the ATR study, they had very 
similar characteristics and belonged to the same soil types (details not 
shown, see (Changwen et al.,). 

Table 1. Properties of the soils used for ATR measurements 

Soil type denomination in text Clay content (%) CaCO3 content (%) Organic matter content (%) 

Grumosol 50-70 5 -25 1.1-1.3 

Loess 15-30 10-30 0.8 -1.1 

Rendzina 40-55 35-45 0.8 -1.1 

Hamra 5-35 0 – 1 0.5 - 0.8 

Terra Rosa 45-70 <1 1.0-1.4 

2.2 Data analysis 

2.2.1 Pre-processing of spectra 

The ATR spectra were smoothed using a second-order Savitzky-Golay 
filter with a 15-point window, and the method developed by Linker et al. 
(Linker et al., 2004) was applied for water-subtraction and baseline 
correction. The corrected spectra were then normalized so that the integral of 
the spectra would be equal to one. For the photoacoustic spectra, only 
smoothing (using a first-order Savitzky-Golay filter with a 25-point window) 
and normalization was applied. 
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2.2.2 Data reduction 

Data reduction was achieved using the discrete wavelet transform with a 
Coiflet mother-wavelet. The approach recommended by Trygg and Wold 
(Trygg et al., 1998) was used to determine which of the resulting wavelet 
coefficients contained most of information. According to this method, the 
coefficients were sorted according to their variances and only the N 
coefficients with the highest variances were retained. The procedure is 
depicted schematically in Fig. 2 and the main steps are (1) wavelet 
transformation of each spectrum, (2) concatenation of the wavelet 
coefficients, (3) calculation of the coefficient variances and (4) extraction of 
the coefficients with the largest variances. 

 
Figure 5: Schematic description of the wavelet-based procedure for data reduction. 

2.2.3 Classification 

Feedforward neural networks (NN) with sigmoid activation functions 
were used as non-linear classifiers (Haykin  et al., 1999) The inputs of the 
classifiers consisted of the wavelet coefficients selected at the previous 
stage.  The NN had five outputs, corresponding to the five soil classes 
included in the study. A “winner-takes-all” approach was used, according to 
which the identified type was that of the output node with the largest value. 
All the classifiers were calibrated using half of the data (chosen randomly) 
and validated with the remaining data.  
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Figure 6: Schematic representation of the whole data-reduction & classification procedure 

3. RESULTS 

3.1 Attenuated total reflectance 

Figure 4 shows typical water-subtracted and normalized spectra. For each 
soil type, only five spectra are shown for clarity. All the soils have various 
absorbance bands in the 800-1200 cm-1 interval, which are centered at 870, 
915, 1025, 1110 cm-1. In addition, the calcareous soils have a strong 
absorbance band centered at 1440 cm-1 that corresponds to calcium 
carbonate (left frames in Fig. 4).  Comparison of these results with Fig. 5 in 
(Changwen et al.,) (which was based on non-normalized spectra) shows that 
within-type variability was greatly reduced by normalization.  
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Figure 7. Typical ATR soil spectra after water subtraction, 

baseline correction and normalization 

Three types of classifiers were investigated: (1) based on the 800-1200 
cm-1 interval only, (2) based on the 1250-1550 cm-1 interval only, and (3) 
based on the whole 800-1550 cm-1 interval. In each case numerous 
classifiers based of various levels of wavelet decomposition, number of 
coefficients used as NN input and number of NN hidden nodes, were tested. 
Table 2 presents the results obtained for the NNs that had the highest 
classification rate for the validation samples. Regardless of the spectral 
interval used, very good results are obtained and all the validation samples 
are correctly classified except some Hamra samples that are classified as 
Terra Rosa. Such misclassification is not surprising due to the very high 
similarity of the spectra of both soils (Fig. 4, right frames). However, as 
pointed out by Linker et al. (Linker et al., 2006), this is not a serious 
shortcoming since in practice these two soils are not found in the same 
regions. Furthermore, the water contents of the saturated pastes of these soils 
are very different (due to difference in clay content), so that it is possible to 
ensure perfect classification by adding the paste water content to the NN 
inputs (not shown).  

Table 2. Classification results based on ATR spectra (validation spectra only) 
Spectral interval 1250-1550 cm-1 800-1200 cm-1 800-1600 cm-1 

Decomposition level 5 5 5 

Number of coefficients selected 4 5 5 

Number of NN hidden nodes 4 4 4 

Percentage correct classification 

Grumosol 100 100 100 

Loess 100 100 100 

Randzina 100 100 100 

Hamra 91 91 96 

Terra Rosa 100 100 100 



1154 Raphael Linker 
 
3.2 Photoacoustic spectroscopy 

Figure 5 shows five typical PAS spectra for each soil type. Numerous 
bands can be observed in the 600-2000 cm-1 interval, and around 2550 cm-
1, 2900 cm-1 and 3700 cm-1. Linker et al. (Changwen et al.,) showed that 
these bands can be associated with soil constituents such as clays, carbon 
carbonate and organic matter. It must be noted that while for ATR spectra 
only the 800-1600 cm-1 interval yielded useful information (due to the 
presence of water), the PAS spectra include useful bands throughout the 
whole spectral range.  
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Figure 8. Typical normalized PAS soil spectra 

The results of the classification procedure are summarized in Table 3. 
Again, various classifiers were tested, and only the best ones are reported in 
the Table. The best results were obtained when using the whole spectrum, in 
which case only a few Hamra samples were incorrectly classified. 

Table 3. Classification results based on photoacoustic spectra (validation spectra only) 
Spectral interval 800-4000 cm-1 800-2700 cm-1 800-2300 cm-1 

Decomposition level 5 10 10 

Number of coefficients selected 10 20 20 

Number of NN hidden nodes 4 4 4 

Percentage correct classification 

Grumosol 100 100 100 

Loess 100 100 93 

Randzina 100 100 100 

Hamra 96 95 96 

Terra Rosa 100 100 85 
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4. ONCLUSION 

Mid-infrared attenuated total reflectance and photoacoustic spectroscopy 
both appear to be very promising techniques for rapid analysis of soil 
samples. The main limitation of the ATR approach is that it requires samples 
close to water saturation. As a result, the spectral range that yields useful 
information is rather limited. By comparison, PAS measurements are 
conducted with air-dried samples, and useful absorbance bands are observed 
throughout the whole spectrum. The bands are also sharper and more clearly 
defined than the ATR ones.  

Both types of spectra can be used for soil classification, which requires 
data reduction and classification. A new method based on wavelet 
decomposition and neural network classification has been developed, which 
results in correct classification of over 95% of the validation samples.  
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