
 

  

AN INTEGRATED APPROACH TO 
AGRICULTURAL CROP CLASSIFICATION 
USING SPOT5 HRV IMAGES 

Chang Yi
,*2,1

, Yaozhong Pan
2,1

, Jinshui Zhang
2,1

 
1 College of Resources Science and Technology, Beijing Normal University, Beijing, China, 

100875; 
2 State key Laboratory of Earth Surface Processes and Resource Ecology System (Beijing 

Normal University), Beijing, China, 100875 
* Corresponding author, Address: 05 Shuo, College of Resources Science and Technology, 

Beijing Normal University, 19 Xinjiekouwai Street, Beijing, 100875, P. R. China, Tel:+86-
13581929372,  Email: yichang531@ires.cn 

Abstract: An integrated method that incorporates the advantages of per-parcel and per-
pixel approaches as well as spectral and spatial characteristics was proposed 
for crop classification of a typical agricultural area in south-east China using 
SPOT5 HRV data. The co-occurrence texture was employed to evaluate the 
heterogeneity of the image data. The average parcel textures determined each 
parcel defined by the crop boundaries to be classified whether on a per-parcel 
or per-pixel basis. The optimal threshold in the span of texture ranges was 
detected by trend analysis, which assigned the proportions of each approach in 
the integration, thus to produce the best integrated classification. It was 
suggested that this integrated approach can be effectively implemented to 
produce crop classification maps with higher accuracy from satellite images of 
medium and high spatial resolution in a complex agricultural environment, 
where both homogeneous and heterogeneous crop fields occur side by side. 
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1. INTRODUCTION  

In recent years, advances in satellite imaging technology have boosted 
multiple spatial applications in which land cover information is an essential 
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prerequisite (Lo and Choi, 2004). For the agricultural application, it requires 
a quantitative processing of digital images with high accuracy and reliability. 

One crucial technique of crop mapping from remotely sensed data is the 
automated image classification, which usually operates on a per-pixel basis 
to categorize pixels separately into one of the pre-determined classes 
according to their spectral characteristics. However, as for agricultural 
applications, groups of pixels that represent the same crop type may not 
necessarily have the same spectral information due to the variation in soil 
moisture conditions, nutrient limitations or pests and diseases (De Wit and 
Clevers, 2004). Also, boundaries that cross pixels are an additional problem, 
as the spectral information of the pixel is then a combination of the 
reflectance from two or more land cover types (Smith and Fuller, 2001). 
Thus, doubts cast on the reliability of per-pixel classification which often 
resulted in misclassification and then a speckled appearance. 

With the recent development of ‘integrated’ GIS, a per-parcel approach 
has been more and more introduced in mapping agricultural landscape. The 
basic idea behind this method is that agricultural field boundaries integrated 
with remotely sensed data divide the image into homogeneous units of image 
pixels, which enables pixels contained within a parcel to be processed in 
coherence. A parcel-based representation is most appropriate for mapping 
agricultural land cover by the use of crop field boundaries which can 
eliminate the classification errors due to the within-field spectral variability 
and mixed-pixels along the boundaries of fields (Dean and Smith, 2003). 
However, it is based on the assumption that only one crop type dominates 
one field, which is not always true in reality. Problems will therefore occur 
when mosaics of crop types distribute within one parcel structure and 
represent a heterogeneous landscape (Dean and Smith, 2003). 

The aim of this study is to develop an integrated classifier which can 
switch between per-parcel and per-pixel classification to meet the accuracy 
requirement for both homogeneous and heterogeneous landscapes. 

2. STUDY AREA AND DATA 

2.1 Study area 

The selected area is located at Xuzhou city, which is situated in Jiangsu 

Province in the southeast of China, measuring approximately 20km² (34

20’46”N~34 22’57”N; 117 37’56”E~117 41’11”E) (Fig.1). The study area 

is representative of the agricultural regions of the southeast level plain of 
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China. The main crops grown in the area include rice, corn, soybean and 
mulberry. The structure of landscape is characterized by both homogeneous 
large rectangle rice fields and fields that are quite heterogeneous due to the 
irregularly scattered multiple crop types such as corn, soybean and mulberry. 

 
Fig.1: The study area 

2.2 Data 

Optical satellite imagery obtained by SPOT5 HRV has been used. The 
optimal acquisition periods of optical satellite imagery are determined by the 
phonological characteristics of the main crops (Fig.2). The SPOT5 HRV 
images used for classification were acquired on 17 August, 2006. All images 

were cloud free and of good quality. A subset (500 400 multi-spectral) and 

(2000 1600 panchromatic) was extracted from the full scene for the study. 

 
Fig.2: The phonological characteristics of the main crops in the area. 

A multi-spectral image of 10-m resolution bands and the 2.5-m 
panchromatic band were fused using the Brovey algorithm to be used as a 
base map for vector digitizing afterwards. To ensure the accuracy of 
classification, the images were geometrically corrected to UTM (Zone-50) 
projection and datum WGS84 using 20 ground control points (GCPs). The 
registration errors were controlled no more than 0.5 pixels in localized areas. 
The vector field boundary data was delineated through manual on-screen 
digitalization based on the linear feature, such as ditches, roads and tree lines 
in the fused base map and stored as vector polygons. The SPOT5 multi-
spectral image with the digitized vector field boundary data set overlaid is 
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illustrated in Fig.3. For crop classification only, the non-crop land cover 
types such as urban area, woods and water body were clipped out beforehand. 

 

3. METHODS 

The use of a mean spectral response for each image object in per-parcel 
classification against individual pixel spectral responses for each pixel in 
per-pixel classification was investigated in the integrated classification. In 
view of the main characteristics of each method, the spatial distribution of 
land features plays a major role in the success of classification.  

A single per-parcel classification and a single per-pixel classification were 
respectively performed beforehand on the SPOT5 multi-spectral image. The 
results of each were employed as a basis and contrasts for the integrated 
classification. In this study, only supervised maximum likelihood classifier 
was used. Training sites for both per-parcel and per-pixel classification were 
selected from the most homogeneous image parcels by visual interpretation. 

Besides classification strategies, a measure should be used to set a point at 
which the classifier can swift from ‘per-parcel’ to ‘per-pixel’ or versus. The 
selection of the measure and the determination of the point where the 
optimal swift happens are crucial to the integrated method. As discussed 
above, the intended measure should work to represent the spatial variance 
which is highly related to the method choice and the classification 
performance. Texture is just such a measure that functions in such a way that 
texture operators transform input image into texture coded in grey values. In 
practice, this study use a texture operator based on a co-occurrence matrix 

that measure the entropy in a 5 5 pixel window on the panchromatic band. 

The texture information was then incorporated into each parcel by per-parcel 
calculation of average textures. To determine the best swift point between 
per-parcel and per-pixel methods, a threshold must be denoted during the 
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range of average parcel textures, above which, the results from per-parcel 
classification should be replaced by the per-pixel classification results to 
avoid the weakness of per-parcel method on heterogeneous objects. 
However, such a threshold can be hardly set unless an analysis operates on a 
gradual transition from per-parcel to per-pixel classification. The expected 
optimal point for method swift can then be identified. 

4. RESULTS AND DISCUSSION 

The final crop classification results from complete per-parcel 
classification and complete per-pixel classification are shown in Fig.4 (a) 
and (b) respectively. The overgeneralization of heterogeneous parcels 
dominated by irregular crop mixture resulted from per-parcel classification 
and the speckled appearance at field boundaries and within homogeneous 
fields resulted from per-pixel classification can be readily recognized. 

 
For accuracy evaluation, reference data was established at a pixel level 

with the combination of ground data and interpretation results from the high 
resolution SPOT5 images. A total of 443 check points were selected for each 
classification results at the same locations. Two error matrices for each sole 
classification results are shown in Table1 and 3. The overall, producer’s and 
user’s accuracies were calculated. A kappa index was also computed.  
Table 1. Error matrix of the per-parcel crop classification 

Reference data  
 

Rice Corn Soybean Mulberry Sum U. Acc. (%) 

Rice 85 17 6 7 115 73.91 
Corn 2 120 44 10 176 68.18 
Soybean 8 37 55 7 107 51.40 
Mulberry 2 12 22 9 45 20.00 
Sum 97 186 127 33 443  
P. Acc. (%) 87.63 64.51 43.31 27.27   

Overall accuracy (%):  60.72 Kappa index:  0.4385 

U. Acc., User’s Accuracy; P. Acc., Producer’s Accuracy. 
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Table 2. Error matrix of the optimal integrated method of crop classification 

Reference data  
 

Rice Corn Soybean Mulberry Sum U. Acc. (%) 

Rice 88 2 0 25 115 76.52 
Corn 0 173 0 1 176 98.30 
Soybean 5 5 92 5 107 85.98 
Mulberry 3 0 1 41 45 91.11 
Sum 96 180 95 72 443  
P. Acc. (%) 91.67 96.11 96.84 56.94   

Overall accuracy (%):  88.94 Kappa index:  0.8451 

See Table 1 for key to abbreviations. 

Table 3. Error matrix of the per-pixel crop classification 

Reference data  
 

Rice Corn Soybean Mulberry Sum U. Acc. (%) 

Rice 80 1 0 34 115 69.57 
Corn 0 173 2 1 176 98.30 
Soybean 5 0 97 5 107 90.65 
Mulberry 3 0 1 41 45 91.11 
Sum 88 174 100 81 443  
P. Acc. (%) 90.91 99.43 97.00 50.62   

Overall accuracy (%):  88.26 Kappa index:  0.8368 

See Table 1 for key to abbreviations. 

The results from per-pixel classification appeared to be generally good 
compared with those from per-parcel classification. Despite the poor overall 
performance, results from per-parcel classification for rice were fairly good 
Hence, the major negative affect on the per-parcel classification resorted to 
those three crop types except rice. The obvious difference between rice 
fields and parcels of the other three crop types is their spatial variance, low 
in the large rectangle rice field against much high in a parcel with scattered 
distribution of other three crop types.  

The average texture value ranged from 0 to 3.154. The density split 
technique was adopted to divide the texture range equivalently into 20 sub-
ranges, and then 19 thresholds were generated (Table 4). The per-parcel 
classification results of those parcels whose average texture values were 
above the settled threshold would be replaced by correspondent results from 
per-pixel classification. Thus, 19 integrated classification maps with their 
error matrices were produced in accordance with different threshold ranges. 
The performance of these integrated classification together with that of the 
absolute per-parcel and per-pixel classification are organized in Fig.5 to 7. 

Table 4. Texture ranges denoted by different thresholds 
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Index 1 2 3 4 5 6 7 8 9 10 
Texture >2.97 >2.81 >2.66 >2.50 >2.34 >2.19 >2.03 >1.88 >1.72 >1.56 

Index 11 12 13 14 15 16 17 18 19  
Texture >1.41 >1.25 >1.09 >0.94 >0.78 >0.63 >0.47 >0.31 >0.16  

 

 
As shown in Fig.5, with an increase of per-parcel classification results on 

heterogeneous parcels replaced by per-pixel classification results, both the 
overall accuracy and kappa index of the integrated classification are 
improved dramatically to a top level which is a little bit better than those of 
per-pixel classification alone. Nevertheless, the increase of accuracy is soon 
taken place by a decline. Afterwards, the accuracies of integrated 
classification retain to be almost the same as that of per-pixel classification 
due to an increasingly large part of per-pixel classification that shelters the 
advantages of per-parcel classification in processing less variable areas.  

Further light was shed by examination the user’s and the producer’s 
accuracies. Fig.6 and 7 present them by giving the explicit classification 
performance on each crop type, which can deduce the latent causes of the 
overall classification performance represented by Fig.5. In the case of user’s 
accuracy, all of the three crop types except rice have an obvious 
improvement. The only exception for rice is shown clearly by its distinct 
curve. As for producer’s accuracy, the situation for rice was not as good as 
that in its user’s accuracy as far as per-parcel classification was concerned to 
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be compared with per-pixel classification, although the slight similarity of 
the curve structures in both graphs can be detected in scrutiny. Another thing 
worth to be mentioned in producer’s accuracy is mulberry. For per-parcel 
classification, the comparatively small amount of mulberry distributed in the 
study area challenge the classification on a parcel basis at most; while for 
per-pixel classification, a great deal of rice pixels were misclassified to 
mulberry due to the spectral variability in rice fields. 

An integrated classification result at the fifth texture range, the nearest one 
to the overall optimal choice, is given in Fig.4 (c) and its error matrix in 
Table 2. The crop classification map produced by integrated classification 
inherited the smoothness of per-parcel classification in homogeneous parcels 
as well as the detail of per-pixel classification in parcels of high 
heterogeneity, which led to a better performance.  

5. CONCLUSION 

The integrated approach was designed to improve the accuracy of crop 
classification from SPOT5 HRV images data in an agricultural environment 
in China, typified by both homogeneous and heterogeneous crop fields. The 
design strategy is to combine the advantages of the per-parcel and per-pixel 
approaches with both spectral and spatial information. Although the optimal 
integrated approach represents a better performance than each of the two 
conventional ones to some degree, the best choice for a classification 
assignment largely depends on the spatial distribution of the real world. 
Anyway, an active analysis on the spatial characteristics of the image data is 
a reasonable prerequisite for any effective information extraction from 
remotely sensed data. 
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