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Abstract: In this paper, an underlying problem on the fast BRAIN learning algorithm is 
pointed out, which is avoided by introducing the quantity count (·, ·). In 
addition, its speed advantage can still be enjoyed only at a cost of a little 
additional space. The improved fast BRAIN learning algorithm is also given. 
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1. INTRODUCTION   

Given a labeled dataset (training dataset) (xi, yi), i = 1, 2, …, l, xi ∈ {0, 
1}n, yi ∈ {−1, +1}, where these data points are drawn randomly and 
independently according to some underlying but unknown probability 
distribution. We assume this dataset to be self-consistent, i.e., an instance 
cannot be positive and negative at the same time. The goal is to find a 
classification rule (hypothesis or function): f: {0, 1}n ! {−1, +1} using this 
dataset such that f will correctly classify a new instance (x, y), that is, f (x) = 
y for this new instance, which is generated from the same underlying 
probability distribution as the training data. For convenience, we denote 
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( ),1 ,2 ,, , ,
t

i i i i nx x x+ + + +=x L  for positive instances, where { }, 0,1i kx+ ∈ , i = 1, 2, 

…, l+, k = 1, 2, …, n, and similarly, denote ( ),1 ,2 ,, , ,
t

j j j j nx x x− − − −=x L  for 

negative instances, where { }, 0,1j kx− ∈ , j = 1, 2, …, l−, k = 1, 2, …, n. And t 

denotes the transpose of a vector. Of course, l = l+ + l−.  
Indeed, there are many approaches that can solve this problem, such as 

NN (Neural Network) (Haykin, 1999), SVM (Support Vector Machine) 
(Vapnik, 1998; 1999), and many others. However, from an entirely different 
perspective, Rampone (1998) put forward the BRAIN (Batch Relevance-
based Artificial INtelligence) learning algorithm. The aim of the algorithm is 
to infer a consistent DNF (Disjunction Normal Form) classification rule of 
minimum syntactic complexity from a set of instances, i.e., training dataset. 
Here, the minimum syntactic complexity means the minimum number of 
clauses, each one with the minimum number of literals. A Boolean 
classification rule g is consistent with a training dataset if, and only if, it 
matches every positive instance and no negative instance in the set. That is, g 
is consistent with a training dataset if, and only if, g(x) = 1 for all positive 
instances, g(x) = 0 for all negative instances. Once such Boolean 
classification rule is found, then our final classification rule is f (x) = 2g(x) – 
1. 

The major advantages of this algorithm are the low error rates and high 
correlation coefficient, the explicit classification rules description as a DNF 
formula, a polynomial (cubic) computational complexity, and robust and 
stable “one shot” learning. However, the space and time complexity of this 
algorithm are very high, which heavily limit the range of its application in 
real world. On the other hand, by many reasons, errors may be present in the 
training dataset. That is, the training dataset may be contaminated by noise 
to some extent. The structural risk minimization (SRM) principle (Vapnik,  
1998; 1999) tells us that a function which makes a few errors on the training 
set might have a better generalization ability than a larger function (with 
more literals and more clauses) which makes zero empirical error.  

Soon, Rampone (2004) realized this point, and gave a fast BRAIN 
learning algorithm with an error tolerance, which will be described in next 
section. From theoretical viewpoint, there are no problems, but from the 
viewpoint of numerical computation, there may be a problem, which will be 
analyzed in section 3. Finally, an improvement will be given in section 4. 
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2. FAST BRAIN LEARNING ALGORITHM  

Rampone(2004) found that building the sets Si, j was a main computational 
drawback, whose time complexity is O (n × l+ × l−), and space complexity is 
O (l+ × l−). By definition of Si, j, the sets Si, j can be derived from the given 
positive and negative instances. When a new literal ek  arg max R (ek) (If 
there is a tie, that is, the literals that reach the maximum value are not just 
one. At this time, we prefer the literal with lower subscript and the one with 
true form.) is selected, the following two steps are performed:  

(1) Delete the Si, j sets for j = 1, 2, …, l− if ek ∉ Si;  
(2) Delete the Si, j sets if ek ∈ Si, j.  

In fact, the Si, j update step (1) can be done by deleting i
+x  having 0 in 

position k if ek is in true form, or i
+x  having 1 in position k if ek is in negated 

form, i.e., the positive instances whose indices belong to  

, ,0,     1,     

, 1,2, , , 1,2, ,
i k k i k k

i i

x e is in true form x e is in negated form
II i i

S i l S i l

+ +

+ + + +

   = =   
= ∪   

∈ = ∈ =      x xL L
(1) 

And the Si, j update step (2) can be done by deleting j
−x  having 0 in 

position k if ek is in true form, or j
−x  having 1 in position k if ek is in negated 

form, i.e., the negative instances whose indices belong to  

, ,0,     1,     

, 1,2, , , 1,2, ,
j k k j k k

j j

x e is in true form x e is in negated form
JJ j j

S j l S j l

− −

− − − −

   = =   
= ∪   

∈ = ∈ =      x xL L
(2) 

In this way, we can substitute the l+ × l− sets Si, j for a set S containing at 
most l+ + l− instances. The space complexity can be dramatically reduced.  

Now, the extended relevance can be evaluated by  

( )
( ),

1 ,

,l
i j k

k
i I j i j

e S
R e

d

δ−

∈ =

=∑∑                                          (3) 

where { }, 1, 2, ,iI i S i l+ += ∈ =x L , ,i jd  is the Hamming distance 

between i
+x  and j

−x , which can be calculated once and used for all, and  
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( )
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,

, ,
,

1,  if 1 and 0
,

0,  otherwise                 

1,  if 0 and 1
,

0,  otherwise                 

i k j k
i j k

i k j k
i j k

x x
x S

x x
x S

δ

δ

+ −

+ −

 = =
= 

 = =

= 


                    (4) 

These quantities can be calculated just once for each clause. In fact, by 
using Eq. 3, it is easy to see that, when we update the sets Si, j, the 
corresponding extended relevance update is for step (1):  

( ) ( )
( ),

,

,i j knew old
k k

i II j J i j

e S
R e R e

d

δ

∈ ∈

= −∑∑                 (5) 

where { }, 1, 2, ,jJ j S j l− −= ∈ =x L , and for step (2):  

( ) ( )
( ),

,

,i j knew old
k k

i I i II j JJ i j

e S
R e R e

d

δ

∈ ∧ ∉ ∈

= − ∑ ∑            (6) 

3. A PROBLEM ON FAST BRAIN LEARNING 
ALGORITHM 

From theoretical viewpoint, iterative formula Eq. 5 and Eq. 6 can work 
well. But from the viewpoint of numerical computation, there may be some 
problems, especially when there is a tie for ek  arg max R (ek). In what 
follows, we will give the analysis.  

Though there are several different representations of real numbers (Matula 
and Kornerup, 1985), by far the floating-point representation is widely used 
in computer system, from PCs to supercomputers. However, most floating-
point calculations have rounding error anyway. So the IEEE standard (IEEE, 
1987) requires that the result of addition, subtraction, multiplication and 
division be exactly rounded. That is, the result must be calculated exactly 
and then rounded to the nearest floating-point number (using round to even). 
According to theorem 2 in (Goldberg, 1991), the relative rounding error in 
the result for addition and subtraction with one guard digit is less than or 
equal to 2ε, where ε is machine epsilon. That is, each addition or subtraction 
operation can potentially introduce an relative rounding error as large as 2ε, 
then a sum involving thousands of terms can have quite a bit of rounding 
error . The iterative formula Eq. 5 and Eq. 6 introduce much more floating-
point addition or subtraction operations than necessary (see below), that is, 
they introduce quite a bit of rounding error.  
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More specially, let’s consider a simple example 
1

n

ii
x

=∑ , assuming the 

calculation is being done in double precision. If the naive formula 
1

n

ii
x

=∑  is 

utilized, then the computed sum is equal to ( )
1

1
n

i ii
x δ

=
+∑ , where | δi | ≤ (n 

- i)ε, that is, each summand is perturbed by as large as nε (Goldberg. 1991). 
Though there is a much more efficient method which dramatically improves 
the accuracy of sums, namely, the Kahan summation formula, the relative 
rounding error is still related to the number of operations. Since at this time 

the calculated sum is equal to ( ) ( )2

1 1
1

n n

i i ii i
x O n xδ ε

= =
+ +∑ ∑ , where | δi 

| ≤ 2ε (Goldberg, 1991). In this way, it is very possible that for the two 
literals, say e1, e2, it should be R (e1) = R (e2) (or R (e1) ≠ R (e2)), but it 
becomes R (e1) ≠ R (e2) (or R (e1) = R (e2)) after several update calculations 
using Eq. 5 and Eq. 6. Eventually, it will possibly result in the Boolean 
classification rule obtained by the fast BRAIN learning algorithm (Rampone, 
2004) is not same as the one derived by the origin BRAIN learning 
algorithm (Rampone, 1998).  

4. AN IMPROVEMENT ON FAST BRAIN 
LEARNING ALGORITHM 

According to above analysis, let’s consider how to avoid this underlying 
problem. Assume the training dataset is self-consistent, the Hamming 

distance between i
+x  and j

−x  must be at the interval [1, n], i.e., 1 ≤ di, j ≤ n. 

Thus we can count the number of each Hamming distance for each literal ek 
and denote it as count (ek, di, j), i ∈ I, j = 1, 2, …, l−. Now, the extended 
relevance can be evaluated by  

( )
( )

1

,n
k

k
i

count e i
R e

i=

=∑                                   (7) 

It is not difficult to see that count (·, ·) can also be calculated just once for 
each clause. In fact, Eq. 5 can be replaced by Eq. 8 and Eq. 7, and Eq. 6 by 
Eq. 9 and Eq. 7.  

( ) ( ), ,, , 1, ,  new old
k i j k i jcount e d count e d i II j J= − ∈ ∈        (8) 

( ) ( ), ,, , 1, ,  new old
k i j k i jcount e d count e d i I i II j JJ= − ∈ ∧ ∉ ∈    (9) 

Because the results of integer addition and subtraction calculations are 
exact so long as operands and result are not out of range represented by 
computer system, and it is nearly impossible to reduce further the number of 
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floating-point operations in Eq. 7, the underlying problem on the fast 
BRAIN learning algorithm can be overcome. Compared with the version of 
Rampone (Rampone, 2004), the cost that we pay is the additional space (to 
be precise, 2n2) for count (·, ·). But in general, for many applications, e.g., 
splice sites prediction, the order of magnitude of l+, especially l− is usually 
several orders of magnitude of n. That is, the additional space for count (·, ·) 
is negligible. In addition, since Eq. 8 and Eq. 9 are similar to Eq. 5 and Eq. 
6, respectively, and Eq. 8 and Eq. 9 are only involving integer addition or 
subtraction operations, we can still enjoy the speed advantage of the fast 
BRAIN learning algorithm.  

In what follows, the improved fast BRAIN learning algorithm can be 
sketched:  

Improved Fast BRAIN Learning Algorithm 

Input: { }1 2, , ,
l+

+ + + += x x xLX and { }1 2, , ,
l−

− − − −= x x xLX  for positive 

instances and negative instances, respectively, where i
+x  ∈ {0, 1}n, i

−x  ∈ {0, 

1}n, andε + , ε −  for the error tolerant parameters;  
Output: a Boolean classification rule or a consistent DNF formula g(x);  

Initialize: g(x)  FALSE, rl
+   l+ ;  

Calculate the Hamming distance d i, j, i = 1, 2, …, l+, j = 1, 2, …, l−;  

While ( )/rl l ε+ + +>   

S   + −= ∪X X X ;  
Count the number of each Hamming distance for each literal ek, i.e., 

count (ek, di, j), i ∈ I, j = 1, 2, …, l−;  
c  TRUE;  

rl
−   l− ;  

Build the clause c: While ( )/rl l ε− − −>  

Calculate the extended relevance R (ek) by Eq. 7;  
ek  arg max R (ek);  

c  c  ek;  

Let II the set of indexes [Eq. 1], and update count (·, ·) by Eq. 8; 

Delete from S the instances i
+x , i II∀ ∈ ;  

Let JJ the set of indexes [Eq. 2], and update count (·, ·) by Eq. 9;  

Delete from S the instances j
−x , j JJ∀ ∈ ;  

   rl
−   rl JJ− − ;  

End  

g (x)  g (x)  c;  
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Delete from +X  the positive instances matching c, and update rl
+ ;  

End  

5. CONCLUSION 

In this paper, we analyze the reasons that an underlying computational 
problem on the fast BRAIN learning algorithm may occur, and give an 
improved algorithm, which is numerically more stable. Furthermore, its 
speed advantage can still be enjoyed only at a cost of a little additional space. 
In the end, since the algorithm will give an explicit classification rule 
description as a DNF formula, we think it can be utilized for feature 
selection with binary value data, thus the data will be compressed heavily in 
some cases.  

AVAILABILITY 

The source code implementing the improved fast BRAIN algorithm is 
available from the authors upon request for academic use.  
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