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Abstract: Soil water distribution and variation are helpful in predicting and 
understanding various hydrologic processes, including weather changes, 
rainfall/runoff generation and irrigation scheduling. Soil water content 
prediction is essential to the development of advanced agriculture information 
systems. In this paper, we apply support vector machines to soil water content 
predictions and compare the results to other time series prediction methods in 
purple hilly area. Since support vector machines have greater generalization 
ability and guarantee global minima for given training data, it is believed that 
support vector machine will perform well for time series analysis. Predictions 
exhibit good agreement with actual soil water content measurements. 
Compared with other predictors, our results show that the SVMs predictors 
perform better for soil water forecasting than ANN models. We demonstrate 
the feasibility of applying SVMs to soil water content forecasting and prove 
that SVMs are applicable and perform well for soil water content data 
analysis. 

Keywords: support vector machines, soil water content, statistical learning, prediction, 
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1. INTRODUCTION 

Soil water, though very small in volume, provides valuable information 
for water resources planning and management. Soil water transferring model 
and prediction are important in agriculture, hydrology, and meteorology. In 
agriculture, accurate forecasts of future soil water conditions can be helpful 
in water quality monitoring, irrigation scheduling, and yield forecasting. In 
hydrology, information about soil water is required for understanding 
rainfall/runoff generation processes and managing water resources. 
Similarly, in meteorology, soil water measurements can be helpful for 
modeling surface/atmospheric interactions. Over the past several years, 
various attempts have been made to produce soil water content estimates by 
using different statistical models, such as Artificial Neural Networks 
(ANNs) (Liou et al., 2001; Baghdadi et al., 2002; Liu et al., 2004; Liu et al., 
2003) and Auto Regression (AR) (Liu et al., 2003). 

Recently, support vector machines (SVMs), developed by Vapnik and his 
co-workers (Vapnik et al., 1996), have become a very active research area 
with machine learning. Motivated by statistical learning theory, SVMs have 
been successfully applied to solve various problems, among others in data 
mining, classification, regression, density estimation and times series 
prediction (Cao et al., 2001; Flake et al., 2002; Mukherjee et al., 1997; 
Zhang 2003; Vapnik, 1995). SVMs implement the structural risk 
minimization principle and Vapnik-Chervonenkis (VC) dimension. Based on 
this principle, SVMs achieve an optimum structure by striking a right 
balance between the empirical error and the VC-confidence interval. 
Eventually, this results in better generalization performance than other 
models (Vapnik et al., 1996). Furthermore, the SVMs deal with non-linear 
tasks by mapping the input space into high dimensional feature spaces, and 
then use a kernel function instead of high dimensional inner product. This 
means that the solution of SVMs is unique, optimal and absent from local 
minima (Vapnik, 1995; Xian et al., 2005; Yan et al., 2000). 

In this paper, we use support vector machines to predict the soil water 
content and show that SVMs are applicable to soil water prediction and 
outperforms ANN in purple hilly area. The SVMs are based on statistical 
learning theory and can be used to predict a quantity forward in time based 
on the results of "training" that uses past data. This paper is organized in six 
sections. Section 2 presents the study area and data preparation. Machine 
learning scheme and kernel function are described in Section 3. Section 4 
and Section 5 include the prediction methodology, error measurements and 
experiment results. Concluding remarks are presented in Section 6. 
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2. SITE AND DATA DESCRIPTION 

The study site is located in Southwest University in Chongqing (long. 106

26’E, lat. 30 26’N). The hilly with an area 0.1hm2 was selected to test the 

approach presented herein. Climatic conditions are semi-tropical wet with a 

mean annual temperature of 18.3  and a precipitation of about 1150.7 

mm/year. The soil is classified as purple. 
All the data in this study are taken from the Hydrology Experiment. 

Monitoring has been done about every 5 days, from Dec, 2001 to Apr, 2004. 
Samples were collected from a depth of 30 to 40 cm, placed in a can, sealed 
and transported to a lab, where they were weighed before and after oven 
drying. 

3. SUPPORT VECTOR MACHINE 

3.1 Theory of SVMs in regression approximation 

Compared to other neural network regressors, there are three distinct 
characteristics when SVMs are used to estimate the regression function. First 
of all, SVMs etimate the regression using a set of linear functions which are 
defined in a high dimensional space. Secondly, SVMs carry out the 
regression estimation by risk minimization where the risk is measured using 
Vapnik’s e-insensitive loss function. Thirdly, SVMs use a risk function 
consisting of the empirical error and a regularization term which is derived 
from the structure risk minimization principle. 

Given a set of data points ( ){ } n

iii dxG ,=  ( ix is the input vector, id is the 

desired value and n is the total number of data patterns), SVMs approximate 
the function using the following: 
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In the regularized risk function given by Eq.(2), the first term 
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),()/1( ε  is empirical error (risk), and measured by function εL . 

The second term 2
5.0 w is the regularization term. C is referred to as the 

regularized constant and is determines the trade-off between the empirical 
risk and the regularization term. Increasing the value of C will result in the 
relative importance of the empirical risk with respect to the regularization 
term to grow. ε is called the tube size and it is equivalent to the 
approximation accuracy placed on the training data points. 

To obtain the estimations of w and b, Eq.(2) is transformed to the primal 
function given by Eq.(3) by introducing the positive slack variables 
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Finally, by introducing Lagrange multipliers and exploiting the optimality 
constraints, the decision function given by Eq.(1) has the following explicit 
form Zhang (2003): 

∑
=

+−=
n

i
iiiii bxxKaaaaxf

1

**
),()(),,(                        (4) 

The detail computation procedure can be found in Vapnik (1996) and 
Flake et al. (2002). 

3.2 Kernel function 

K(xi,xj) is defined as kernel function. The value of the kernel is equal to 

the inner product of two vectors Xi and Xj in the feature space (xi) and

(xj), that is, K(xi,xj)= (xi)* (xj) . The elegance of using the kernel function 

is that one can deal with feature spaces of arbitrary dimensionality without 

having to compute the map (x) explicitly. Any function satisfying Mercer’s 

condition (Flake et al. 2002) can be used as kernel function. The typical 
examples of kernel function are the polynomial kernel K(x, y)=(x*y+1)d and 

the Gaussian kernel K(x, y)=exp(-1/ 2(x-y)2) where d is the degree of 

polynomial kernel and 2 is the bandwidth of the Gaussian kernel. The 

kernel parameter should be carefully chosen as it implicitly defines the 

structure of the high dimensional feature space (x) and thus controls the 

complexity of the final solution. 
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4. METHODOLOGY 

4.1 Prediction methodology 

Suppose the current time is t, we want to predict y(t+l) for the future time 
t+l with the knowledge of the value y(t-n), y(t-n+1),…, y(t) for past time  t-n, 
t-n+1, …, t, respectively.  The prediction function is expressed as: 

y(t+l) = f(t, l, y(t), y(t-1), …, y(t-n))                     (5) 

4.2 Error Measurements 

In addition, we examine the soil water content time series of different 
prediction methods. Relative Mean Errors (RME), Root Mean Square Error 
(RMSE) and Coefficient of Variation (CV) are applied as performance 
indices. The computational methods are described as follows: 
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where n, y, ŷ  and y represents the number of test data, the observation 

value, the predicted value and the average of the observation samples, 
respectively. 

All the mentioned procedures above are carried out in MATLAB 6.5. 

5. RESULTS 

The experiment samples are classified into two groups. The first one 
includes the soil water content every 5 days, and the monthly average soil 
water measurements consist in the second group. For the first group, we use 
data from the first 160 samples as the training set and use the last 21 samples 
as our testing set. Meanwhile, for the second group, the first 21 samples are 
selected as the training set and the last 8 samples as the testing set. 

SVMs combined with three kinds of kernel functions, that are linear 
(SVM_Linear), polynomial (SVM_Poly) and radius base function 
(SVM_Rbf), are applied to soil water content forecast. In addition, the 
application presented in this paper is also compared to a very well known 
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machine learning tool used in hydrology, Artificial Neural Networks 
(ANNs). The ANN model was set up in such a way as to have one output 
node, one hidden layer, and one input layer. Moreover, a tan sigmoid 
function was employed in the hidden layer neurons and a linear transfer 
function was used at the output node. ANNs use a least squares loss 
function, unlike SVMs, which use an ε-insensitive loss function as a fitness 
measure. Moreover, the ANN predictions are not stable and depend on the 
averages from various network initializations, which may give a different 
result each time a model is trained. On the other hand, the SVM results are 
stable and unique. 

The experimental results are summarized in Table 1 and Table 2. It is 
observed that the SVMs regression outperform the ANN predictors, 
especially for the monthly average soil water content forecasting. The results 
in Table 2 show that the radius base function SVM predictor reduces relative 
mean errors, the root mean squared errors and the coefficient of variation 
than those achieved by the linear, polynomial SVMs and the ANN predictor. 

Furthermore, this experiment examines the errors greater than 5% which 
are produced by SVMs and ANN prediction methods for the different soil 
water content. For the first group, the results in Table 1 shows that 30.17% 
portion of total errors produced by linear and polynomial function SVM 
predictor are greater than 5% whereas radius base function SVM and ANN 
predictor produce the number of 78.83% and 70.76% to total errors which 
are over the 5% RME threshold. Moreover, as far as the monthly average 
soil water content concerned, Table 2 shows that the bad parts (the portion of 
errors exceed 5%) of the linear, polynomial function SVMs and ANN 
prediction errors occupy 10.90%, 11.12% and 9.87% of total errors, 
respectively. However, for the radius base function SVM predictor, there are 
only 1.33% of the errors belongs to the bad portion. 

 
Table 1. The forecast performance of different models for the soil water content every 5days 

Model RME RMSE CV Proportion 

SVM_Linear 1.0573 0.2200 -2.0938 30.17% 
SVM_Poly 1.0573 0.2200 -2.0938 30.16% 
SVM_Rbf 58.9678 3.2695 -31.1202 78.83% 

ANN 52.4897 2.9878 -28.4386 70.76% 

 
Table 2. The forecast performance of different models for the monthly average soil water 
content 

Model RME RMSE CV Proportion 

SVM_Linear 3.7727 0.3023 -3.4011 10.90% 

SVM_Poly 3.7790 0.3024 -3.4017 11.12% 

SVM_Rbf 1.2057 0.2440 -2.7448 1.33% 

ANN 3.2326 0.2891 -3.2523 9.87% 
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Moreover, the performance indices of the radius base function SVM for the 

monthly average soil water content forecasting improve remarkably than that 
of the soil water content every 5 days. It is can be conferred that to some 
extent the noise in monthly average samples reduce to less than those of 
every 5 days. 

6. CONCLUSION 

Support vector machine and support vector regression have demonstrated 
their success in time-series analysis and statistical learning. However, little 
work has been done for soil water content analysis. Prior knowledge of soil 
water content behavior can not only help in better management and 
understanding of hydrological systems but also result in improved 
forecasting, especially for agricultural basins. In this paper we examine the 
feasibility of applying support vector regression to soil water content time 
series prediction in purple hilly area. The application presented here uses 
measured soil water data to predict future soil water. After numerous 
experiments, we propose a set of SVR parameters that can predict soil water 
content time series very well. The results show that the SVM predictor 
significantly outperforms the other baseline predictors. This evidences the 
applicability of support vector regression in soil water content analysis. 
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