

A FAST LONGEST COMMON SUBSEQUENCE
ALGORITHM FOR BIOSEQUENCES
ALIGNMENT

Wei Liu ,*1 , Lin Chen 3,2
1 Institute of Information Science and Technology, Nanjing University of Aeronautics and

Astronautics, Nanjing 210093,China
2 Department of Computer Science, Yangzhou University, Yangzhou 225009,China
3 State Key Lab of Novel Software Technology, Nanjing University, Nanjing 210093, China
* Corresponding author, Address: P. O. Box 274, Institute of Information Science and

Technology, Nanjing University of Aeronautics and Astronautics, 29 Yudao ST., Nanjing,
210093, P. R. China, Email: yzliuwei@126.com

Abstract: Searching for the longest common substring (LCS) of biosequences is one of
the most important tasks in Bioinformatics. A fast algorithm for LCS problem
named FAST_LCS is presented. The algorithm first seeks the successors of the
initial identical character pairs according to a successor table to obtain all the
identical pairs and their levels. Then by tracing back from the identical
character pair at the largest level, the result of LCS can be obtained. For two
sequences X and Y with lengths n and m, the memory required for FAST_LCS
is max{8*(n+1)+8*(m+1),L}, here L is the number of identical character pairs
and time complexity of parallel implementation is O(|LCS(X,Y)|), here,
|LCS(X,Y)| is the length of the LCS of X,Y. Experimental result on the gene
sequences of tigr database using MPP parallel computer Shenteng 1800 shows
that our algorithm can get exact correct result and is faster and more efficient
than other LCS algorithms.

Key words: bioinformatics; longest common subsequence; identical character pair

62 Wei Liu , Lin Chen

1. INTRODUCTION

Biological sequence (Bailin Hao et al., 2000) can be represented as a
sequence of symbols. When biologists find a new sequence, they want to
know what other sequences it is most similar to. Sequence comparison
(Edmiston E W et al., 1988)has been used successfully to establish the link
between cancer-causing genes and a gene evolved in normal growth and
development. One way of detecting the similarity of two or more sequences
is to find their longest common subsequence (LCS).

The longest common subsequence problem is to find a substring that is
common to two or more given strings and is the longest one of such strings.

Presented in 1981 Smith-Waterman algorithm (Smith T.F.et al., 1990) was

a well known LCS algorithm which was evolved by the Needleman-Wunsch
(Needleman, S.B.et al., 1970) algorithm, and can guarantee the correct result.
Aho et al(A. Aho et al., 1976) gave a lower bound of O(mn) on time for the
LCS problem using a decision tree model. It is shown in (O. Gotoh, 1982)
that the problem can be solved in O(mn) time using O(mn) space by dynamic
programming. Mayers and Miller(E. W. Mayers et al., 1998)use the skill
proposed by Hirschberg (D. S. Hirschberg, 1975) to reduce the space
complexity to O(m+n) on the premise of the same time complexity. To
further reduce the computation time, some parallel algorithms(Y. Panet al.,
1998, Jean Frédéric Myoupo et al., 1999, L. Bergroth et al., 2000, A.
Aggarwal et al., 1988) have been proposed for the LCS problem on different
computational models. On CREW-PRAM model, Aggarwal (A. Aggarwal et
al.,1988) and Apostolico et al (A. Apostolico et al., 1990)independently
proposed an O(log m log n) time algorithm using mn/log m processors. Many
parallel LCS algorithms have also been proposed on systolic arrays. Robert
et al (K. Nandan Babu et al., 1997) proposed a parallel algorithm with n+5m
steps using m(m+1) processing elements. Freschi and Bogliolo (V. Freschi et
al., 2000) addressed the problem of computing the LCS between run-length-
encoded (RLE) strings. Their algorithm requirs O(m+n) steps on a systolic
array of M+N processing elements, where M and N are the lengths of the
original strings and m and n are the number of runs in their RLE
representation.

In this paper, we present a fast algorithm named FAST_LCS for LCS
problem. The algorithm first seeks the successors of the initial identical
character pairs according to a successor table to obtain all the identical pairs
and their levels. Then by tracing back from the identical character pair at the
largest level, the result of LCS can be obtained. For two sequences X and Y
with lengths n and m, the memory required for FAST_LCS is
max{8*(n+1)+8*(m+1), L}, here L is the number of identical character pairs
and time complexity of parallel implementation is O(|LCS(X,Y)|), here,
|LCS(X,Y)| is the length of the LCS of X,Y. Experimental result on the gene

A Fast Longest Common Subsequence Algorithm for Biosequences
Alignment

63

sequences of tigr database using MPP parallel computer Shenteng 1800
shows that our algorithm can get exact correct result and is faster and more
efficient than other LCS algorithms.

2. THE IDENTICAL CHARACTER PAIR AND ITS
SUCCESSOR TABLE

Let X (x1, x2, … , xn), Y = (y1, y2, … , ym) be two biosequences, where xi ,

yi�{A,C,G,T}. We can define an array CH of the four characters so that
CH(1)=”A”, CH(2)=”C”, CH(3)=”G” and CH(4)=”T”. To find their longest
common subsequence, we first build the successor tables of the identical
characters for the two strings. The successor tables of X and Y are denoted as
TX and TY which are 4*(n+1) and 4*(m+1) two dimensional arrays. TX (i, j)
is defined as follows.

Definition1. For the sequence X (x1, x2, … , xn), its successor table TX

of identical character is defined as :

{ }min | (,) (,)
(,)

 otherwise

k k SX i j SX i j
TX i j

φ ∈ ≠
= 

−
 (1)

Here, SX (i, j)={k| xk=CH(i), k>j}, i = 1,2,3,4, j = 0,1,…n. It can be seen

from the definition that if TX(i, j) is not “ ”, it indicates the position of the

next character identical to CH(i) after the jth position in sequence X. If TX(i,

j) is equal to “ ”, it means there is no character CH(i) after the jth position .

Example 1 Let X = T G C A T A , Y = A T C T G A T . Their

successor tables TX and TY are:
TX: TY

i CH(i) 0 1 2 3 4 5 6

1 A 4 4 4 4 6 6 -

2 C 3 3 3 - - - -
3 G 2 2 - - - - -
4 T 1 5 5 5 5 - -

i CH(i) 0 1 2 3 4 5 6

1 A 4 4 4 4 6 6 -

2 C 3 3 3 - - - -
3 G 2 2 - - - - -
4 T 1 5 5 5 5 - -

Definition 2. For the sequences X and Y, if xi = yj, we call them an
identical character pair of X and Y, and denote it as (i, j). The set of all the
identical character pairs of X and Y is denoted as S(X, Y).

Definition 3. Let (i, j) and (k, l) be two identical character pairs of X and
Y. If i<k and j<l, we call (i, j) a predecessor of (k, l), or (k, l) a successor of (i,
j), and denote them as (i, j)<(k, l).

Definition 4. Let P(i, j) = {(r, s)|(i, j) < (r, s), (r, s)�S (X,Y)} be the set of
all the successors of identical pair (i, j), if (k, l)�P(i, j) and there is no (k’,

64 Wei Liu , Lin Chen

l’)�P(i, j) satisfying the condition: (k’, l’) < (k, l), we call (k, l) the direct
successor of (i, j), and denoted it as (i, j) p (k, l).

Definition 5. If an identical pair (i, j)�S (X,Y) and there is no (k, l)�S
(X,Y) so that (k, l) < (i, j), we call (i, j) an initial identical pair.

Definition 6. For an identical pair (i, j)�S (X,Y), its level is defined as
follows:

()
()

() () (){ }
 1 if , is an initial identical character pair

,
max , 1 , , otherwise

i j
level i j

level k l k l i j


= 

+ <
 (2)

From the definitions above, the following lemma can be easily deduced:
Lemma1. Denote the length of the longest common subsequence of X, Y

as |LCS(X, Y)|, then |LCS(X, Y)|=max{level (i, j) |(i, j) S (X, Y)}.

Proof of Lemma 1 is omitted due to space limitation.

3. THE OPERATIONS OF PRODUCING
SUCCESSORS AND PRUNING

For an identical character pair (i, j)�S (X, Y), the operation of producing
all its direct successors is as follows:

{ }(,) ((,), (,)) | 1,2,3,4, (,) ' 'and (,) ' 'i j TX k i TY k j k TX k i TY k j→ = ≠ − ≠ − (3)

From (3) we can see that this operation is to couple the elements of the ith
column of TX and the jth column of TY to get the pairs.

Lemma2. For an identical character pair (i, j), the method illustrated
above can produce all its successors.

Proof of Lemma 2 is omitted due to space limitation.
In such process of generating the successors, pruning technique can be

implemented to remove the identical pairs so as to reduce the searching
space and accelerate the speed of process. These prune operations are based
on the following theorems

Theorem 1. If two identical character pairs (i, j) and(k, l)generated at the
same time step satisfy (k, l)>(i, j) , then (k, l) can be pruned without affecting
the algorithm to get the longest common subsequence of X and Y.

Theorem 2. If on the same level, there are two identical character pairs (i1,
j) and (i2, j) satisfying i1<i2, then (i2, j) can be pruned without affecting the
algorithm to get the longest common subsequence of X and Y.

Proof of Theorem 1and 2 is omitted due to space limitation.

A Fast Longest Common Subsequence Algorithm for Biosequences
Alignment

65

4. FRAMEWORK OF THE ALGORITHM AND

COMPLEXITY ANALYSIS

Based on the operations mentioned above, we present a fast parallel
longest common subsequence algorithm FAST_LCS. The algorithm first
begins with the initial identical character pairs, then continuously searches
for their successors using the successor tables. In this phase, the pruning
technology is implemented to discard those search branches that obviously
can’t obtain the optimum solution so as to reduce the search space and speed
up the process of searching. In the algorithm, a table called pairs is used to
store the identical character pairs obtained in the algorithm. In the table
pairs, each record takes the form of (k, i, j, level, pre, state) where the data
items denote the index of the record, the identical character pair (i, j), its
level, index of its direct predecessor and its current state. Each record in
pairs has two states. For the identical pairs whose successors have not been
searched, it is in active state, otherwise it is in inactive state. In every step of
search process, the algorithm searches for the successors of all the identical
pairs in active state in parallel. Repeat this search process until there is no
identical pair in active state in the table. The phase of tracing back starts
from the identical pairs with the maximal level in the table, and traces back
according to the pred of each identical pair. This tracing back process ends
when it reaches an initial identical pair, and the trail indicates the longest
common subsequence. If there are more than one identical pair with the
maximal level in the table, the tracing back procedure for those identical
pairs can be carried out in parallel and several longest common
subsequences can be obtained concurrently. The framework of the algorithm
FAST_LCS is as follows:
Algorithm-FAST_LCS (X,Y)
Input X and Y: Sequences with lengths of m and n respectively;
Output LCS : The longest common subsequence of X,Y;
Begin

1. Build tables TX and TY;
2. Find all the initial identical character pairs: (TX(k, 0),TY(k, 0)),

k=1,2,3,4;

3. Add the records of the initial identical pairs (k,TX(k, 0),TY(k, 0), 0, ,

active), k=1,2,3,4 to the table pairs.

 /* For all the initial identical pairs, their level=1, pre= and

state=active*/
4. Repeat
 For all active identical pairs (k, i, j, level, pre, active) in pairs parallel-

do

66 Wei Liu , Lin Chen

 Produce all the successors of (k, i, j, level, pre, active).
 For each identical character pair (g, h)in the successor set of (k, i, j,

level, pre, active), a new record (k’, g, h, level+1, k, active) is generated and
inserted into the table pairs.

 Change the state of (k, i, j, level, pre, active) into inactive.
 End for
 Use prune operation on all the successors produced in this level to

remove all the redundant identical pairs from table pairs.
5. Until there is no record in active state in table pairs.
6. Compute r= the maximal level in the table pairs.
7. For all identical pairs (k, i, j, r, l, inactive) with level = r in pairs

parallel-do
 Pred = l; LCS(r) = xi.

 While pred ≠ do

7.1.1 get the Pred-th record (prel, g, h, r’, l’, inactive) from
table pairs.

7.1.2 Pred = l’; LCS(r’) = xg.
7.3 end while

End.
Assume that the number of the identical character pairs of X, Y is L. In our

algorithm, the time complexity for sequentially executing of the algorithm
FAST_LCS (X, Y) is O(L) and the storage complexity of our algorithm is
max{8*(n+1)+8*(m+1),L}. In parallel implementation of the algorithm, the
time complexity of parallel computing is O(|LCS(X,Y)|),here, |LCS (X,Y)| is
the length of the longest common subsequence of X, Y.

5. EXPERIMENTAL RESULTS

5.1 The results of sequential computing-two sequences

We test our algorithm FAST_LCS on the rice gene sequences of tigr
database and compare the performance of FAST_LCS with that of Smith-
Waterman algorithm and FASTA algorithm which are currently the most
widely used LCS algorithms.

A Fast Longest Common Subsequence Algorithm for Biosequences
Alignment

67

Fig.1 shows the comparison of the computation time of our algorithm and

that of Smith-Waterman algorithm. From the figure, we see that our
algorithm is obviously faster than Smith-Waterman algorithm for sequences
sets of all different lengths, especially when the length of sequences become
greater than 150. This means our algorithm is much faster and more efficient
than Smith-Waterman’s for LCS problem of long sequences.

We also compare the precision of our algorithm with that of FASTA on
the premise of the same computing time. Here precision is defined as:

The length of the common subsequence computed by the algorithm
Precision

The length of the longest common subsequence in correct match
=

From Fig.2, we can see that our algorithm can obtain exactly correct result
no matter how long the sequence could be, while the precision of FASTA
declines when the length of the sequences is increased. Therefore the
precision of our algorithm is higher than FASTA algorithm.

5.2 The results of parallel computing

We also test our algorithm on the rice gene sequence from tigr database
on the massive parallel processors Shenteng 1800 using MPI (C bounding).
In the parallel implementation of our algorithm FAST_LCS, the identical
character pairs in active state are assigned and processed in different
processors. The experimental results by using different numbers of
processors are shown in Fig.3. From Fig.3, we can see that the computation
speed will become faster as the number of processors increases. But the
speedup will slow down when the number of processors is larger than 6.
Because of the overhead of communication between processors which
increases the total time of the algorithm, the speedup of our algorithm can
not increase linearly with the increasing of processors exactly. This is in
conformity with the Amdahl’s Law.

68 Wei Liu , Lin Chen

6. CONCLUSION

On the premise of guaranteeing precision, this paper present a parallel
longest common subsequence algorithm FAST_LCS based on the identical
character pair to improve the speed of LCS problem. Our algorithm first
seeks the successors of the initial identical character pairs according to a
successor table to obtain all the identical pairs and their levels. Then by
tracing back from the identical character pair with the largest level, the result
of LCS can be obtained. For two sequences X and Y with length n and m, the
memory required for FAST_LCS is max{4*(n+1)+4*(m+1),L}, here L is the
number of identical character pair and time complexity of parallel computing
is O(|LCS(X,Y)|), here |LCS(X,Y)| is the length of the LCS of X,Y.
Experimental result on the gene sequences of tigr database using MPP
parallel computer Shenteng 1800 shows that our algorithm can get exact
correct result and is faster and more efficient than other LCS algorithms.
Acknowledgements This research was supported in part by Chinese
National Natural Science Foundation under grant No. 60673060, and Natural
Science Foundation of Jiangsu Province under contract BK2005047.

REFERENCES

A. Aggarwal and J. Park,1988, Notes on Searching in Multidimensional Monotone Arrays,
Proc. 29th Ann. IEEE Symp. Foundations of Comput. Sci. pp. 497-512.

A. Aho, D. Hirschberg, and J. Ullman, 1976, Bounds on the Complexity of the Longest
Common Subsequence Problem, J. Assoc. Comput. Mach., Vol. 23, No. 1, 1976, pp. 1-12,.

A. Apostolico, M. Atallah, L. Larmore , and S. Mcfaddin, 1990, Efficient Parallel Algorithms
for String Editing and Related Problems, SIAM J. Computing, Vol. 19, pp. 968-988

A Fast Longest Common Subsequence Algorithm for Biosequences
Alignment

69

Bailin Hao Shuyu Zhang 2000,The manual of Bioinformatics, Shanghai science and

technology publishing company.
D. S. Hirschberg, 1975, A Linear Space Algorithm for Computing Maximal Common

Subsequences, Commun. ACM, Vol.18, No.6, pp. 341-343
E. W. Mayers, W. Miller, 1998, Optimal Alignment in Linear Space, Comput. Appl. Biosci.

Vol.4, No.1, pp. 11-17.
Edmiston E W, Core N G, Saltz J H, et al, 1988, Parallel processing of biological sequence

comparison algorithms. International Journal of Parallel Programming, Vol.17, No. 3,
pp.259-275.

Jean Frédéric Myoupo, David Seme, 1999, Time-Efficient Parallel Algorithms for the
Longest Common Subsequence and Related Problems, Journal of Parallel and Distributed
Computing, Vol. 57, No.2, pp.212-223

K. Nandan Babu, Wipro Systems, and Sanjeev Saxena,1997, Parallel Algorithms for the
Longest Common Subsequence Problem , 4th International Conference on High
Performance Computing, December 18-21, 1997 - Bangalore, India.

L. Bergroth, H. Hakonen, and T. Raita, 2000,A survey of longest common subsequence
algorithms, Seventh International Symposium on String Processing Information Retrieval,
pp. 39–48

Needleman, S.B. and Wunsch, C.D., 1970, A general method applicable to the search for
similarities in the amino acid sequence of two proteins, J. Mol. Biol., Vol.48, No.3,
pp.443-453

O. Gotoh, 1982, An improved algorithm for matching biological sequences, J. Molec. Biol.
Vol.162, pp. 705-708.

Smith T.F.,Waterman M.S. 1990, Identification of common molecular subsequence. Journal
of Molecular Biology, Vol.215, pp.403-410.

V. Freschi and A. Bogliolo, 2004, Longest common subsequence between run-length-encoded
strings: a new algorithm with improved parallelism, Information Processing Letters, Vol.
90, No.4 , pp. 167-173

Y. Pan, K. Li, 1998, Linear Array with a Reconfigurable Pipelined Bus System– Concepts
and Applications, Journal of Information Science, Vol.106, pp. 237-258

