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Abstract: Searching for the longest common substring (LCS) of biosequences is one of 
the most important tasks in Bioinformatics. A fast algorithm for LCS problem 
named FAST_LCS is presented. The algorithm first seeks the successors of the 
initial identical character pairs according to a successor table to obtain all the 
identical pairs and their levels. Then by tracing back from the identical 
character pair at the largest level, the result of LCS can be obtained. For two 
sequences X and Y with lengths n and m, the memory required for FAST_LCS 
is max{8*(n+1)+8*(m+1),L}, here L is the number of identical character pairs 
and time complexity of parallel implementation is O(|LCS(X,Y)|), here, 
|LCS(X,Y)| is the length of the LCS of X,Y. Experimental result on the gene 
sequences of tigr database using MPP parallel computer Shenteng 1800 shows 
that our algorithm can get exact correct result and is faster and more efficient 
than other LCS algorithms. 
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1.  INTRODUCTION 

Biological sequence (Bailin Hao et al., 2000) can be represented as a 
sequence of symbols. When biologists find a new sequence, they want to 
know what other sequences it is most similar to. Sequence comparison 
(Edmiston E W et al., 1988)has been used successfully to establish the link 
between cancer-causing genes and a gene evolved in normal growth and 
development. One way of detecting the similarity of two or more sequences 
is to find their longest common subsequence (LCS). 

The longest common subsequence problem is to find a substring that is 
common to two or more given strings and is the longest one of such strings. 

Presented in 1981 Smith-Waterman algorithm (Smith T.F.et al., 1990) was 

a well known LCS algorithm which was evolved by the Needleman-Wunsch 
(Needleman, S.B.et al., 1970) algorithm, and can guarantee the correct result. 
Aho et al(A. Aho et al., 1976) gave a lower bound of O(mn) on time for the 
LCS problem using a decision tree model. It is shown in (O. Gotoh, 1982) 
that the problem can be solved in O(mn) time using O(mn) space by dynamic 
programming. Mayers and Miller(E. W. Mayers et al., 1998)use the skill 
proposed by Hirschberg (D. S. Hirschberg, 1975) to reduce the space 
complexity to O(m+n) on the premise of the same time complexity. To 
further reduce the computation time, some parallel algorithms(Y. Panet al., 
1998, Jean Frédéric Myoupo et al., 1999, L. Bergroth et al., 2000, A. 
Aggarwal et al., 1988) have been proposed for the LCS problem on different 
computational models. On CREW-PRAM model, Aggarwal (A. Aggarwal et 
al.,1988) and Apostolico et al (A. Apostolico et al., 1990)independently 
proposed an O(log m log n) time algorithm using mn/log m processors. Many 
parallel LCS algorithms have also been proposed on systolic arrays. Robert 
et al (K. Nandan Babu et al., 1997) proposed a parallel algorithm with n+5m 
steps using m(m+1) processing elements. Freschi and Bogliolo (V. Freschi et 
al., 2000) addressed the problem of computing the LCS between run-length-
encoded (RLE) strings. Their algorithm requirs O(m+n) steps on a systolic 
array of M+N processing elements, where M and N are the lengths of the 
original strings and m and n are the number of runs in their RLE 
representation.  

In this paper, we present a fast algorithm named FAST_LCS for LCS 
problem. The algorithm first seeks the successors of the initial identical 
character pairs according to a successor table to obtain all the identical pairs 
and their levels. Then by tracing back from the identical character pair at the 
largest level, the result of LCS can be obtained. For two sequences X and Y 
with lengths n and m, the memory required for FAST_LCS is 
max{8*(n+1)+8*(m+1), L}, here L is the number of identical character pairs 
and time complexity of parallel implementation is O(|LCS(X,Y)|), here, 
|LCS(X,Y)| is the length of the LCS of X,Y. Experimental result on the gene 
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sequences of tigr database using MPP parallel computer Shenteng 1800 
shows that our algorithm can get exact correct result and is faster and more 
efficient than other LCS algorithms. 

2. THE IDENTICAL CHARACTER PAIR AND ITS 
SUCCESSOR TABLE 

Let X (x1, x2, … , xn), Y = (y1, y2, … , ym) be two biosequences, where xi , 

yi�{A,C,G,T}. We can define an array CH of the four characters so that 
CH(1)=”A”, CH(2)=”C”, CH(3)=”G” and CH(4)=”T”. To find their longest 
common subsequence, we first build the successor tables of the identical 
characters for the two strings. The successor tables of X and Y are denoted as 
TX and TY which are 4*(n+1) and 4*(m+1) two dimensional arrays. TX (i, j) 
is defined as follows. 

Definition1. For the sequence X (x1, x2, … , xn ), its successor table TX 

of identical character is defined as : 

{ }min | ( , )   ( , )
( , )

                           otherwise

k k SX i j SX i j
TX i j

φ ∈ ≠
= 

−
 (1) 

Here, SX (i, j)={k| xk=CH(i), k>j}, i = 1,2,3,4, j = 0,1,…n. It can be seen 

from the definition that  if TX(i, j) is not “ ”, it indicates the position of the 

next character identical to CH(i) after the jth position in sequence X.  If TX(i, 

j) is equal to “ ”, it means there is no character CH(i) after the jth position . 

Example 1 Let X = T G C A T A , Y = A T C T G A T . Their 

successor tables TX and TY are: 
TX: TY  

i CH(i) 0  1  2  3  4  5  6   

1 A 4  4  4  4  6  6  - 

2 C 3  3  3  -   -  -  - 
3 G 2  2  -  -   -  -  - 
4 T 1  5  5  5  5  -  -  

i CH(i) 0  1  2  3  4  5  6   

1 A 4  4  4  4  6  6  - 

2 C 3  3  3  -   -  -  - 
3 G 2  2  -  -   -  -  - 
4 T 1  5  5  5  5  -  -  

Definition 2. For the sequences X and Y, if xi = yj, we call them an 
identical character pair of X and Y, and denote it as (i, j). The set of all the 
identical character pairs of X and Y is denoted as S(X, Y). 

Definition 3.  Let (i, j) and (k, l) be two identical character pairs of X and 
Y. If i<k and j<l, we call (i, j) a predecessor of (k, l), or (k, l) a successor of (i, 
j), and denote them as (i, j)<( k, l). 

Definition 4. Let P(i, j) = {(r, s)|( i, j) < (r, s), (r, s)�S (X,Y)} be the set of 
all the successors of identical pair (i, j), if (k, l)�P(i, j) and there is no (k’, 
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l’)�P(i, j) satisfying the condition: (k’, l’) < (k, l), we call (k, l) the direct 
successor of (i, j), and denoted it as (i, j) p  (k, l). 

Definition 5. If an identical pair (i, j)�S (X,Y) and there is no (k, l)�S 
(X,Y) so that (k, l) < ( i, j), we call ( i, j) an initial identical pair. 

Definition 6. For an identical pair (i, j)�S (X,Y), its level is defined as 
follows: 
 

( )
( )

( ) ( ) ( ){ }
 1   if , is  an  initial  identical  character  pair

,
max , 1 , ,          otherwise

i j
level i j

level k l k l i j


= 

+ <
 (2) 

From the definitions above, the following lemma can be easily deduced: 
Lemma1. Denote the length of the longest common subsequence of X, Y 

as |LCS(X, Y)|, then |LCS(X, Y)|=max{level (i, j) |(i, j) S (X, Y)}. 

Proof of Lemma 1 is omitted due to space limitation. 

3. THE OPERATIONS OF PRODUCING 
SUCCESSORS AND PRUNING 

For an identical character pair (i, j)�S (X, Y), the operation of producing 
all its direct successors is as follows: 

{ }( , ) ( ( , ), ( , )) | 1,2,3,4, ( , ) ' 'and ( , ) ' 'i j TX k i TY k j k TX k i TY k j→ = ≠ − ≠ −        (3) 

From (3) we can see that this operation is to couple the elements of the ith  
column of TX and the jth column of TY to get the pairs.  

Lemma2. For an identical character pair (i, j), the method illustrated 
above can produce all its successors. 

Proof of Lemma 2 is omitted due to space limitation. 
In such process of generating the successors, pruning technique can be 

implemented to remove the identical pairs so as to reduce the searching 
space and accelerate the speed of process. These prune operations are based 
on the following theorems 

Theorem 1. If two identical character pairs (i, j) and(k, l)generated at the 
same time step satisfy (k, l)>(i, j) , then (k, l) can be pruned without affecting 
the algorithm to get the longest common subsequence of X and Y.  

Theorem 2. If on the same level, there are two identical character pairs (i1, 
j) and (i2, j) satisfying i1<i2, then (i2, j) can be pruned without affecting the 
algorithm to get the longest common subsequence of X and Y. 

Proof of Theorem 1and 2 is omitted due to space limitation. 
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4. FRAMEWORK OF THE ALGORITHM AND 

COMPLEXITY ANALYSIS 

Based on the operations mentioned above, we present a fast parallel 
longest common subsequence algorithm FAST_LCS. The algorithm first 
begins with the initial identical character pairs, then continuously searches 
for their successors using the successor tables. In this phase, the pruning 
technology is implemented to discard those search branches that obviously 
can’t obtain the optimum solution so as to reduce the search space and speed 
up the process of searching. In the algorithm, a table called pairs is used to 
store the identical character pairs obtained in the algorithm. In the table 
pairs, each record takes the form of (k, i, j, level, pre, state) where the data 
items denote the index of the record, the identical character pair (i, j), its 
level, index of its direct predecessor and its current state. Each record in 
pairs has two states. For the identical pairs whose successors have not been 
searched, it is in active state, otherwise it is in inactive state. In every step of 
search process, the algorithm searches for the successors of all the identical 
pairs in active state in parallel. Repeat this search process until there is no 
identical pair in active state in the table. The phase of tracing back starts 
from the identical pairs with the maximal level in the table, and traces back 
according to the pred of each identical pair. This tracing back process ends 
when it reaches an initial identical pair, and the trail indicates the longest 
common subsequence. If there are more than one identical pair with the 
maximal level in the table, the tracing back procedure for those identical 
pairs can be carried out in parallel and several longest common 
subsequences can be obtained concurrently. The framework of the algorithm 
FAST_LCS is as follows: 
Algorithm-FAST_LCS (X,Y)  
Input    X and Y: Sequences with lengths of m and n respectively;  
Output   LCS : The longest common subsequence of X,Y; 
Begin 

1. Build tables TX and TY; 
2. Find all the initial identical character pairs: (TX(k, 0),TY(k, 0)), 

k=1,2,3,4; 

3. Add the records of the initial identical pairs (k,TX(k, 0),TY(k, 0), 0, , 

active), k=1,2,3,4 to the table pairs.  

     /* For all the initial identical pairs, their level=1, pre=  and 

state=active*/ 
4. Repeat  
  For all active identical pairs (k, i, j, level, pre, active) in pairs parallel-

do 
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 Produce all the successors of (k, i, j, level, pre, active).  
 For each identical character pair (g, h)in the successor set of (k, i, j, 

level, pre, active), a new record (k’, g, h, level+1, k, active) is generated and 
inserted into the table pairs.  

 Change the state of (k, i, j, level, pre, active) into inactive. 
 End for 
 Use prune operation on all the successors produced in this level to 

remove all the redundant identical pairs from table pairs. 
5. Until there is no record in active state in table pairs. 
6. Compute r= the maximal level in the table pairs.  
7. For all identical pairs (k, i, j, r, l, inactive) with level = r in pairs 

parallel-do  
 Pred = l; LCS(r) = xi.  

 While pred ≠  do  

7.1.1 get the Pred-th record (prel, g, h, r’, l’, inactive) from 
table pairs. 

7.1.2 Pred = l’; LCS(r’) = xg. 
7.3 end while  

End.     
Assume that the number of the identical character pairs of X, Y is L. In our 

algorithm, the time complexity for sequentially executing of the algorithm 
FAST_LCS (X, Y) is O(L) and the storage complexity of our algorithm is 
max{8*(n+1)+8*(m+1),L}. In parallel implementation of the algorithm, the 
time complexity of parallel computing is O(|LCS(X,Y)|),here, |LCS (X,Y)| is 
the length of the longest common subsequence of X, Y. 

5. EXPERIMENTAL RESULTS 

5.1 The results of sequential computing-two sequences 

We test our algorithm FAST_LCS on the rice gene sequences of tigr 
database and compare the performance of FAST_LCS with that of Smith-
Waterman algorithm and FASTA algorithm which are currently the most 
widely used LCS algorithms.  
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Fig.1 shows the comparison of the computation time of our algorithm and 

that of Smith-Waterman algorithm. From the figure, we see that our 
algorithm is obviously faster than Smith-Waterman algorithm for sequences 
sets of all different lengths, especially when the length of sequences become 
greater than 150. This means our algorithm is much faster and more efficient 
than Smith-Waterman’s for LCS problem of long sequences. 

We also compare the precision of our algorithm with that of FASTA on 
the premise of the same computing time. Here precision is defined as: 

The length of the common subsequence computed by the algorithm
Precision

The length of the longest common subsequence in correct match
=  

From Fig.2, we can see that our algorithm can obtain exactly correct result 
no matter how long the sequence could be, while the precision of FASTA 
declines when the length of the sequences is increased. Therefore the 
precision of our algorithm is higher than FASTA algorithm. 

5.2 The results of parallel computing 

We also test our algorithm on the rice gene sequence from tigr database 
on the massive parallel processors Shenteng 1800 using MPI (C bounding). 
In the parallel implementation of our algorithm FAST_LCS, the identical 
character pairs in active state are assigned and processed in different 
processors. The experimental results by using different numbers of 
processors are shown in Fig.3. From Fig.3, we can see that the computation 
speed will become faster as the number of processors increases. But the 
speedup will slow down when the number of processors is larger than 6. 
Because of the overhead of communication between processors which 
increases the total time of the algorithm, the speedup of our algorithm can 
not increase linearly with the increasing of processors exactly. This is in 
conformity with the Amdahl’s Law. 



68 Wei Liu , Lin Chen 
 

 

6. CONCLUSION 

On the premise of guaranteeing precision, this paper present a parallel 
longest common subsequence algorithm FAST_LCS based on the identical 
character pair to improve the speed of LCS problem. Our algorithm first 
seeks the successors of the initial identical character pairs according to a 
successor table to obtain all the identical pairs and their levels. Then by 
tracing back from the identical character pair with the largest level, the result 
of LCS can be obtained. For two sequences X and Y with length n and m, the 
memory required for FAST_LCS is max{4*(n+1)+4*(m+1),L}, here L is the 
number of identical character pair and time complexity of parallel computing 
is O(|LCS(X,Y)|), here |LCS(X,Y)| is the length of the LCS of X,Y. 
Experimental result on the gene sequences of tigr database using MPP 
parallel computer Shenteng 1800 shows that our algorithm can get exact 
correct result and is faster and more efficient than other LCS algorithms. 
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