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Abstract. A novel evaluation metric is introduced, based on the Discernibility 

concept. This metric, the Distance-based Index of Discernibility (DID) aims to 

provide an accurate and fast mapping of the classification performance of a 

feature or a dataset. DID has been successfully implemented in a program 

which has been applied to a number of datasets, a few artificial features and a 

typical benchmark dataset. The results appear to be quite promising, verifying 

the initial hypothesis. 
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1   Introduction 

The potential of accurate classification of a feature or a set of features has been a 

topic of interest in the field of pattern classification. Especially in cases where the 

classification process is a time-consuming or generally impractical process, knowing 

beforehand how well a classifier will perform on that data can be a very useful 

insight. The concept of Discernibility aims at exactly that [1], through its metrics. Yet 

it was only with the creation of the latest index that this insight can be yielded in a 

very efficient way, making it a viable alternative for feature evaluation among other 

applications. For this purpose, a number of artificial features, of different class 

overlap levels were created. These features, along with a typical machine learning 

benchmark dataset [2] were applied to four different classifiers as well as the 

proposed metric. 

The rest of the paper is structured as follows. In Section 2, a review of the relevant 

literature is conducted. This is followed by description of the methodology of the 

introduced metric (Section 3). In Section 4, the experiments related to the 

aforementioned datasets are described and a discussion of the results is presented. 

This is followed by the conclusions along with future avenues of research based on 

this work (Section 5). 



2   Literature Review 

The concept of Discernibility was formally introduced in previous work of the author 

[1]. However, this notion has been used even before that, since the idea of class 

distinguishability has been present in the field of clustering and pattern classification 

for a while. 

In particular, a metric called Silhouette Width [3] has been a popular choice for 

measuring this, in the context of clustering. This measure makes use of inter- and 

intra-class distances, though it only considers the inter-class distance of the closest 

class. It has been shown in [1, 4] that it is outperformed by the Spherical and the 

Harmonic Indexes of Discernibility, which were developed for this particular task. 

The latter have been tested in a variety of pattern recognition problems with success. 

Another metric that performs this task is the Fisher Discriminant Ratio [5] which 

makes use of statistical analysis to evaluate the class overlap. The downside of this 

measure is that, because of its nature, it only works for one-dimensional data (a single 

feature). Also, while the other metrics yield a value in a bound interval ([-1, 1] for SW 

and [0, 1] for SID and HID), FDR may yield any positive value, making its output 

sometimes difficult to incorporate in larger frameworks, or to compare with other 

metrics. This shortcoming is addressed in the metric introduced in this paper. 

Alternative metrics for this task have been proposed in [6], although they share the 

same drawback as FDR, as they were designed to evaluate a single feature at a time. 

Although most of them concentrate on measuring the trend of the features in relation 

to the class vector (something quite significant for Fault Diagnosis applications), one 

of them focuses on class distinguishability. This metric, the Assumption Free 

Discriminant Ratio, is basically another version of FDR with the difference that it 

does not assume any distribution for the data at hand, an approach that is shared by 

SW, SID and HID as well. 

Another metric is that of the Kernel Class Separability method [7], which has 

application in feature selection [8]. However, this metric this metric is very heavy in 

terms of parameters, which although they can be fine-tuned, they make this technique 

quite cumbersome and impractical for real-world problems. In addition, this metric’s 

use in feature selection was tested only using SVMs, a powerful classifier type but a 

single classifier type nevertheless. Therefore, this metric cannot be considered as a 

viable alternative for the class separability measurement task, at least not until it is 

further refined and optimized. 

An interesting alternative is presented in [9] where a statistical analysis is 

performed to evaluate the class separability potential of various features. This is very 

similar to the FDR technique, though more analytical and therefore computationally 

expensive. This method has the inherent weakness of the statistical approach, namely 

its limitation to a single-dimensional dataset, rendering it ideal for feature evaluation 

but inept for anything more complex. 

All of the aforementioned metrics, with the exception of FDR, are to some extent 

computationally expensive when it comes to larger datasets, a drawback that is 

addressed by the proposed metric, as it will become evident later on. 



3   Methodology 

The idea of the metric introduced in this work is to provide a measure of a dataset’s 

Discernibility using inter-class and intra-class distances for each class, for each class 

pair combination. This is why the metric is called Distance-based Index of 

Discernibility (DID). Contrary to the Spherical Index of Discernibility, it does not use 

hyper-spheres, therefore cutting down the computational cost significantly. In 

addition, it provides only an overall estimate of the Discernibility of the dataset, 

avoiding the individual Discernibility scores of the comprising data points. This gives 

it an edge in the computational cost towards both SID and HID, which base their 

Discernibility estimate on the individual discernibilities of the patters of the dataset. 

DID also has the option of using only a sample of the data points, instead of taking 

the whole dataset. This allows it to tackle datasets with forbiddingly large sizes, 

without much loss of accuracy in the Discernibility estimation (as it will be seen in 

Section 4). If the sample size is omitted in the inputs, the whole dataset is used. 

Moreover, the DID metric provides the inter-class Discernibility for each class 

pair, something that, to the best of the author’s knowledge, no other similar measure 

yields as an output. This is particularly useful as it provides insight to the dataset 

structure, something essential in datasets which due to their dimensional complexity 

cannot be viewed graphically. 

DID’s Discernibility estimate is computed by averaging the various inter-class 

Discernibility scores. The latter are calculated as follows. First the centers of the 

various classes are found, by averaging all the data points of each class. For example, 

in a 2-D feature space, if in class A there are 3 points (x1, y1), (x2, y2) and (x3, y3), the 

center of class A would be (xA, yA) = ( (x1+x2+x3)/3, (y1+y2+y3)/3). 

Then the radius of each class is then calculated, by taking the largest distance from 

the center of the class to the various class points. In the previous example, if point 2 is 

the farthest from the center (xA, yA), then the radius of class A would be                       

RA = sqrt( (x2-xA)
2
 + (y2-yA)

2
). 

Afterwards, a small number is added to all the radii to ensure that there are all non-

zero. Then, the sample is divided according to the class proportions and the 

corresponding amount of data points from each class are selected randomly, for each 

class. Following that, the distances of these points to each class center are calculated 

(using the Euclidean distance formula). The ratio of each distance of a pattern of a 

class i over the radius of the class j is then computed and adjusted so that it does not 

surpass the value of 1. 

Following that, these ratios are added up for each class pair and then divided by the 

number of patterns used in the calculations. So if due to the class distributions of the 

dataset the sample used comprise of n patterns in class i and m patterns in class j, the 

inter-class discernibility of classes i and j (ICDij) would be:  

 

 

 



mn

RdistRdist

ICD

m

j

jij

n

i

iij

ij
+

+

=

∑∑
== 11

)/,1min()/,1min(

 . 

 

(1) 

 

where ICDij: inter-class disc. of classes i and j 

  distij: distance between patterns i and j 

  Ri: radius of hypersphere of class i 

  Rj: radius of hypersphere of class j 

  n: number of patterns in sample of class i and 

  m: number of patterns in sample of class j 

 

Note that the above measure is calculated only for different classes (i ≠ j), for all 

possible combinations. Moreover, as one would expect, ICDij = ICDji. So, in a dataset 

having 4 classes, 6 class combinations will be taken, yielding 6 inter-class distances. 

As mentioned previously, once the inter-class discernibility scores for each class pair 

have been calculated, their average yields the overall discernibility score for the 

whole dataset. So, for a 3-class dataset, DID would be equal to (ICD12 + ICD13 + 

ICD23) / 3. 

 

4   Experiments and Results 

4.1 Data Description 

The data used for this research are a combination of 5 artificial datasets, generated by 

simple Gaussian distributions, and a benchmark dataset from the UCI machine-

learning repository, titled balance. 

The artificial datasets were designed to manifest five distinct class overlap levels 

and are single-dimensional (in essence they are features of various quality levels). 

These datasets comprised of 3000 data points, divided evenly among three classes, 

which followed a Gaussian distributions with σ = 1 and various µ’s. A typical such 

dataset is feature3, which exhibits a moderate class overlap, as seen in Fig. 1. 
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Fig. 1. Mapping of a typical artificial dataset (feature3). 

 

The balance dataset was created as part of a cognitive research [11] and comprises 

of 3 classes as well. It has 625 points of 4 numeric attributes each. The class 

distribution is unbalanced (288 points in class 1, 49 points in class 2, and 288 points 

in class 3). The attributes (which are all integers from 1 to 5) describe the following 

measures: Left-Weight, Left-Distance, Right-Weight and Right-Distance, of a balance 

scale tip. This dataset has been used mainly for classification research and has no 

missing values. 

4.2 Experiment Setup 

A number of experiment rounds over four quite diverse classifiers were carried out. 

Each round comprised of a 10-fold cross-validation scheme, to ensure an unbiased 

partitioning of the training and testing sets. The classifiers used were the classic k 

Nearest Neighbor (using k = 5, which is a popular value for the number of neighbors 

parameter), the ANFIS neuro-fuzzy system (30 epochs for training), the Linear 

Discriminant Analysis statistical classifier (LDA) and the C4.5 decision tree. These 

classifiers were selected because they cover a wide spectrum of classification 

techniques. Also, in order to ensure more robust results, the number of experiment 

rounds was set to 30. Most of these classifiers, along with a few others, are 

thoroughly described in [10]. 

These experiments were conducted for each dataset and afterwards, the Accuracy 

Rates of the four classifiers were averaged. The end result was an Accuracy Rate for 

each dataset, reflecting in a way the classification potential of that data. In addition, 

each dataset was evaluated using the proposed metric, as well as a few other 

representative measures: SID, HID, FDR and AFDR. Note that the last two metrics 

were not applied on the balance dataset as they are limited to one-dimensional data. 

Also, all of the aforementioned measures were applied on the whole datasets, 



although their outputs are not significantly different when applied on the training sets 

alone (which constituted 90% of the whole datasets, for each classification 

experiment). 

Another set of experiments was conducted in order to perform a sensitivity analysis 

of the proposed metric and the sample size used. These experiments constituted of 

100 rounds and two of the aforementioned datasets were used. 

An additional set of experiments was carried out, this time using only the 

Discernibility metrics, in order to establish a comparison in terms of computational 

complexity. These experiments comprised of 100 rounds and all of the 

aforementioned datasets were used. 

4.3 Evaluation Criteria 

The various outputs of the experiments were evaluated using three evaluation criteria, 

one for each set of experiments. The relationship between a Discernibility metric with 

the (average) Accuracy Rate is assessed using the Pearson Correlation (over the six 

datasets used). For the sensitivity analysis experiments the relative error (in relation to 

the Discernibility score of the whole dataset) was employed. As for the computational 

complexity series of experiments, the CPU time measure was used. 

 

4.4 Results 

The experiments described previously yielded some interesting results that appear to 

validate the initial aim of acquiring a reliable insight of a dataset’s classification 

potential, in a way that is computationally inexpensive. 

As it can observed from the results of the Accuracy Rates experiments (Table 1), 

the DID metric appears to follow closely the average Accuracy Rate, for the six 

datasets used. This close relationship can be more clearly viewed in Figure 2. The 

correlation coefficient was calculated to be an impressive 99.8%, verifying 

statistically the above observation. 

 

Table 1.  Experimental results for examining the relationship between classification accuracy 

and DID scores. The accuracy rate is averaged over all four classifiers used and over all thirty 

rounds. 

Dataset Mean Accuracy Rate DID score 

Feature1 0.9998 1.0000 

Feature2 0.9887 0.9921 

Feature3 0.8970 0.8909 

Feature4 0.5354 0.4265 

Feature5 0.3361 0.2468 

Balance 0.8116 0.7599 
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Fig. 2. Relationship between mean Accuracy Rate and DID scores, for all of the 

datasets tested. It is clear that a vivid (linear) correlation exists. 

 

 In order to ensure that the proposed metric is a viable alternative to the existing 

measures that opt to accomplish the same task, a comparison was made among them. 

Since a couple of these metrics cannot be applied in multi-dimensional data, two sets 

of comparisons were made, one using all datasets and one using only the single-

dimensional ones (the artificial features created for this research). The results can be 

viewed in Table 2. 

 

Table 2. Comparison of DID with other Discernibility metrics, based on the (Pearson) 

correlation with the classification Accuracy Rate, using all 6 datasets and the 5 single-

dimensional datasets respectively. 

 

Correlation w. Mean Accuracy Rate Discernibility 

Metric All datasets Only 1-dim datasets 

SID 0.997 0.998 

HID 0.976 0.999 

DID 0.998 0.998 

FDR – 0.946 

AFDR – 0.971 

 

 As the proposed metric has the option of using a sample of the data points in the 

dataset it is applied on, it is worthwhile investigating how the size of the sample 

influences the metric’s output. This was done in the second set of experiments, which 

involved two datasets, the balance one and one of the features (feature3). The output 

of the metric when it is applied using the whole dataset is taken to be the correct 

Discernibility score, with which all the other outputs are compared (Table 3). 



Table 3. Sensitivity analysis of DID scores, over different sample sizes, for two of the datasets 

used in the classification experiments. The DID scores were calculated over 100 runs. The 

original DID scores for the two datasets were 0.7599 and 0.8909 respectively. 

Dataset Sample size Mean St. Dev. Rel. Error (%) 

50% 0.7593 0.0060 0.0734 

25% 0.7605 0.0104 0.0790 

12.5% 0.7611 0.0153 0.1535  B
al

an
ce

 

5% 0.7558 0.0211 0.5457 

50% 0.8911 0.0018 0.0197 

25% 0.8911 0.0029 0.0197 

12.5% 0.8911 0.0051 0.0197  F
ea

tu
re

3
 

5% 0.8911 0.0076 0.0197 

 

 In the third set of experiments the computational cost of the proposed metric, in 

comparison with the other metrics, is examined. The results of these experiments can 

be best viewed graphically, as seen in Figure 3 below. 
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Fig. 3. Computational cost analysis. The calculation time of the Discernibility scores 

for the various metrics are shown (in sec). Two datasets were used for 100 runs     

(left = balance, right = feature3). The error bars depict the 95% confidence intervals 

of the calculation time. 

4.5 Discussion 

It is clear from the aforementioned results that the proposed metric maps quite 

accurately the (average) Accuracy Rate. This in essence makes it a reliable predictor 

of a classifier’s performance, something can translates into a significant advantage in 

applications where the classification cost is relatively high. Also, it enables the user to 

have a better understanding of the dataset before the actual classification, something 

that may help him/her make a better decision regarding the classifier used. 

 The results of the second series of experiments dictate that the proposed metric is 

at least as good the other ones, in mapping the Accuracy Rate of the classifiers. Also, 

in appears to be somewhat better in that aspect, when compared to FDR which has 

been extensively used in the past for the same purpose. 



 The results of the sensitivity analysis are quite interesting as they show that the 

metric’s output is not greatly affected by the sample size. As one would expect, the 

output varies more as the sample becomes smaller, yet the relative error remains quite 

low (<1%). even at samples of only 1/20th of the original dataset. It is noteworthy that 

in the case of feature3, where the number of data points is relatively high, the metric’s 

output is quite stable and close to the correct value, even though it varies a bit, as the 

sample gets smaller. 

 The computational cost experiments verified the original hypothesis that the 

proposed metric is an efficient alternative to the other Discernibility measures. When 

tested on a multi-dimensional dataset against SID and HID, it is clear that it is 

generally faster. Also, on a single-dimensional data with more data points, the 

advantage over these two measures is even more evident. It is still not as fast as FDR, 

but it is significantly faster than AFDR, which is in general a more robust metric than 

FDR. 

 Further analysis, using the ROC evalutation criterion for example, could have 

been performed. However, it is evident from the analysis so far that the proposed 

metric is adequate regarding the task it undertakes. Besides, a more extensive analysis 

is beyond the scope of this paper and can be part of a future publication based on 

further research on the subject. 

5   Conclusions and Future Work 

From the research conducted it can be concluded that the proposed method is a robust 

Discernibility metric, yielding a very high correlation with the average Accuracy Rate 

over the datasets used in the experiments of this research. Apparently it is not as fast 

as FDR, yet DID provides a better performance that this metric plus it is applicable on 

multi-dimensional data as well. Also, it has the option of using a sample of the 

dataset, without deviating much in its output, even for quite small sample sizes.  

 Future work on this topic will include more extensive testing of the method, in a 

larger variety of datasets, as well as use of it in other classification-related 

applications. Also, ways of making it applicable on the data point level will be 

investigated, so that it can yield Discernibility scores for the individual patterns of the 

dataset it is applied on. Finally, ways of making use of the inter-class Discernibility 

assessments of the various class pairs of a dataset will be also explored. 
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