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Abstract. We propose a framework for predicting the ranking position
of a Web page based on previous rankings. Assuming a set of successive
top-k rankings, we learn predictors based on different methodologies.
The prediction quality is quantified as the similarity between the pre-
dicted and the actual rankings. Extensive experiments were performed
on real world large scale datasets for global and query-based top-k rank-
ings, using a variety of existing similarity measures for comparing top-k
ranked lists, including a novel and more strict measure introduced in this
paper. The predictions are highly accurate and robust for all experimen-
tal setups and similarity measures.
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1 Introduction

The World Wide Web is a highly dynamic structure continuously changing,
as Web pages and hyperlinks are created, deleted or modified. Ranking of the
results is a cornerstone process enabling users to effectively retrieve relevant
and important information. Given the huge size of the Web graph, computing
rankings of Web pages requires awesome resources-computations on matrices
whose size is of the order of Web size (109 nodes).

On the other hand the owner of the individual web page can see its ranking
only in the case of the web graph by submitting queries to the owner of the
graph (i.e. a search engine). Given a series of time-ordered rankings of the nodes
of a graph where each bears its ranking for each time stamp, we develop learn-
ing mechanisms that enable predictions of the nodes ranking in future times.
The predictions require only local feature knowledge while no global data are
necessary. Specifically, an individual node can predict its ranking only knowing
the values of its own ranking. In such a case the node could plan actions for
optimizing its ranking in future.

In this paper we present an integrated effort for a framework towards Web
page rank prediction considering different learning algorithms. We consider i)
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variable order Markov Models (MMs), ii) regression models and iii) an EM based
approach with Bayesian learning. The final purpose is to represent the trends and
predict future rankings of Web pages. All the models are learned from timeseries
datasets where each training set corresponds to pre-processed rank values of Web
pages observed over time.

For all methods, prediction quality is evaluated based on the similarity be-
tween the predicted and actual ranked lists, while we focus on the top-k elements
of the Web page ranked lists, as top pages are usually more important in Web
search.

Preliminary work on this topic was presented in [13] and [15]. The current
work significantly differs and advances previous works of the authors in the
following ways: a) Refined and careful re-engineering of the MMs’ parameter
learning procedure by using cross validation, b) Integration and elaboration of
the results of [15] in order to validate the performance comparison between re-
gression (boosted with clustering) and MM predictors, in large scale real world
datasets, c) Namely we adopt: Linear Regression, random 1st/2nd/3rd order
Markov models proving the robustness of the model, d) A new top-k list similar-
ity measure (R−Sim) is introduced and used for the evaluation of predictors and
more importantly, e) Additional, extensive and robust experiments took place
using query based on top-k lists from Yahoo! and Google Search engine.

2 Related Work

The ranking of query results in a Web search-engine is an important problem
and has attracted significant attention in the research community.

The problem of predicting PageRank is partly addressed in [9]. It focuses
on Web page classification based on URL features. Based on this, the authors
perform experiments trying to make PageRank predictions using the extracted
features. For this purpose, they use linear regression; however, the complexity
of this approach grows linearly in proportion to the number of features. The
experimental results show that PageRank prediction based on URL features
does not perform very well, probably because even though they correlate very
well with the subject of pages, they do not influence page’ s authority in the
same way.

A recent approach towards page ranking prediction is presented in [13] gener-
ating Markov Models from historical ranked lists and using them for predictions.

An approach that aims at approximating PageRank values without the need
of performing the computations over the entire graph is [6]. The authors propose
an algorithm to incrementally compute approximations to PageRank, based on
evolution of the link structure of Web graph (a set of link changes). Their exper-
iments demonstrate that the algorithm performs well both in speed and quality
and is robust to various types of link modifications. However, this requires con-
tinuous monitoring of the Web graph in order to track any link modifications.
There has also been work in adaptive computation of PageRank ([8], [11]) or
even estimation of PageRank scores [7].
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In [10] a method called predictive ranking is proposed, aiming at estimating
the Web structure based on the intuition that the crawling and consequently
the ranking results are inaccurate (due to inadequate data and dangling pages).
In this work, the authors do not make future rank predictions. Instead, they
estimate the missing data in order to achieve more accurate rankings.

In [14] the authors suggest a new measure for ranking scientific articles, based
on future citations. Based on publication time and author’ s name, they predict
future citations and suggest a better model.

3 Prediction Methods

In this section, we present a framework that aims to predict the future rank
position of Web pages based on their trends shown the past. Our goal is to
find patterns in ranking evolution of Web pages. Given a set of successive Web
graph snapshots, for each page we generate a sequence of rank change rates that
indicates the trends of this page among the previous snapshots. We use these
sequences of previous snapshots of the Web graph as a training set and try to
predict the trends of a Web page based on previous. The remaining of this section
is organized as follows: In Sect. 3.1 we train MMs of various orders and try to
predict the trends of a Web page. Section 3.2 discusses an approach that uses
a separate linear regression model for each web page, while Sect. 3.3 combines
linear regression with clustering based on an EM probabilistic framework.

Rank Change Rate In order to predict future rankings of Web pages, we
need to define a measure introduced in [12] suitable for measuring page rank
dynamics. We briefly present its design.

Let Gtibe the snapshot of the Web graph created by a crawl and nti = |Gti |
the number of Web pages at time ti. Then, rank(p, ti) is a function providing
the ranking of a Web page p ∈ Gti , according to some criterion (i.e. PageRank
values). Intuitively, an appropriate measure for Web pages trends is the rank
change rate between two snapshots, but as the size of the Web graph constantly
increases the trend measure should be comparable across different graph sizes.
Thus, we utilize the normalized rank (nrank) of a Web page, as it was defined
in [12].

For a page p ranked at position rank(p, ti): nrank (p, ti) =
2·rank(p, ti)

n2
ti

, which

ranges between 2n−2
ti

and 2n−1
ti

. Then, using the normalized ranks, the Rank

Change Rate (Racer) is given by racer (p, ti) = 1−
nrank(p, ti+1)
nrank(p, ti)

.

3.1 Markov Model Learning

Markov Models (MMs) [1] have been widely used for studying and understanding
stochastic processes and behave very well on modeling and predicting values
in various applications. Their fundamental assumption is that the future value
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depends on a number of m previous values, where m is the order of the MM.
They are defined based on a set of states S = {s1, s2, . . . , sn} and a matrix T of
transition probabilities ti each of which represents the probability that a state
si occurs after a sequence of states.

Our goal is to represent the Web pages ranking trends across different web
graph snapshots. We use the racer values to describe the rank change of a Web
page between two snapshots and we utilize racer sequences to learn MMs. Ob-
viously, stable ranking across time is represented by a zero racer value, while
all other trends by real numbers generating a huge space of discrete values. As
expected (intuitively most pages are expected to remain stable for some time
irrespective to their rank at the time), the zero value has an unreasonably high
frequency compared to all other values which means that all states besides the
zero one should be formed by inherent ranges of values instead of a single dis-
crete. In order to ensure equal probability for transition between any pair of
states, we guaranteed equiprobable states by forming ranges with equal cumu-
lative frequencies (showing racer value within the range) with each other.

In order to calculate the state number for our MMs, we computed the relative
cumulative frequency of the zero racer state RFRacer=0 and used this to find
the optimum number of states ns =

l
RFRacer=0

. Next, we formed ns equiprobable
partitions and used the ranges’ mean average values as states to train our model.
We should note that within the significantly high frequency of the zero racer
values, are also considered pages initially obtained within the top-k list and
then fell (and remained) out. We remove any bias from RFRacer=0, excluding
any values not corresponding to stable rank and obtaining RFRacer=0 ≈ 0.1
which in turn suggested 10 equiprobable states.

Predictions with Racer Based on the set of states mentioned above and
formed to represent Web page trends, we are able to train MMs and predict the
trend of a Web page in the future according to past trends. By assuming m+1
temporally successive crawls, resulting in respective snapshots, a sequence of m
states (representative of racer values) are constructed for each Web page. These
are used to construct an m-order MM. Note that the memory m is an inherent
feature of the model. After computing transition probabilities for every path,
using the generated states, the future states can be predicted by using the chain
rule [1]. Thus, for an m-order Markov Model, the path probability of a state
sequence is P (s1 → ... → sm) = P (s1) ·

∏m
i=2 P (si|si−m, .., si−1), where each si

(i ∈ {1, 2, . . . , n}) for any time interval may vary over all the possible states
(ranges of racer values). Then, predicting the future trend of a page is performed
by computing the most likely next state given the so far state path.

In specific, assuming m time intervals, the next most probable state X is
computed as: X = argmaxX P (s1 → ... → sm−1 → X).

Using that, we predict future states for each page. As each state is the mean
of a Racer range, we compute back the future nrank. Therefore, we are able
to predict future top-k ranking by sorting the racer of Web pages in ascending
order.



A Framework for Web Page Rank Prediction 5

3.2 Regression Models

Assume a set of N Web pages and observations of nrank values at m time steps.
Let xi = (xi1, . . . , xim) be the nrank values for Webpage i at the time points
t = (t1, . . . , tm), where the (N × m) design matrix X stores all the observed
nrank values so that each row corresponds to a Webpage and each column to a
time point. Given these values we wish to predict the nrank value xi∗ for each
Webpage at some time t∗ which typically corresponds to a future time point
(t∗ > ti, i = 1, . . . ,m). Next, we discuss a simple prediction method based on
linear regression where the input variable corresponds to time and the output
to the nrank value.

For a certain Webpage i we assume a linear regression model having the form
xik = aitk + bi+ ǫk, k = 1, . . . ,m (ǫk denotes a zero-mean Gaussian noise). Note
that the parameters (ai, bi) are Webpage-specific and their values are calculated
using least squares. In other words, the above formulation defines a separate
linear regression model for each Web page thus they treat independently. This
can be restrictive since possible existing similarities and dependencies between
different Web pages are not taken into account.

3.3 Clustering Using EM

We assume that the nrank values of each Web page fall into one of J different
clusters. Clustering can be viewed as training a mixture probability model. To
generate the nrank values xi for Web page i, we first select the cluster type j with
probability πj (where πj ≥ 0 and

∑J
j=1 πj = 1) and then produce the values xi

according to a linear regression model xik = aitk + bi + ǫk, k = 1, . . . ,m, where
ǫk is independent Gaussian noise with zero mean and variance σ2

j . This implies
that given the cluster type j the nrank values are drawn from the product of
Gaussians p (xi | j)=

∏m

k=1 N(xik|ajtk + bj , σ
2
j ).

The cluster type that generated the nrank values of a certain Web page
is an unobserved variable and thus after marginalization we obtain a mixture
unconditional density p (xi)=

∑J

j=1 πjp (xi | j) for the observation vector xi. To

train the mixture model and estimate the parameters θ = (πj , σ
2
j , aj , bj)j=1,...,J ,

we can maximize the log likelihood of the data L (θ)=log
∏N

i=1 p(xi) by using
the EM algorithm [2]. Given an initial state for the parameters, EM optimizes
over θ by iterating between E and M steps:

The E step computes the posterior probabilities Ri
j =

πjp(xi|j)∑
J
ρ=1

πρp(xi|ρ)
, for

j = 1, . . . , J and i = 1, . . . , N , (N is the total number of web pages).

The M step updates the parameters according to: πj =
1
N

∑N
i=1 R

i
j ,

σ2
j =

∑N
i=1

Ri
j

∑m
k=1

(xik−ajtk−bj)
2

πj
and

[

aj

bj

]

= 1
Nj

[

tT t tT 1

tT 1 m

]−1 [∑N
i=1 R

i
jx

T
i t

∑N
i=1 R

i
jx

T
i 1

]

,

j = 1, . . . , J , t is the vector of all time points and 1 is the m-dimensional vector
of ones.

Once we have obtained suitable values for the parameters, we can use the
mixture model for prediction. Particularly, to predict the nrank value xi∗ of Web
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page i at t∗ given the observed values xi = (xi1, . . . , xim) at previous times, we
express the posterior distribution p(xi∗|xi) using the Bayes rule p (xi∗ | xi) =
∑J

j=1 R
i
jN

(

xi∗

∣

∣ ajt∗ + bj , s2j
)

, where Ri
j is computed according to E-step. To

obtain a specific predictive value for xi∗, we can use the mean value of the above
posterior distribution xi∗ =

∑J
j=1 R

i
j (ajt∗ + bj) or the median estimate xi∗ =

aj t∗ + bj , where j = argmaxρR
i
ρ that considers a hard assignment of the Web

page into one of the J clusters.

4 Top-k List Similarity Measures

In order to evaluate the quality of predictions, we need to measure the similar-
ity of the predicted to the actual top-k ranking. For this purpose, we examine
measures commonly used for comparing rankings, point out the shortcomings
of existing and define a new similarity measure for top-k rankings, denoted as
RSim.

4.1 Existing Similarity Measures

The first one, denoted as OSim(A,B) [4] indicates the degree of overlap between

the top-k elements of two sets A and B(each one of size k): OSim (A,B) = |A∩B|
k

.
The second, KSim(A,B) [4], is based on Kendall’s distance measure [3] and

indicates the degree that the relative orderings of two top-k lists are in agreement:

KSim(A,B) = |(u,v):A
′

,B
′

, agree in order|
|A∪B|(|A∪B|−1) , where A

′

is an extension of A resulting

from appending at its tail the elements x ∈ A ∪ (B − A) and B
′

is defined
analogously.

Another interesting measure introduced in Information Retrieval for evalu-
ating the accumulated relevance of a top-k document list to a query is the (Nor-
malized) Discounted Cumulative Gain (N(DCG)) [5]. This measure assumes a
top-k list, where each document is featured with a relevance score accumulated
by scanning the list from top to bottom. Although DCG could be used for the
evaluation of our predictions, since it takes into account the relevance of a top-k
list to another, it exhibits some basic features that prevented us from using it
in our experiments. It penalizes errors by maintaining an increasing value of
cumulative relevance. While this is based on the rank of each document, the size
k of the list is not taken into account – thus the length of the list is irrelevant
in DCG. Errors in top ranks of a top-k list should be considered more impor-
tant than errors in low-ranked positions. This important feature lacks from both
DCG and NDCG measures. Moreover, DCG value for each rank in the top-k list
is computed taking into account the previous values in the list.

Next, we introduce Spearman’s Rank Correlation Coefficient, which was used
during the experimental evaluation, consists a non-parametric (distribution-free)
rank statistic proposed by Spearman (1904) measuring the strength of associ-
ations between two variables and is often symbolized by ρ. It estimates how
well the relationship between two variables can be described using a monotonic
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function. If there are no repeated data values of these variables (like in ranking
problem), a perfect Spearman correlation of +1 or -1 exists if each variable is a
perfect monotone function of the other.

It is often confused with the Pearson correlation coefficient between ranked
variables. However, the procedure used to calculate ρ is much simpler. If X and
Y are two variables with corresponding ranks xi and yi, di = xi−yi, i = 1, . . . , n,
between the ranks of each observation on the two variables, then it is given by:

ρ = 1−
6·
∑n

i=1
d2
i

n(n2−1) .

4.2 RSim Quality Measure

The observed similarity measures do not cover sufficiently the fine grained re-
quirements arising, comparing top-k rankings in the Web search context. So we
need a new similarity metric taking into consideration: a)The absolute difference
between the predicted and actual position for each Webpage as large difference
indicates a less accurate prediction and b)The actual ranking position of a Web
page, because failing to predict a highly ranked Webpage is more important than
a low-ranked. Based on these observations, we introduce a new measure, named
RSim. Every inaccurate prediction made incurs a certain penalty depending on
the two noted factors. If prediction is 100% accurate (same predicted and actual
rank), the penalty is equal to zero. Let Bi be the predicted rank position for
page i and Ai the actual. The Cumulative Penalty Score (CPS) is computed as

CPS (A, B) =
∑k

i=1 |Ai −Bi| · (k + 1−Ai).

The proposed penalty score CPS represents the overall error (difference)
between the involved top-k lists A and B and is proportional to |Ai − Bi|. The
term (k+ 1−Ai) increases when Ai becomes smaller so errors in highly ranked
Web pages are penalized more. In the best case, rank predictions for all Web
pages are completely accurate (CPS = 0), since Ai = Bi for any value of i. In
the worst case, the rank predictions for all Web pages not only are inaccurate,
but also bear the greatest CPS penalty possible. In such a scenario, all the Web
pages predicted to be in the top-k list, actually hold the position k+1 (or worse).

Assuming that we want to compare two rankings of length k, then the max-

imum CPS for even and odd values of k is equal to 2k3+3k2+k
6 . The proof for

CPSmax final form is omitted due to space limitations.

Based on the above we define a new similarity measure, RSim, to compare
the similarity between top-k rank lists as follows:

RSim (Ai, Bi) = 1−
CPS (Ai, Bi)

CPSmax (Ai, Bi)
. (1)

In the best-case prediction scenario, RSim is equal to one, while in the worst-
case RSim is equal to zero. So the closer the value of RSim is to one, the better
and more accurate the rank predictions are.
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Fig. 1. Prediction accuracy vs Top-k list length - Yahoo dataset.

5 Experimental Evaluation

In order to evaluate the effectiveness of our methods we performed experiments
on two different real world datasets. These consist collections of top-k ranked
lists for 22 queries over a period of 11 days as resulted from the Yahoo!3 and
the Google search engines, produced in the same way. In our experiments, we
evaluate the prediction quality in terms of similarities between the predicted and
the actual top-k ranked lists using OSim, KSim, NDCG, Spearman correlation
and the novel similarity measure RSim.

5.1 Datasets and Query Selection

For each dataset (Yahoo and Google) a wealth of snapshots were available, en-
suring we have enough evolution to test our approach. A concise description of
each dataset and query-based approach follow. The Yahoo and Google datasets
consist of 11 consecutive daily top-1000 ranked lists computed using the Ya-
hoo Search Web Services4 and the Google Search engine respectively. These sets
were picked from popular: a) queries appeared in Google Trends 5 and b) current
queries (i.e. euro 2008 or Olympic games 2008).

5.2 Experimental Methodology

We compared all predictions among the various approaches and we next describe
the steps assumed for both datasets. At first, we computed PageRank scores for

3 http://search.yahoo.com
4 http://developer.yahoo.com/search/
5 http://www.google.com/trends
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Fig. 2. Prediction accuracy vs Top-k list length - Google dataset.

each snapshot of our datasets and obtained the top-k rankings using the scoring
function mentioned. Having computed the scores, we calculated the nrank (racer
values for MMs) for each pair of consecutive graph snapshots and stored them
in a matrix nrank(racer) × time. Then, assuming an m-path of consecutive
snapshots, we predict the m + 1 state. For each page p, we predict a ranking
comparing it to actual by a 10-fold cross validation process (training 90% of
dataset and testing on the remaining 10%).

In the case of the EM approach, we tested the quality of clustering results
for clusters cardinality between 2 and 10 for each query and chose the one that
maximized the overall quality of clustering. This was defined as a monotone
combination of within-cluster wc (sum of squared distances from each point to
the center of cluster it belongs to) and between-cluster variation bc (distance
between cluster centers). As score function of clustering, we considered the ratio
bc/wc.

5.3 Experimental Results

Regarding the Google and Yahoo! dataset results coming out of the experimen-
tal evaluation, one can see that the MMs prevail with very accurate results.
Regression based techniques (LinReg) reach and outweigh MMs performance as
the length of top-k list increases proving their robustness.

In both datasets experiments prove the superiority of EM approach (BayesMod)
whose performance is very satisfying for all similarity measures. The MMs come
next in the evaluation ranking, where as smaller the order is the better is the
prediction accuracy, though one would think of the contrary.
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Obviously (figures) the proposed framework offers incredibly high accuracy
predictions and is very encouraging, as it ranges systematically between 70%
and 100% providing a tool for effective predictions.

6 Conclusions

We have described predictor learning algorithms for Web page rank prediction
based on a framework of learning techniques (MMs, LinReg, BayesMod) and
experimental study showed that they can achieve overall very good prediction
performance. Further work will focus in the following issues: a) Multi-feature
prediction: we intend to deal with the internal mechanism that produces the
ranking of pages (not only rank values) based on multiple features, b) Combi-
nation of such methods with dimensionality reduction techniques.
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