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Abstract. The paper presents modeling of steels strength characteristics in 
dependence from their alloying components quantities using neural networks as 
nonlinear approximation functions. Further, for optimization purpose the neural 
network models are used. The gradient descent algorithm based on utility 
function backpropagation through the models is applied. The approach is aimed 
at synthesis of steel alloys compositions with improved strength characteristics 
by solving multi-criteria optimization task. The obtained optimal alloying 
compositions fall into martenzite region of steels. They will be subject of 
further experimental testing in order to synthesize new steels with desired 
characteristics.  
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1   Introduction 

Production of high strenght steel alloys is of big importance for the modern 
methalurgy. The main aim is to obtain high quality materials reducing quantitiy of 
used expensive compounds. Thus the production of steel alloys starts with 
optimization of number and content of used alloying components that improve their 
quality at reasonable price. Since the dependences between input and output variables 
in that case are strongly nonlinear, application of nonlinear modelling and 
optimization techniques must be applied. 

The fact that neural networks are universal approximations of complex nonlinear 
dependences that apply “black-box” modeling approach [1, 3, 12] is well known. 
Therefore, they are proper candidates for modeling structure of such MIMO models. 
Another useful characteristic of neural networks are their training procedures that are 
in fact optimization algorithms aimed at minimization of error at neural network 
output with respect to network connection weights [12, 14]. The well-known 
backpropagation algorithm is procedure for propagating of derivatives of given 
function of network output backwards to the input [14]. Thus neural network training 
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procedures offer a common approach to optimization tasks in process optimization 
and control applications [11, 14, 15]. 

The application of intelligent modelling approaches such as neural networks is 
relatively new in this area but there are some examples in the literature concerning 
titanium alloys [9, 10] as wll as several for different steel alloys compositions and 
different strength characteristics accounting [2, 4, 5]. 

In our previous works the approach described in [14] was successfully applied to 
dynamic optimization [6] as well as to optimization of cultural media composition 
and initial conditions [7] of two kinds of biotechnological process that are other 
examples of highly nonlinear systems. In [8, 13] we applied that approach to 
optimization of steel composition having 11 alloying elements aimed at simultaneous 
maximization of 6 steel strength characteristics; we also showed that neural networks 
outperform non-linear regression models. However, it appeared that having that much 
input and output variables do not allow obtaining neural network model able to fit 
with the same accuracy all output variables and solving of six criteria optimization 
task showed some controversial results.  

In the present paper, we continue our work with increased data set and accounting 
for lower number of variables. Moreover, we have created separate neural network 
model for each one of the considered strength characteristic. The optimization criteria 
were simplified and multi-criteria optimization task from [8, 13] was restricted to two 
simplified sub-tasks. Comparison between optimized steel compositions with respect 
to their mechanical characteristics was made. The obtained results will be subject of 
experimental proof further. 

2   Experimental Data Set 

Here we used data base containing 91 steel alloys with their 8 alloying elements and 
the corresponding strenght characterestics tested after thermal treatment of the steels: 
Rm – tensile strength; Re – yield strength; A – elongation; Z – reduction of area; HB 
– Brinell hardness. Tables 1 and 2 below summarize the minimal and maxinmal 
values of all considered variables. 

Table 1.  Alloying elements minimal and maximal values.  

var. name X1 X2 X3 X4 X5 X6 X7 X8
element C Si Mn Ni S (P) Cr Mo V 

min 0.120 0.100 0.300 0 0.015 0.150 0 0 
max 0.520 1.400 1.750 4.220 0.035 3.250 1.500 0.150 

Table 2.  Steel strength characteristics minimal and maximal values.  

var. name Y1 Y2 Y3 Y4 Y5
characteristic Rm Re A Z HB 

min 500 300 7 30 179
max 1670 1375 26 55 300



For the sick of simplicity, names (Xi for alloying elements and Yi for strength 
characteristics) are given to all considered variables in order to be easier to refer to 
them further in the text. 

3   Neural Network Models of Steel Characteristics  

First task of the present study was to train neural network models that approximate 
dependence between amounts of alloying elements in the steel for each of the five 
considered strength characteristics. For that purpose, the data are scaled in proper 
interval [0, 1]. The used neural network structure (presented on Figure 1) is multi-
layered without feedback connections since the modeled dependences are static. The 
neurons transfer function is log sigmoid. Training procedure is resilient 
backpropagation. Different in number of layers and hidden neurons neural network 
structures were tested and the better one is chosen. Based on previous investigations 
[8, 13] the 8:40:1 structure was used here.  
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Fig. 1. Neural network models structure 

We have relatively small database and we do not have guarantee that it includes all 
possible combinations between alloying elements. That is why for assessment of the 
generalization error of neural network models we apply k-fold cross-validation. In our 
case we split database into k=18 data subsets each containing five data samples. Next, 
we train 18 neural network models for each strength characteristic using all except 
one data subset. The left subset is further used for generalization error assessment.  

The obtained training and testing mean square errors (MSE) for all five neural 
network models are given in Table 3 below. Since for some of the strength 
characteristics there were no data for all alloying element combinations (Y4 and Y5) 
smaller number of subsets was created for them (17 and 16). 

For further optimization purpose, we choose to use the models with smallest 
testing errors as follows: models number one for Y1 and Y2, model number 13 for Y3, 
model number 9 for Y4, and model number 5 for Y5. 



Table 3.  Training and testing errors for all NN models.  

No Y1
train 
MSE 

Y1
test 

MSE 

Y2
train 
MSE 

Y2
test 

MSE 

Y3
train 
MSE 

Y3
test 

MSE 

Y4
train 
MSE 

Y4
test 

MSE 

Y5
train 
MSE 

Y5
test 

MSE 
1 0.008 0.055 0.033 0.060 0.004 0.083 0.022 0.115 0.003 0.126 
2 0.007 0.445 0.015 0.224 0.006 0.143 0.007 0.200 0.006 0.197 
3 0.013 0.099 0.012 0.361 0.004 0.108 0.016 0.299 0.005 0.063 
4 0.013 0.064 0.010 0.112 0.009 0.079 0.012 0.137 0.006 0.099 
5 0.019 0.171 0.019 0.125 0.005 0.065 0.008 0.166 0.003 0.050 
6 0.010 0.170 0.015 0.217 0.006 0.088 0.009 0.115 0.005 0.135 
7 0.012 0.130 0.010 0.086 0.006 0.112 0.006 0.160 0.004 0.063 
8 0.012 0.104 0.017 0.083 0.005 0.162 0.005 0.382 0.004 0.075 
9 0.014 0.131 0.010 0.114 0.007 0.058 0.008 0.091 0.005 0.101 
10 0.010 0.087 0.012 0.222 0.007 0.135 0.025 0.213 0.005 0.085 
11 0.023 0.127 0.018 0.156 0.009 0.112 0.008 0.168 0.004 0.065 
12 0.013 0.136 0.006 0.085 0.010 0.067 0.013 0.157 0.006 0.140 
13 0.013 0.341 0.010 0.397 0.007 0.045 0.010 0.316 0.006 0.124 
14 0.009 0.195 0.010 0.159 0.006 0.108 0.019 0.289 0.005 0.089 
15 0.008 0.100 0.009 0.199 0.007 0.114 0.011 0.243 0.006 0.107 
16 0.010 0.080 0.008 0.124 0.004 0.157 0.009 0.123 0.004 0.118 
17 0.007 0.354 0.009 0.342 0.005 0.153 0.008 0.484   
18 0.009 0.091 0.019 0.089 0.007 0.104     

 

3   Optimization Procedure 

Since the explored input/output space is multi-dimensional and the modeling function 
is highly nonlinear in order to find optimal values of input variables with respect to 
given quality criteria that comprises output variables, there is need to explore whole 
region of the input space. However, because of big number of possible combinations 
the exhaustive search on whole variables space will take too much time. Because of 
this, we applied gradient optimization technique starting from several different points 
of input variables surface and compare the obtained results. 

Figure 2 below presents the optimization procedure scheme adopted from the so-
called “backpropagation of utility” method [14]. The optimization task here is defined 
as follows: find values of input vector X that minimize/maximize the utility function: 

( )YXJJ ,=  (1) 

Here Y is vector of output variables that are related to the input once by a given 
function (model) F as follows: 

( )pXFY ,=  (2) 

Here, p is model parameters vector. 
The optimization procedure needs calculation of utility function gradients with 

respect to the optimized variables as follows: 
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In case when J does not depend explicitly on X, the first term in equation (3) is 
zero and thus gradient depends only on function F. 

The layered neural networks structure offers a convenient way for calculating 
derivatives from equation (3) because the backpropagation method [12, 14] was 
developed initially as procedure for error derivatives calculation and their 
“propagation” from the output to the input of the network. From a more common 
point of view it is method for a given function derivative calculations with respect to 
variables of an ordered system of equations [14]. Hence, it could be applied to any 
optimization problem that can be described in appropriate way. So application of 
collection of neural network models trained before as model function F within 
optimization scheme from Figure 2 allows easy gradients calculation using 
backpropagation method. 

Model 
Y=F(X) 

X Y 

J(X, Y) 
dJ/dX 

 

Fig. 2. Optimization procedure; dashed lines represent gradients calculation 

Next, any gradient iterative optimization procedure could be applied to find 
optimal values of the variables X using calculated derivatives as follows: 

iXiXiX Δ∗±−= α1  (5) 

Here α is parameter called learning speed and  is step-change of X for the iiXΔ th 
iteration calculated as follows: 

( )idXgiX =Δ  (6) 

Here g is some function of optimized variable derivative. Usually it is proportional 
to the derivative dXi but it can also depend on the old values of . iXΔ

In present study, we used simple gradient optimization procedure with identity 
function for g, i.e. . The learning speed α is set to a relatively small value 
and stopping criteria is very small change of performance function gradient. 

idXiX =Δ



4   Optimization of Steel Compositions 

Two different optimization tasks were solved here. First, one is aimed at 
maximization of Y2 that is yield strength Re. The second task includes two criteria 
maximization: maximal yield strength and maximal ratio between Y1 (tensile strength 
Rm) and Y2. In both cases, a restriction was added to obtain low carbon steels: 
X1≤0.3. The two tasks optimization results are presented and compared in the 
following sections. 

4.1   First Optimization Task 

First, we solved one criteria optimization task: 

max2 →= YJ  (7) 

We explore 15 different initial steel compositions. The obtained after optimization 
new 15 alloying elements “recipes” are shown in Table 4 below. 

Table 4.  Optimized steel compositions from the first task.  

No X1 X2 X3 X4 X5 X6 X7 X8
1 0.1562 0.9180 0.4517 0.9215 0.0202 0.8730 0.2450 0.0410 
2 0.1562 0.9137 0.4517 0.8663 0.0208 0.8740 0.2757 0.0423 
3 0.1562 0.7997 0.7740 1.4991 0.0184 1.1572 0.1943 0.0087 
4 0.1562 1.0861 0.8087 1.9735 0.0243 1.7111 0.1733 0.0087 
5 0.1584 1.2125 0.8475 2.5041 0.0274 2.0026 0.1815 0.0465 
6 0.1603 0.8917 1.3092 4.1876 0.0381 1.8100 0.6971 0.1025 
7 0.1562 1.0171 1.4663 4.0238 0.0446 2.1378 1.0380 0.1023 
8 0.1562 1.0466 1.4833 4.1469 0.0446 2.2158 1.0497 0.1146 
9 0.1562 1.0566 1.4695 4.1876 0.0446 2.2936 1.0486 0.1263 

10 0.1562 1.0589 1.4319 4.1876 0.0446 2.2193 0.9355 0.1440 
11 0.1562 0.9196 0.4517 0.9113 0.0203 0.8721 0.2501 0.0416 
12 0.1870 0.2352 0.6480 2.5490 0.0446 1.4195 0.9603 0.1583 
13 0.1566 0.2352 0.7037 3.1023 0.0446 1.7221 0.9820 0.1583 
14 0.2714 1.1062 1.0644 2.3624 0.0219 1.0496 0.1572 0.0087 
15 0.2673 1.2441 1.1861 2.7854 0.0269 1.2693 0.2301 0.0218 

 
The corresponding five strength characteristics of the new steel compositions and 

the needed number of iterations in each optimization run are presented in Table 5. The 
maximal value of criterion (7) was obtained in the case 4 (emphasized in bold in the 
table). The number of the iterations obviously depends on the starting steel 
composition position on the search surface; it varies between 160 and 530 iterations. 
In all cases, the obtained new compositions belong to the martenzite steels subset (see 
Figure 3 below). All the obtained new steels have relatively close values of the 
optimization criterion. The final decision, which composition suits better for a given 
purpose, should be taken considering all strength characteristics from Table 5. For 
some of these characteristics (e.g. 4 and 5) differences are not so big but for 
characteristics 1 and 3 there are significant differences observed. 



Table 5.  Optimized steel characteristics from the first task, optimization criteria and iterations 
needed  

No Y1 J1=Y2 Y3 Y4 Y5 iterations
1 1643.6 1350.4 8.5 54.7 263.8 432 
2 1640.2 1349.9 8.8 54.8 260.6 445 
3 1407.0 1369.5 7.8 49.5 272.6 261 
4 1638.0 1372.6 8.1 49.8 282.7 437 
5 1621.3 1359.9 9.7 54.5 290.2 530 
6 1122.8 1362.1 13.7 49.9 288.2 276 
7 1394.7 1360.2 16.0 42.5 282.3 378 
8 1294.9 1360.7 15.0 47.2 280.8 427 
9 1227.7 1360.9 14.6 51.2 279.7 362 

10 1246.9 1365.3 11.9 53.1 279.8 523 
11 1642.9 1350.4 8.6 54.7 263.5 442 
12 662.7 1341.0 24.5 55.0 208.9 312 
13 841.0 1336.3 25.0 55.0 222.5 200 
14 1666.9 1370.3 11.4 51.1 281.6 160 
15 1647.5 1370.9 12.2 54.1 287.4 214 

 

4.2   Second Optimization Task 

Here in addition to the first criterion (7) the second one was added as follows: 
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Table 6.  Optimized steel compositions from the second task.  

No X1 X2 X3 X4 X5 X6 X7 X8
1 0.1562 0.6937 0.5036 0.5673 0.0094 0.4832 0.3116 0.0301 
2 0.1577 0.6915 0.5092 0.5807 0.0135 0.4832 0.2698 0.0225 
3 0.1562 1.2231 0.7684 1.6164 0.0196 0.4832 0.1572 0.1255 
4 0.1562 0.9408 0.7296 1.1316 0.0249 0.4832 0.1602 0.1459 
5 0.1562 0.8331 1.7453 0.4564 0.0228 1.9982 0.5520 0.0632 
6 0.1562 1.2004 1.7453 0.4564 0.0446 0.4832 1.4948 0.0087 
7 0.1562 1.0013 1.6050 2.4654 0.0416 2.0609 1.4905 0.0570 
8 0.2964 1.1273 1.4969 3.2602 0.0375 2.6033 1.2407 0.1245 
9 0.2980 1.2624 1.6303 3.7373 0.0413 2.9228 1.3716 0.1427 

10 0.3000 1.3968 1.7453 4.1874 0.0446 3.2287 1.4948 0.1583 
11 0.1562 0.2352 0.4517 0.4569 0.0094 0.4832 0.1650 0.0093 
12 0.1562 0.7446 1.4706 1.9032 0.0442 0.4832 0.9263 0.1096 
13 0.1562 0.5792 1.1822 1.6692 0.0387 0.4832 1.1307 0.1441 
14 0.3000 1.0140 1.1720 2.1100 0.0210 1.0760 0.2940 0.0087 
15 0.2997 1.1352 1.3479 2.5514 0.0247 1.3766 0.4125 0.0246 

 



Table 7.  Optimized steel characteristics from the second task, optimization criteria and 
iterations needed  

No Y1 J1=Y2 Y3 Y4 Y5 J2=Y1/Y2 iterations
1 1664.2 1233.3 7.6 52.5 261.0 1.3494 865 
2 1665.5 1285.3 8.1 52.8 239.3 1.2958 157 
3 1659.4 957.9 9.3 54.6 271.2 1.7323 266 
4 1456.2 797.5 7.9 54.3 250.9 1.8260 605 
5 499.1 300.1 11.4 40.7 185.3 1.6631 3 
6 499.1 325.4 22.6 41.5 179.1 1.5338 6 
7 735.5 609.3 23.3 52.5 289.3 1.2071 1353 
8 1463.1 681.1 11.3 42.8 274.6 2.1481 462 
9 1488.5 853.6 14.6 41.0 273.8 1.7438 839 

10 1499.8 829.8 20.3 40.8 271.4 1.8074 2 
11 1571.6 916.0 8.2 54.1 227.0 1.7157 289 
12 1199.5 577.6 13.4 53.2 207.8 2.0767 607 
13 760.0 615.1 12.2 54.7 282.1 1.2356 781 
14 1635.4 1326.0 15.5 47.7 258.9 1.2333 3 
15 1613.4 1308.0 15.6 53.4 267.2 1.2335 2516 

 
Here we start again with the same 15 initial steel compositions. The obtained after 

optimization new 15 “recipes” are shown in Table 6. The corresponding to them 
strength characteristics iterations needed and two optimization criteria values are 
presented in Table 7. Again, obtained new steels are in the martenzite region on 
Figure 3 but there are bigger differences among them. 

Because in this task we have two controversial criteria – one targeted towards 
increasing of yield strength and the other having Y2 in denominator, i.e. targeted 
towards decreasing it – the final decision about the best obtained “recipie” is not 
definitive. The best steel composition with respect to the first citerion is number 8 
while with respect to the second – number 14 (all in bold in the table). This can 
explain the big variety of iterations number needed for individual optimization runs – 
from 3 to 2516. The variety of combinations between all stregth characteristics is also 
bigger making final decision more complicated too. 

4.3   Results Analysis 

In order to compare two optimization tasks results we present them in the form of 
steel types diagram accepted in metallurgy – Figure 3. It consists of Cr and Ni 
equivalent values calculated according to the equation on diagram axis. Here Nb 
denotes element niobium that is not present in our recipes, i.e. Nb=0. According to the 
equivalent Cr and Ni values, steels are derived in several classes shown on the 
diagram. The bigger is the first of the optimized characteristics – yield strength – the 
bigger is the steel strengh as a holle. From the other hand the ratio tensile strength/ 
yield strength (the second criterion) is related to local overloading steel resistance. 
Obtaining the good balance between these two major steel characteristics is difficult 
in practice. The imposed restiriction in both optimization task (low carbon 
concentration) was also another characteristic that guarantees obtaining of high 
strength steels. 



From the Figure 3 we conclude that all the obtained new steel compositions belong 
to the targeted martenzite area. All the results from the first task are concentrated in 
the middle of that area while those from the second one diverge towards area borders. 
This result is expected having in mind controversal criteria of the second optimization 
task. 

 

Fig. 3. Optimization results: squares represent the first optimization task solutions; circles 
represent the second optimization task solutions 

5   Conclusions 

The application of neural networks for modeling of the complex dependences of steel 
compositions characteristics from the relatively big number of alloying elements 
considered demonstrated their power as non-linear MIMO functions approximations. 
They allow us to carry out further optimization experiments by simulations in order to 
spent expensive laboratory synthesis and analysis of different steel compositions. 

The results of the solved above optimization tasks are meaningful and will help 
further creation of high strength steel compositions for machine-building industry. 

Our intensions for our future work are to include some other optimization criteria 
as well as to test the obtained steel “recipes” in practical experimental investigations 
in order to prove and refine their quality. 
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