
Non-Standard Reasoning Services for the Verification
of DAML+OIL Ontologies

Yingjie Song, Rong Chen

School of Information Science & Technology.

Dalian Maritime University, Dalian 116026, P. R. China
{tiantian_yingjie@sina.com, tsmc.dmu@gmail.com}

Abstract. Ontology has a pivot role in the development of Semantic Web
which provides the understanding of various domains that can be
communicated between people and applications. Motivated by J. S. Dong’s
work, we propose a new approach to interpreting DAML+OIL in a lightweight
modeling language for software design, Alloy, which is used to provide a non-
standard reasoning service for the verification of DAML+OIL ontologies. To
do so, Jena is first used to parse ontology documents into classes, properties and
statements, next we use algorithms to translate them into Alloy model, the
Alloy Analyzer is then used to check and reason about such model. The
experiments show that our method greatly improves J. S. Dong’s work, and
distinguishes from the traditional ontology reasoners in property checking and
reasoning.

Keywords: Ontology Reasoning; DAML+OIL; Alloy; Semantic Web

1 Introduction

A Semantic Web [4], as the next generation of the Web, provides well-defined
notations and techniques for humans and applications to quickly and accurately access
Web information and services. In the development of Semantic Web there is a pivot
role of ontology, since ontology languages provide modeling primitives for
converting notations in nature language into machine-readable logical formulas, from
which autonomous software agents may infer and come to conclusions [1].

Ontology languages, such as DAML+OIL, enhance computer programs through
structured organizational information and rules, with which it is able to understand the
logical relationship between them. Ontology reasoning is crucial in that inconsistent
ontology cannot be shared or used by autonomous software agents. A number of
ontology inference engines, such as FaCT [3], RACER [2], and FaCT++ [10] have
been developed with the advancement of ontology languages to facilitate ontology
creation, management, verification, merging, etc.. However, the checking and
reasoning of complex ontology-related properties cannot be done by them.

There is a role for software engineering techniques and tools that contribute to the
Semantic Web development. J. S. Dong first proposes the use of Alloy [5] in checking
and reasoning about the semantic relationship between web resources [1]. We propose
a novel transformation from DAML+OIL ontology to Alloy, which greatly improves
J. S. Dong’s work; our approach scales up well and can work on a larger scope of
property checking.

The rest of the paper is organized as follows: Section 2 gives a brief introduction to
DAML+OIL and Alloy. In the section 3, a simple ontology example is given
described in DAML+OIL, and then the ontology document is analyzed by jena, the
results of which will be used as the inputs of the algorithms, which are used to
transferred the DAML+OIL into Alloy model.

2 Overview of DAML+OIL and Alloy

2.1 Logical Characteristic of DAML+OIL

DAML+OIL [7] is a successor language to DAML [8] and OIL [9] that builds on
earlier W3C standards such as RDF, RDF Schema, and the language components of
OIL. DAML+OIL layered on top of RDFS it inherited RDFS ontological primitives
(subclass, range, domain). As a semantic Web ontology language, DAML+OIL
provides users a richer set of modelling primitives (transitivity, cardinality, …) that
are commonly found in frame-based languages.

Although DAML+OIL is tightly integrated with RDFS, which provides the only
specification of the language and its only serialization, DAML+OIL defines the
semantic of the language to give a meaning to any ontologies that conform to the
RDFS specification, including “strange” constructs such as slot constraints with
multiple slots and classes. It contains richer modeling primitives than RDF. This is
made easier by the fact that the semantics of DAML+OIL is directly defined in both a
model-theoretic and an axiomatic form. Theoretically, DAML+OIL is undecidable,
but its processor to detect the occurrence of constraints and warn the user of the
consequences.

2.2 Alloy

Alloy [5] is a textual, declarative modelling language rooted in first order relational
logic, which is widely accepted as micromodels of software in the software
engineering community. For relationships between web resources are focus point in
the Semantic Web, we believe that it will be a new application domain for Alloy. An
Alloy model consists of Signatures, Relations, Facts, Functions and Predicates.
Signatures represent the entities of a system and Relations are used to describe
relations between such entities. Facts and Predicates introduce constraints over such
Signatures and Relations. Whereas Facts are constraints to be always valid,
Predicates are named parameterized contraints for depicting operations, Functions are
named expression with parameters that return results.

Alloy comes with a tool, the Alloy Analyzer [6], which supports fully automated
analysis of Alloy models through simulation and Assertion checking. While
Assertions are assumptions about the model that can be checked. Simulation yields a
random instance that is consistent with the model. Given a user specified scope on the
model elements bounding the domain, the analyzer first translates an Alloy model into
boolean formulas, and then invokes a SAT-solver to find an instance. If an instance
that violates the assertion is found within the scope, the assertion is not valid and the
instance is returned as a counterexample.

3 Description of the Approach

The specific process of our approach on ontology reasoning is shown in Fig.1:
ontology documents are analyzed by Jena, and the results contain three parts: Classes
C, Property P and Statements S. Next, the results are converted into Alloy model
using daml2Alloy algorithm. And then we use Alloy Analyzer to check the model. In
case an error, we check back the original ontology and correct it accordingly. The
jena is used again to check the corrected ontology. These three steps are explained in
more detail in the following.

Fig.1. The specific process of ontology reasoning.

3.1 Parsing DAML+OIL Documents

To handle DAML+OIL ontologies, we adopt Jena [10] as a frontend of our
framework to parse textual DAML+OIL documents. Jena provides APIs for
maniplulating RDF graphs, abstracting from which it provides the ontology API for
OWL and DAML ontologies. Our DAML+OIL parser, based on Jena parser, reads a
DAML+OIL document of animal ontology (shown in Fig.2), which defined four
classes: Animal, Male, Man and Female. While Man is subclass of Male, Male
and Female are disjointed subclasses of Animal. hasFather, hasParent and
hasChild are three properties such that hasParent and hasChild are inverse
to each other and hasFather is subproperty of hasParent. We translate it into
RDF triples, which are composed of Classes, Properties and Statements.

Fig.2. A DAML+OIL document of animal ontology

……
<rdfs:Class rdf:about="Animal">
 <rdfs:label>Animal</rdfs:label>
 <rdfs:comment>
 This class of animals is
illustrative of a number of ontological
idioms.
 </rdfs:comment>
</rdfs:Class>
<rdfs:Class rdf:about="Male">
 <rdfs:subClassOf
rdf:resource="Animal"/>
</rdfs:Class>
<rdfs:Class rdf:about="Female">
 <rdfs:subClassOf
rdf:resource="Animal"/>
 <daml:disjointWith
rdf:resource="Male"/>
</rdfs:Class>

<rdfs:Class rdf:about="Man">
 <rdfs:subClassOf rdf:resource="Male"/>
</rdfs:Class>
……
<rdf:Property rdf:about=" hasParent">
 <rdfs:domain rdf:resource=" Animal"/>
 <rdfs:range rdf:resource=" Animal"/>
</rdf:Property>
<rdf:Property rdf:about=" hasFather">
 <rdfs:subPropertyOf rdf:resource="
hasParent"/>
 <rdfs:range rdf:resource=" Male"/>
</rdf:Property>
<rdf:Property rdf:about=" hasChild">
<daml:inverseOf rdf:resource="
hasParent"/>
</rdf:Property>
 ……

We use a simple ontology about animal as a running example to show the outputs
of Jena. It contains a sequence of Classes, Properties and Statements, each having a
couterpart in the original document. Such Classes, Properties and Statements provide
programmatic objects like DAMLClass, DAMLProperty and RDFTriples for our
coversion algorithm in the next section. As illustrated in Fig. 1, our DAML+OIL
parser reads such a textual document and converts it into RFD triples as follows:

Fig. 3. Jena outputs of “Animal” ontology

3.2 Generation of the Alloy Model

Given RDFTriples and the related classes, we move on to generate the equivalent
Alloy model, which contains Alloy classes and the relationship between them.

As shown below, our Algorithm daml2Alloy (C, P, S,) converts the input Classes
(denoted as C), Properties (denoted as P) and Statements (denoted as S) into a textual
Alloy model . To do so, we map each class into an Alloy signature, and the
relationships between such classes are represented by Alloy primitives such as
Relations, Facts, Functions and Predicates.

In our algorithm, the Alloy model is initialized to be an empty string on line 1,

each class c is converted into a signature by invoking 2Alloy (c, S) algorithm (see
below), next follows the conversion of each statement into Predicates in a loop
through lines 4~11, finally the produced model is returned. Since each statement

Algorithm 1: daml2Alloy (C, P, S,)
Input: a set C of Classes, a set P of Properties and a set S of Statements
Output：a textual Alloy model
1. ;
2. FOR each cC
3. + 2Alloy(c, S);
4. FOR each sS
5. IF s.predicate.name = "disjointWith"
6. IF s.subject.subClassOf s.object.subClassOf
7. + "pred {no c1:" + s.subjec.name +", c2:" + s.object.name +" | c1 = c2}";
8. IF s.predicate.name ="complementOf"
9. + "pred {" + s.subject.name +"=" + C – s.object.name +"}";
10. IF s.predicate meets one of Conditions in Table 3
11. the corresponding generated Alloy predicate is appended to
12. RETURN ;

<DAMLClass Animal>
<DAMLClass Male>
<DAMLClass Man>
<DAMLClass Female>
The number of Classes is：4
<DAMLProperty hasFather>
<DAMLProperty hasParent>
<DAMLProperty hasChild>
The number of Properties is：3
[<Male>, subClassOf, < Animal>]
[<Female>, subClassOf, < Animal>]
[<Female>,disjointWith, < Male>]
[<Man>,subClassOf, <Male>]
[<hasFather>, range, < Male>]
[<hasFather>,subPropertyOf,< hasParent>]
[<hasParent>,domain, < Animal>]
[<hasParent>,range, < Animal>]
[<hasChild>,inverseOf,< hasParent>]
The number of Statemenst is：9.

sS contains RDF elements in the form of a RDF triple <subject, predicate, object>,
we use s.subject, s.predicate, s.object to denote the three RDF elements respectively.
Moreover, we further use e.name (e.subClassOf) to represent the name of a RDF
element e (its parent’s class) in that each RDF triple depicts the relationship between
RDF elements. For instance, when it comes to two disjointed classes on lines 5~6, we
should further consider whether they have the same parent class, if not, a new Alloy
predicate is generated for depicting such a constraint1. Lines 8~9 handle a new case
like lines 5~6, more generation on lines 10~11 is summarized in cases in Table 3,
where a specific textual Alloy predicate is generated when some condition holds.

Table 3 More cases for converting statements to Alloy

Case Condition Alloy predicates generated
1 s.predicate.name="subPropertyOf" "pred subPropertyOf{all r:"+ s.subject.range +"| r in "+ s.object.range +"}"
2 s.predicate.name="samePropertyAs" "pred samePropertyAs{"+s.subject+ "=" +s.object+"}"
3 s.predicate.name="inverseOf" "pred inverseOf{"+s.subject+"="+s.object+"}"

4
s.predicate.name="TansitiveProperty" "pred TansitivePropertyOf { a,b,c " +s.subject+" a.("+s.predicate+") = b

&& b.("+s.predicate+") =c a. ("+ s.predicate+") =
c}"

5 s.predicate.name="UniqueProperty" "pred UniqueProperty{#("+s.predicate.range+")=1}"
6 s.predicate.name="UnambiguousProperty" "pred UnambiguousProperty { # ("+ s.predicate.domain +") =1 }"

7
s.predicate.name="toClass" "pred toClass{all (("+s.predicate.domain +").("+s.predicate+")) in

("+s.predicate.range+")}"

8
s.predicate.name=hasClass "pred hasClass{ some((" + s.predicate.domain +").("+s.predicate+")) in

("+s.predicate.range+")}"
9 s.predicate.name=hasValue "pred hasValue{#("+s.predicate.range+")=1}"
10 s.predicate.name=cardinality "pred cardinality{#("+s.predicate.range+")=" + s.object"}"
11 s.predicate.name=maxCardinality "pred maxCardinality{#("+s.predicate.range+")<= "+s.object "}"
12 s.predicate.name=minCardinality "pred minCardinality{#("+ s.predicate.range+")>="+s.object "}"

13
s.predicate.name=hasClassQ "pred hasClassQ{ some(("+s.predicate.domain+").("+s.predicate+")) in

("+s.predicate.range+")}"
14 s.predicate.name=cardinalityQ "pred cardinalityQ{#("+s.predicate.range+")="+s.object+"}"
15 s.predicate.name=maxCardinalityQ "pred maxCardinalityQ{#("+s.predicate.range+")<="+ s.object+" }"
16 s.predicate.name=minCardinalityQ "pred minCardinalityQ{#("+s.predicate.range+")>="+s.object "}"

The next algorithm 2Alloy (c, S) is used to produce a signature for a class c with
respect to a set S of Statements. The idea behind this conversion is as follows: let c be
the input class, we first create an Alloy signature named as c.name on line 1. If c has
parent class, i.e., c.subClassOf is not empty by checking the input Statements, we
think c extends its parent class c.subClassOf.name on line 3. When it comes to a
property on line 5, its domain and range is calculated before appending the resulting
signature on line 7.

As shown in Algorithm 3, the domain of a property is calculated recursively; the

domain is associated with an object on line 2 when a RDF triple satisfies such a
condition that its subject is a property and its predicate depicts a domain. Otherwise,
the parent property is recursively checked until a qualified RDF triple is reached. We

1 No constraint is generated when two disjointed classes have the same parent, because Alloy

4.0 defaultly assumes classes are disjointed.

Algorithm 2: 2Alloy (c, S)
Input: a Class c, a set S of Statements
Output: a signature
7. "sig " + c.name;
8. IF c.subClassOf
9. + "extends" +

1. + "{";
2. FOR each pP
3. IF domain(p, S) = c.name
4. + p.name + " : " + range(p, S);
5. + " }";
6. RETURN ；

use parent (property) to represent the parent property of the parameter property. Note
that the calculation of the range of a property with respect to Statements is quite
similar to Algorithm 3, we omit it for obviousness.

Taking the “Animal” ontology as an example again, it is used to show how the
conversion is achieved. The DAML+OIL document will be transferred into Alloy
model as Fig.4.

Fig. 4. The generated Alloy model of “Animal” ontology

3.3 Verifying Ontologies with the Alloy Analyzer

Semantic Web reasoning is one of key issues for ontology design, construction and
maintenance, which contains the ontology consistency checking, subsumption
reasoning, which task is to derive a class is another’s parent, and implication relation
checking. The correct ontology required to meet at least on instance. This is achieved
through Alloy Analyzer to generate an instance of the model in given scope. As
shown in Figure 5, there is an inconsistency occurred in the “Animal” model. This is
because there is a subProperty constraint between femalHasFather and
animalHasFather, Woman is subClassOf Male is implied since Male is
the range of animalHasFather and Woman is the range of femaleHasFather.

Fig.5. Checking result of Alloy Analyzer

Algorithm 3: domain (p, S)
Input: A property p of P, Statement S
Output: the domain of p
5. IF sS, s.subject = p and s.predicate = "domain"

sig Animal{
hasParent:Animal,
hasFather:Male,
hasChild:Animal

}
sig Female extends Animal{}
sig Male extends Animal{}
sig Man extends Male{}
pred inverseOf{hasParent=~hasChild}
pred subPropertyOf{all
a:Animal|a.hasFather in a.hasParent}

Animal

Male Female

Man

hasParent hasChild

hasFather

1. p.domain = s.object.name;
2. ELSE
3. p.domain = domain(parent(p), S);
4. RETURN p.domain;

Note that if Alloy Analyzer can’t find a solution, it maybe for the too small scope.
If there is something of inconsistent in reasoning with Alloy, assertion is an important
criterion. When Alloy Analyzer can’t find a counterexample, the assertion is
reasonable, else Alloy Analyzer will generate a counterexample and some predicates
and facts should be added to improve the model.

4 Comparison of Experimental Results

In J. S. Dong’s article, classes and properties in semantic ontology were converted to
subclasses of resource, and then predicates were used to establish the relationship
between different resources. As a proof tool of program correctness, theorem machine
prove and knowledge representation, the shortcoming of first order logic is that in
reasoning it prone to "combinatorial explosion". Method we used is to make use of
the characteristics of Alloy, we convert the properties of the semantic ontology to the
properties of the signature in Alloy model. It has been greatly improved in the scale.
Table 4 shows the operation results in the case of the same scope of the two methods.

Table 4 Comparison of Experimental Data

scope

GenerateCM + GeneratePM J. S. Dong

vars primary
vars

clauses time vars primary
vars

clauses time

Family (5) 1074 135 1674 32 3025 265 7875 47
(10) 3168 520 5281 63 15530 1430 44475 156
(30) 27468 4560 48201 391 257182 30090 806831 4828
(40) 48618 8080 85861 578 570992 69320 1810146 14688

Course (10) 5477 440 11868 63 11845 1440 31357 125
(20) 17507 1680 41626 203 67632 9480 197133 859
(30) 38737 3720 93696 453 204687 30120 612883 3578
(40) 69887 6560 171406 813 460162 69360 1396873 8812

airportCode (5) 1196 125 1910 16 2416 270 5573 31
(20) 14716 1700 26300 156 67758 9480 193719 1109
(35) 44656 5075 81200 688 44656 5075 81200 5781
(50) 90796 10250 166250 1422 866928 13200 2627124 17422

Document (10) 11458 1800 19691 125 31271 2070 87236 375
(20) 37528 6000 67371 422 169783 10740 535897 2172
(30) 80318 12600 146711 1125 501543 32010 1655392 6860
(40) 139108 21600 256451 2235 1109903 71880 3750587 31016

As is shown in Table 4, we analyze and compare with several ontologies. Variables,
primary variables, clauses and runtime are the four mainly elements for comparison.
For each ontologies, we give four scopes to illustrate that with the expansion of the
scope, our approach reflects the increasingly better performance comparing to the
method of article [1].

The first ontology we used is the Family ontology, which contains three classes and
five properties. Its Alloy model is composed of three signatures, five properties and
one predicate. As is shown in Table 4, with the scope increasing, the advantages are
more and more obvious. When the scope is equal to 40, the number of variables is 10
times larger than ours, the number of primary variables is more than 8 times and the
runtime is 25 times. It is the similar with the other examples.

5 Conclusion

We propose an approach to convert the DAML+OIL ontology to Alloy model, and
then using the Alloy Analyzer to automatically check and reason the generated model.
First, we use Jena to analyze the ontology document and get classes, properties and
statements of it. Next, we propose two algorithms to generate the Alloy model of the
ontology. Finally, the tasks of checking and reasoning are executed by Alloy
Analyzer. We have applied our approach to several ontologies, it can discover errors
and inconsistencies, and when there are something wrong, we can efficiently correct
the errors on the assistance of the counterexample given by Alloy Analyzer.

6 Acknowledgments

This work is supported by National Natural Science Foundation of China (60775028),
the Major Projects of Technology Bureau of Dalian No.2007A14GXD42, and IT
Industry Development of Jilin Province.

References

1. Hai Wang Jin Song Dong, Jing Sun. Checking and reasoning about semantic web
through alloy. In Proceedings of Formal Methods Europe: FME'03, 2805 of Lect.:796--
814, 2003.

2. Volker Haarslev and Ralf Möller. RACER User's Guide and Reference Manaual: Version
1.7.6, Dec 2002.

3. Ian Horrocks. The fact system. In TABLEAUX '98: Proceedings of the International
Conference on Automated Reasoning with Analytic Tableaux and Related Methods, pages
307--312, London, UK, 1998. Springer-Verlag.

4. J.Hendler T.Berners-Lee and O.Lassila. The semantic web. Scientific American, May
2001.

5. Daniel Jackson. Alloy: a lightweight object modelling notation. ACM Trans. Softw. Eng.
Methodol., 11 (2):256--290, 2002.

6. Daniel Jackson, Ian Schechter, and Hya Shlyahter. Alcoa: the alloy constraint analyzer. In
ICSE '00: Proceedings of the 22nd international conference on Software engineering,
pages 730--733, New York, NY, USA, 2000. ACM.

7. Ian Horrocks, Peter F. Patel-Schneider, and Frank van Harmelen. Reviewing the design of
daml+oil: an ontology language for the semantic web. In Eighteenth national conference
on Artificial intelligence, pages 792--797, Menlo Park, CA, USA, 2002. American
Association for Artificial Intelligence.

8. F.van Harmelen, P. F. Patel-Schneider, and I. Horrocks (editors). Reference description of
the daml+oil ontology markup language. March, 2001.

9. Jeen Broekstra, Michel Klein, Stefan Decker, Dieter Fensel, and Ian Horrocks. Adding
formal semantics to the web building on top of rdf schema. In In Proc. of the ECDL 2000
Workshop on the Semantic Web, 2000.

10. Dmitry Tsarkov and Ian Horrocks. Fact++ description logic reasoner: System description.
In In Proc. of the Int. Joint Conf. on Automated Reasoning (IJCAR 2006, pages 292--297.
Springer, 2006.

11. Lutz C. The complexity of reasoning with concrete domains revised version. Technical
report, 1999.

