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Abstract. Many parameters affect the cost evolution of software projects. In the 

area of software cost estimation and project management the main challenge is 

to understand and quantify the effect of these parameters, or „cost drivers‟, on 

the effort expended to develop software systems. This paper aims at 

investigating the effect of cost attributes on software development effort using 

empirical databases of completed projects and building Artificial Neural 

Network (ANN) models to predict effort.  Prediction performance of various 

ANN models with different combinations of inputs is assessed in an attempt to 

reduce the models‟ input dimensions. The latter is performed by using one of 

the most popular saliency measures of network weights, namely Garson‟s 

Algorithm. The proposed methodology provides an insight on the interpretation 

of ANN which may be used for capturing nonlinear interactions between 

variables in complex software engineering environments. 

Keywords: Software Cost Estimation, Artificial Neural Networks, Connection 

Weights, Garson‟s Algorithm. 

1   Introduction 

Software effort estimation is the process of predicting the required effort to support 

the software development process by utilising attributes of cost, often called „cost 

drivers‟. This process usually involves activities after product specification and until 

software implementation and delivery, and is usually performed at the initiation of a 

project. The accurate computation of the development effort in software organisations 

is critical since it enables project managers to effectively deal with uncertainties and 

risks associated with resource planning and allocation. Specifically, cost 

overestimations result, in over allocation of resources and budget increase, which may 

cause loss of contracts and interruption of negotiations. On the other end, cost 
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underestimations cause loss of money upon project completion, misallocation of 

project resources, quality compromises or budget and schedule extensions.  

Artificial Intelligence (AI) techniques are quite popular in software cost estimation 

and are used for building models and calculating the effort factor. Especially, 

Artificial Neural Networks (ANN) that have the ability to provide a non-linear 

mapping among the inputs and the output have been used extensively. Nevertheless, 

in previous related works ANN are commonly used only as predictors and very rarely 

quantitative analysis is conducted regarding the influence of the network inputs on the 

output. In this work we focus on the ability of ANN to capture interactions between 

the influencing cost factors and effort and, in addition, the input‟s degree of influence 

built within the network is examined using Garson‟s Algorithm [1]. The overall 

purpose is to examine the prediction accuracy of development effort through the 

utilisation of different models and variable contributing factors. The values of the cost 

drivers are located within two widely-known and public databases, namely the 

Desharnais and the ISBSG, which are selected for experimentation. The contribution 

of inputs is assessed through a random sampling approach and using the resulting 

values of internal weights from the ANN. Gradually the contributing weights of 

inputs whose values do not significantly affect the output of the ANN are removed 

from the initial complete set of cost factors. The experiments conducted show that in 

software cost estimation there are several factors which are not critically significant 

but are commonly used for predicting effort in related research work. The input 

analysis conducted using Garson‟s Algorithm helps in removing factors in a backward 

manner, starting from the least significant ones and until half of the initial cost factors 

are left in each dataset whereas during this process ANN‟s prediction performance is 

continuously assessed.  

The rest of this paper is organised as follows: Section 2 discusses the recent work 

on ANN utilisation for the problem of software cost estimation and also presents 

common approaches used for simplification and interpretation of ANN in other 

problem domains. Section 3 specifies the modeling technique and theory behind 

Garson‟s Algorithm. Section 4 presents in detail the methodology proposed, accuracy 

measures used in the experimental process and discusses the main results obtained. 

Finally, Section 5 summarises the conclusions and future research steps. 

2   Related Work 

This section initially presents the latest applications of Artificial Neural Networks 

(ANN) in the software cost estimation literature and identifies that even though the 

approach is considered promising, one of the most important steps, the identification 

and inspection of the dominant cost attributes, is not given proper thought.  

Recent work of Tronto et al. [2] investigates the application of ANN and stepwise 

regression for software effort prediction. The experiments were conducted on the 

COCOMO dataset employing categorical variables whose impact was identified 

based on the work of Angelis et al. [3] forming new categorical values. The authors 

identified a strong relationship between the success of each technique and the size of 



the learning dataset, the nature of the cost function and dataset characteristics, such as 

existence of outliers, collinearity and number of attributes.  

In software cost estimation the comparison of models is a common research goal. 

Kaur et al. [4] prove the effectiveness of ANN models for the NASA dataset 

compared to the Halstead, Walston-Felix, Bailey-Basili and Doty models, all of which 

are popular legacy models used in software cost estimation. Backpropagation ANN 

were used and reported as the most generalised networks currently in use that present 

good estimation capabilities. In addition, Reddy and Taju [5] used the popular 

COCOMO model in software cost estimation mapped to an ANN with minimal 

number of layers and nodes to increase the performance of the network. They 

employed a feedforward backpropagation MLP and obtained improved predictions for 

effort using the COCOMO dataset compared to the COCOMO model. Rao et al. [6] 

used a Functional Link Artificial Neural Network (FLANN) which does not contain 

any hidden layers so that the network architecture becomes simple and training does 

not involve full backpropagation, thus reducing computational complexity. Their 

method provides more accurate results compared to other methods for software cost 

estimation on the NASA dataset. 

Many researchers applied ANN on software cost estimation and yielded very 

accurate results. However, when using ANN one crucial step is to identify the 

dominant cost factors, or attributes, that affect development effort [7]. A number of 

measures exist to determine the significance of ANN input attributes [1, 8, 9, 10] but 

we identified that they have never been applied for software cost drivers. For 

example, sensitivity analysis, fuzzy curves, MSE change, weight elimination and 

node pruning, and optimal brain damage (OBD) methods are measures that rank input 

feature importance. Some of these measures are heuristic (forward and backward 

selection), sensitivity index-based, are based on pseudo weights, rely on Garson‟s 

algorithm and some of its modified and extended versions that appear in the literature 

[11]. More specifically, in this work the concepts described in the following 

methodologies have been adopted for software cost drivers: Garson [1] proposed a 

method for partitioning the ANN connection weights to determine the relative 

importance of each input variable in the network (for more details see Section 3.2). 

Glorfeld [9] presented a methodology to simplify ANN using a backward selection 

process to eliminate input variables that are not contributing to the predictive power 

of accurate networks. According to the author this enables decision makers to 

understand the resulting effect of each contributing variable in producing accurate 

predictions. The application is on two classification examples, a commercial loan and 

a cheque overdraft problem.  

3   Modeling Technique and Methodology for Input Elimination 

3.1 Artificial Neural Networks 

One of the primary applications of ANN involves models to forecast a dependent 

variable from a given set of independent variables. These are non-linear, model-free 

and alternative to traditional statistical methods. ANN consist of basic computational 



elements called neurons organized in groups forming layers. Certain types of neurons 

organised in multiple layers form the Multi-Layer Perceptron (MLP) [12] which is 

one of the most popular networks. The number of neurons in the input (first) layer is 

equal to the number of attributes used as independent variables. The last layer is the 

network output. Each subsequent layer uses the weights coming from the previous 

layers and adjusts them so that the accuracy performance error between the actual and 

predicted values for the dependent variable represented by the output is diminished.  

3.2 Methodology with ANN and Garson’s Algorithm  

There are many methods for measuring the contribution of independent variables 

within a neural network, but most of which are very complicated and thus are rarely 

used in the area of software cost estimation. Garson‟s algorithm [1] is considered a 

good trade-off example among complexity and effectiveness. It partitions the hidden 

layer weights into components associated with each input node. Next, the percentage 

of all hidden nodes weights associated with a particular input node is used to measure 

the relative importance of that attribute. The interested reader may refer to [13] for a 

step-by-step example on the algorithm.  

A variety of ANN architectures were implemented, starting with a topology which 

contains a number of neurons in the hidden layer equal to the number of attributes 

used as inputs in each experiment and continuing with topologies resulting from 

increasing the number of hidden neurons by 1 until their number becomes twice the 

size of the input attributes. In addition, the „weakest‟ attribute is removed from the 

sample until the inputs are reduced to half the initial size. Moreover, the following 

randomisation process was followed for each sample: The initial weights and biases 

of the network were randomly set and the dataset used was randomly divided into 

three holdout subsets, training, validation and testing, with the percentages of 60%, 

20% and 20% of the total available samples respectively, where each sample 

participates in only one subset. 

The scaled conjugate gradient training function was used which is based on the 

derivative functions of weights, net inputs and transfer functions. The training process 

is repeated ten times so that the optimal network that minimizes the prediction error is 

identified and the weights of each input-hidden-output path are stored for further use 

by Garson‟s algorithm. Evaluation of the networks was performed using the testing 

data samples based on the well known MMRE and pred(.25) accuracy measures. For 

each experiment ten holdout random samples were chosen so that validation on 

random data is performed. 

After training is executed and the network is stabilized, for each input j, j=1,2,…,i, 

the Relative Importance (RIj) is calculated using equation (1), where Ni and Nh are the 

number of input and hidden neurons, respectively and w is the connection weight, the 

superscripts „i‟,„h‟ and „o‟ refer to input, hidden and output layers, respectively and 

subscripts „k‟, „m‟ and „n‟ refer to input, hidden and output neurons (in our case n=1 

as there is only one output neuron). According to Garson‟s algorithm, for each input 

node j the relative contribution of j to the outgoing signal of each hidden neuron is 

calculated and converted to a percentage, which serves as a measure of importance for 

each input node representing each variable. According to the proposed methodology, 



each input that makes the smallest contribution to the final output of the network, as 

this is reflected through the weight connections, is eliminated. Thus, in each repetition 

the initial number of variables utilised is lowered gradually by one until the necessary 

number of variables are left in the dataset.  
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4   Experiments and Results 

4.1   Datasets Description  

The Desharnais (1989) dataset [14] included 81 observations for systems developed 

by a Canadian Software Development House. The second dataset ISBSG R9 [15] 

provided by the International Software Benchmarking Standards Group contains an 

analysis of the cost and other measurements for a large group of software projects, 

approximately 3,024. The projects come from a broad cross section of industry and 

range in size, effort, development platform, language, etc. These projects underwent a 

series of quality checks and pre-processing to create filtered versions of the datasets 

that do not contain null values and conform to the standards we set for homogeneity 

and integrity before feeding them as inputs to the ANN. The filtered datasets 

contained 77 and 113 in the Desharnais and ISBSG datasets and the attributes selected 

and used in this work, along with their abbreviations are summarised in Table 1. 

4.2   Results  

The results reported in this section include the initial and final lowest performance 

values of the best obtained network architectures in terms of prediction accuracy 

(MMRE value). The results of the training and testing phases of the various network 

architectures created are sensitive to the initialisation of weights, bias values and 

random division of the data samples used for training and testing. Initially, the 

number of input attributes for each experiment is reduced gradually by one according 

to importance of the inputs suggested by Garson‟s algorithm; then, the network is 

trained again with the reduced variables and the new performance is traced. This 

process is repeated ten times (on random holdout samples) and Tables 2 and 3 report 

the MMRE and Pred(.25) ANN performance figures for the training and testing 

phases using the Desharnais and ISBSG datasets respectively. The „Initial‟ and „Final‟ 



column results report accuracy having the number of inputs being equal to the initial 

number of attributes in each dataset p and being reduced to p/2 respectively. The 

order in which attributes are removed in each experiment repetition (first column) is 

given in the second column, while the rest columns present the forecasting 

performance observed after removing the „less important‟ attributes. 

Table 1. Summary of the attributes in the datasets used 

Desharnais ISBSG  

Team Experience (years) TE Functional Size FS 

Manager Experience (years) ME Adjusted Function Points AFP 

Duration (months) DU Project Elapsed time PET 

Transactions TR Project Inactive time PIT 

Entities EN Resource Level (ordinal) RL 

Points Adjusted PA Maximum Team Size MTS 

Scope SC Input count INC 

Points Non Adjusted PNA Output count OC 

  Enquiry count EC 

  File count FC 

  Interface count IFC 

  Added count AC 

  Changed count CC 

  Deleted count DC 

Table 2.  Random sampling and first four attributes removed from the Desharnais dataset. 

# Order of 

Attributes 

Removed 

ANN Training Phase ANN Testing Phase 

Initial 

MMRE 

Initial 

Pred 

Final 

MMRE 

Final 

Pred 

Initial 

MMRE 

Initial 

Pred 

Final 

MMRE 

Final 

Pred 

1 TE,DU,SC,ME 0.384 0.936 0.559 0.936 0.536 0.867 0.600 0.867 
2 ME,DU,TR,TE 0.280 0.979 0.343 1.000 0.409 0.933 0.487 0.933 

3 SC,EN,TE,DU 0.557 0.936 0.583 0.936 0.198 1.000 0.335 1.000 

4 TE,TR,PA,SC 0.474 0.915 0.485 0.894 0.364 1.000 0.387 1.000 
5 ME,PA,TE,DU 0.361 0.957 0.360 0.979 1.264 0.867 1.060 0.867 

6 TE,SC,DU,ME 0.512 0.915 0.784 0.915 0.386 0.933 0.346 0.933 

7 ME,SC,PNA,PA 0.472 0.957 0.572 0.957 0.569 0.800 0.512 0.800 
8 TE,ME,SC,EN 0.509 0.957 0.572 0.957 0.351 0.800 0.512 0.800 

9 TE,ME,EN,DU 0.358 0.936 0.356 0.936 0.507 0.933 0.578 0.933 

10 TE,SC,EN,DU 0.482 0.894 0.768 0.894 0.312 0.933 0.293 0.933 

Mean 0.439 0.938 0.538 0.940 0.490 0.907 0.511 0.907 

 

The experiments indicate that quite accurate and successful predictions were obtained, 

as suggested by the consistently low MMRE values in both the Desharnais and ISBSG 

cases throughout the random holdout validation sampling process. Moreover, 

comparing the initial and final values of the accuracy measures we observe some 

performance degradation, something which indicates that maybe a part of useful 

information is lost when reducing the number of the participating attributes. One may 

argue that this is expected as the information contributing to the ANN learning 

process is truncated and hence prediction accuracy is gradually lowered as we move 

from the initial to the final network state. More specifically, the accuracy degree of 

the Desharnais dataset decreases 0-29% in the training phase depending on the 



experiment repetition, while during testing accuracy increases in some cases by 20% 

and in others decreases by 16%. This also occurs with the ISBSG dataset, where by 

removing attributes the performance accuracy increases by 6% and decreases by 6% 

in the training phase depending on the experiment, while during the testing phase 

accuracy increases by 16% and decreases by 24%.  

Another interesting finding is that the attributes that seem to be the „weakest‟ effort 

contributors in the majority of the experiments are TE, ME, DU, SC for the 

Desharnais case and RL, FC, CC, INC, OC for the ISBSG. We should also report, 

though, that there were validation cases in which the general picture of input 

significance was a bit disrupted. This may be considered as a weakness of the method 

as it relies on ANN models that behave differently when the initial conditions 

(initialisation) and the training/testing data samples change. Therefore, the results 

must be interpreted cautiously and only after a satisfactory number of repetitions that 

will enable a statistically safe conclusion. 

Table 3.  Random sampling-first seven attributes removed from the ISBSG dataset. 

# 
Order of Attributes 

Removed 

ANN Training Phase ANN Testing Phase 

Initial 

MMRE 

Initial 

Pred 

Final 

MMRE 

Final 

Pred 

Initial 

MMRE 

Initial 

Pred 

Final 

MMRE 

Final 

Pred 

1 CC,AFP,MTS,PET,OC,PIT,EC 0.223 0.957 0.329 0.928 0.358 1.000 0.578 1.000 

2 DC,CC,PET,RL,PIT,INC,EC 0.280 0.986 0.352 0.971 0.418 0.955 0.575 0.955 
3 INC,CC,DC,RL,OC,AC,FC 0.337 1.000 0.404 0.986 0.255 0.955 0.265 0.909 

4 MTS,CC,RL,INC,FC,FS,AC 0.350 0.957 0.493 0.957 0.199 0.955 0.191 0.955 

5 FS,RL,FC,EC,IC,INC,CC 0.367 0.971 0.411 0.986 0.202 0.955 0.298 0.955 
6 RL,DC,CC,INC,OC,EC,FS 0.362 1.000 0.303 1.000 0.346 0.909 0.385 0.864 

7 CC,OC,RL,FC,INC,AFP,IC 0.210 1.000 0.271 0.986 0.377 0.909 0.257 0.909 

8 FC,OC,AC,AFP,RL,IC,FS 0.247 0.957 0.344 0.957 0.188 1.000 0.424 1.000 
9 FC,IC,RL,AFP,AC,EC,PIT 0.261 0.957 0.305 0.971 0.662 1.000 0.500 1.000 

10 FS,IC,PIT,OC,AFP,RL,FC 0.338 0.986 0.279 0.986 0.249 0.955 0.270 0.955 

Mean 0.297 0.977 0.349 0.972 0.325 0.959 0.374 0.950 

5   Conclusions 

This work investigates the ability of ANN to capture interactions between the 

influencing cost factors and effort within empirical software engineering project 

samples and attempt to provide cost predictive models. The main contribution is the 

understanding of the explanatory value of the inter-relationships between the input 

variables and the final output (effort) which is extracted from the internal network 

weights. Thus, it may provide an insight regarding each variable‟s contribution to the 

overall prediction.  

We performed a backward elimination strategy to minimise the initial inputs and 

progressively evaluated the significance of connection weights and input variables. 

The approach was based on Garson‟s Algorithm which exploits the various ANN 

models created, trained and tested over ten random sets of training and testing distinct 

samples. Moreover, from the various architectures created, trained and tested the 

results obtained from the best networks in terms of MMRE of actual vs. the prediction 

testing samples, i.e. result of the simulation phase of the process provide quite 



promising results. The approach enables decision makers to understand the resulting 

effect of each contributing variable in producing accurate predictions. 

An interesting issue for future research is the comparison of the contributions of 

other saliency measures reported in the literature along with Garson‟s over the same 

or newer datasets. In addition, a cost-benefit analysis of accuracy declination and the 

fewer attributes leading to less cost for collecting data and faster cost estimation 

modeling should be carried out to prove the validity of this work. 
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