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Abstract. This paper considers the similarity between two measures of air 
pollution/quality control, on the one hand, and widely used indicators of life 
quality and welfare, on the other. We have developed a multi-layer perceptron 
neural network system which is trained to predict the measurements of air 
quality (emissions of sulphur and nitrogen oxides), using Eurostat data for 34 
countries. We used life expectancy, healthy life years, infant mortality, Gross 
Domestic Product (GDP) and GDP growth rate as a set of inputs. Results were 
dominated by GDP growth rate and GDP. Obtaining accurate estimates of air 
quality measures can help in deciding on distinct dimensions to be considered 
in multidimensional studies of welfare and quality of life. 
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1   Introduction 

Quantitative analysis of quality of life (QOL) across countries, and the 
construction of summary indices for such analyses have been of interest for some time 
[15]. Most early work focused on largely single dimensional analysis based on such 
indicators as per capita GDP, the literacy rate, and mortality rates. Maasoumi (1998) 
[11] and others called for a multidimensional quantitative study of welfare and quality 
of life. The argument is that welfare is made up of several distinct dimensions, which 
cannot all be monetized, and heterogeneity complications are best accommodated in 
multidimensional analysis. Hirschberg et al. (1991) [8] and Hirschberg et al. (1998) 
[9] identified similar indicators, and collected them into distinct clusters which could 
represent the dimensions worthy of distinct treatment in multidimensional 
frameworks.  

In this research effort we have considered the role of air quality indicators in the 
context of economic and welfare life quality indicators, using artificial neural 
networks (ANN). Therefore in this presentation we have obtained the key variables 
(life expectancy, healthy life years, infant mortality, Gross Domestic Product (GDP) 
and GDP growth rate) and developed a neural network model to predict the air quality 
outcomes (emissions of sulphur and nitrogen oxides). Sustainability and quality of life 



indicators have been proposed recently by Flynn et al. (2002) [6] and life quality 
indices have been used to estimate willingness to pay [12]. The innovative part of this 
research effort lies in the use of a soft computing machine learning approach like the 
ANN to predict air quality. 

2   Materials and Methods 

It is well known that the quality of the air in a locale influences the health of the 
population and ultimately affects other dimensions of that population’s welfare and its 
economy. As a simple example, in cities where pollution levels rise significantly in 
the summer, worker absenteeism rates rise commensurately and productivity is 
adversely impacted. Other dimensions of the economy are influenced on “high 
pollution days” as well. For example, when outdoor leisure activity is restricted this 
may have serious consequences for the service sector of the economy [2]. In this 
paper, we have introduced two measures of environmental quality or air quality as 
quality of life factors. A feature of these indices is the fact that these types of 
pollution are created by some of the very activities that define economic development. 
The two factors under investigation here are sulfur oxides (SOx) and nitrogen oxides 
(NOx) (million tones of SO2 and NO2 equivalent, respectively). They are both 
produced as byproducts of fuel consumption as in case of the generation of electricity. 
Vehicle engines also produce a large proportion of NOx. SOx is primarily produced 
when high sulfur coal is burned which is usually in large-scale industrial processes 
and power generation. Thus, the ratio of these emissions to the population is an 
indication of pollution control.  

The attributes of quality of life used in this paper are the following: 
• Life expectancy at birth: The mean number of years that a newborn child can 

expect to live if subjected throughout his life to the current mortality conditions 
(age specific probabilities of dying). 

• Healthy life years: The indicator Healthy Life Years (HLY) at birth measures the 
number of years that a person at birth is still expected to live in a healthy 
condition. HLY is a health expectancy indicator which combines information on 
mortality and morbidity. The data required are the age-specific prevalence 
(proportions) of the population in healthy and unhealthy conditions and age-
specific mortality information. A healthy condition is defined by the absence of 
limitations in functioning/disability. The indicator is also called disability-free life 
expectancy (DFLE). Life expectancy at birth is defined as the mean number of 
years still to be lived by a person at birth, if subjected throughout the rest of his or 
her life to the current mortality conditions. 

• Infant mortality: The ratio of the number of deaths of children under one year of 
age during the year to the number of live births in that year. The value is 
expressed per 1 000 live births. 

• Gross Domestic Product (GDP) per capita: GDP is a measure of the economic 
activity, defined as the value of all goods and services produced less the value of 
any goods or services used in their creation. These amounts are expressed in PPS, 



i.e. a common currency that eliminates the differences in price levels between 
countries allowing meaningful volume comparisons of GDP between countries. 

• GDP growth rate: The calculation of the annual growth rate of GDP volume is 
intended to allow comparisons of the dynamics of economic development both 
over time and between economies of different sizes. For measuring the growth 
rate of GDP in terms of volumes, the GDP at current prices are valued in the 
prices of the previous year and the thus computed volume changes are imposed on 
the level of a reference year; this is called a chain-linked series. Accordingly, price 
movements will not inflate the growth rate. 

Data were extracted for 34 European countries, for the year 2005, from the 
Eurostat database [4]. Descriptive statistics for all variables are given in Table 1. 

Table 1. Descriptive statistics for all variables used in the analysis. 

 

Emissions 
of 

sulphur 
oxides 

(million 
tones 

of SO2
equivalent) 

Emissions 
of 

nitrogen 
oxides 

(million 
tones 

of NO2
equivalent)

Infant 
Mortality

GDP 
(PPS) 

GDP 
Growth

Rate 

Life 
Expectancy 

At Birth 
(years) 

Healthy 
Life 

Years 

Valid N 34 34 34 33 33 33 27 
Missing 0 0 0 1 1 1 7 
Mean 0.503 0.372 5.721 95.921 4.206 77.535 60.448 
Std. 

Deviation 0.648 0.482 4.227 46.620 2.521 3.244 5.443 

Min 0.00 0.00 2.30 28.50 0.70 70.94 50.10 
Max 2.37 1.63 23.60 254.50 10.60 81.54 69.30 

 

For the performance of the analysis, multi-layer perceptron (MLP) network 
models were used, employing the back propagation (BP) optimization algorithm. As it 
is well known in BP the weighted sum of inputs and bias term are passed to the 
activation level through the transfer function to produce the output ([1], [5], [7], [14]). 
The sigmoid transfer function was employed ([3], [10]), due to the fact that the 
algorithm requires a response function with a continuous, single valued with first 
derivative existence [13]. These networks were trained in an iterative process. The 
number of hidden layers is chosen to be only one to reduce the network complexity, 
and increase the computational efficiency [7]. The schematic representation of the 
neural network is given in Fig. 1. 



 

Fig. 1. Multi-layer perceptron network structure. 
 

3   Results-Discussion 

From the analysis, 19 cases (70.4%) were assigned to the training sample, 2 
(7.4%) to the testing sample, and 6 (22.2%) to the holdout sample. The choice of the 
records was done in a random manner. The whole effort targeted in the development 
of an ANN that would have the ability to generalize as much as possible. The seven 
data records which were excluded from the analysis were countries that did not had 
available data on Healthy Life Years. Two units were chosen in the hidden layer. 

Table 2 displays information about the results of training and applying the final 
network to the holdout sample. Sum-of-squares error is displayed because the output 
layer has scale-dependent variables. This is the error function that the network tries to 



minimize during training. One consecutive step with no decrease in error was used as 
stopping rule. The relative error for each scale-dependent variable is the ratio of the 
sum-of-squares error for the dependent variable to the sum-of-squares error for the 
"null" model, in which the mean value of the dependent variable is used as the 
predicted value for each case. There appears to be more error in the predictions of 
emissions of sulphur oxides than in emissions of nitrogen oxides, in the training and 
holdout samples. 

The average overall relative errors are fairly constant across the training (0.779), 
testing (0.615), and holdout (0.584) samples, which give us some confidence that the 
model is not overtrained and that the error in future cases, scored by the network will 
be close to the error reported in this table. 

Table 2. Model Summary. 

Sum of Squares Error 14.029 
Average Overall Relative Error 0.779 

Emissions of sulphur oxides 
(million tones of SO2 
equivalent) 

0.821 

Training 

Relative Error for Scale 
Dependents 

Emissions of nitrogen 
oxides (million tones of 
NO2 equivalent) 

0.738 

Sum of Squares Error 0.009 
Average Overall Relative Error 0.615 

Emissions of sulphur oxides 
(million tones of SO2 
equivalent) 

0.390 

Testing 

Relative Error for Scale 
Dependents 

Emissions of nitrogen 
oxides (million tones of 
NO2 equivalent) 

0.902 

Average Overall Relative Error 0.584 
Emissions of sulphur oxides 
(million tones of SO2 
equivalent) 

0.603 
Holdout 

Relative Error for Scale 
Dependents 

Emissions of nitrogen 
oxides (million tones of 
NO2 equivalent) 

0.568 

 

In the following Table 3 parameter estimates for input and output layer, with their 
corresponding biases, are given. 



Table 3. Parameter Estimates. 

Predicted 
Hidden Layer 1 Output Layer 

Predictor 

H(1:1) H(1:2) SO2 NO2
(Bias) -0.119 -0.537   
Infant Mortality -0.805 0.752   
GDP 1.033 -3.377   
GDP Growth Rate 0.318 -3.767   
Life Expectancy  
At Birth 

1.646 1.226   

Input Layer 

Healthy Life Years 0.567 0.358   
(Bias)   -0.635 -0.877 
H(1:1)   -0.518 0.116 

Hidden Layer 1 

H(1:2)   1.396 1.395 
 
Linear regression between observed and predicted values 

( , ) showed that the network does 
a reasonably good job of predicting emissions of sulphur and nitrogen oxides. Ideally, 
linear regression parameters a and b should have values 0 and 1, respectively, while 
values of the observed-by-predicted chart should lie roughly along a straight line. 
Linear regression gave results for the two output variables 

 (Fig. 2) and  
(Fig. 3), respectively. There appears to be more error in the predictions of emissions 
of sulphur oxides than in emissions of nitrogen oxides, something that we also 
pointed out in Table 2. Figs 2 and 3 actually seem to suggest that the largest errors of 
the ANN are overestimations of the target values. 

2 2SO SOa b error
Ω

= + + 2 2NO NOa b error
Ω

= + +

2SO 0.114 0.918SO error
Ω

= + +2 2 2NO 0.005 1.049 NO error
Ω

= + +

 

  
Fig. 2. Linear regression of observed values 
for emissions of sulphur oxides by predicted 
values. 

Fig. 3. Linear regression of observed values 
for emissions of nitrogen oxides by predicted 
values. 



The importance of an independent variable is a measure of how much the 
network's model-predicted value changes for different values of the independent 
variable. A sensitivity analysis to compute the importance of each predictor is 
applied. The importance chart (Fig. 4) shows that the results are dominated by GDP 
growth rate and GDP (strictly economical QOL indicators), followed distantly by 
other predictors.  

 

Fig. 4. Independent variable importance chart. 
 

4   Conclusions 

The multi-layer perceptron neural network model, that was trained to predict air 
quality indicators, using life quality and welfare indicators, appears to perform 
reasonably well. Results showed that GDP growth rate and GDP influenced mainly 



air quality predictions, while life expectancy, infant mortality and healthy life years 
followed distantly.  

One possible way to ameliorate performance of the network would be to create 
multiple networks. One network would predict the country result, perhaps simply 
whether the country increased emissions or not, and then separate networks would 
predict emissions conditional on whether the country increased emissions. We could 
then combine the network results to likely obtain better predictions. Note also that 
neural network is open ended; as more data is given to the model, the prediction 
would become more reliable. 
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