
Investigating The Role Of Mutual Cognitive
Environment For End-User Programming

Rémi Barraquand and Patrick Reignier

INRIA Grenoble
Rhônes-Alpes Research Center

655 Ave de l’Europe
38330 Montbonnot, France

{remi.barraquand,patrick.reignier}@inrialpes.fr

Abstract. In this paper we present a situated end user programming
approach where user co-constructs, in an iterative process, a mutual cog-
nitive environment with the system. We argue that co-construction of a
mutual cognitive environment, between both the human and the system,
is a key toward social human-computer interaction. Preliminary results
are illustrated with a step by step case study: a user teaches the sys-
tem new perceptual and abstract concepts using hand gesture and an
interactive learning table.

Key words: End-User Programming, Situation Models, Cognitive En-
vironment

1 Introduction

Information and communication services pervade nearly all aspect of our daily
life, however they have no ability to perceive and understand the social situa-
tion or affective reactions of human. Furthermore, they have no sense of social
roles played by interacting humans: systems are unaware of human goals and
intentions.

Such abilities are beyond systems constructed with current technologies for
two main reasons. First, systems lack an ability to acquire the skills for polite
interaction using the implicit feedback provided by humans during interaction.
Second, systems even lack the most rudimentary understanding of the social
order that structures normal human interaction.

Common sense is the collection of shared concepts and ideas that are accepted
as correct by a community of people. Social common sense refers to the shared
rules for polite, social interaction that implicitly rule behavior within a social
group [1]. To a large extent, such common sense is developed using implicit
feedback during interaction between individuals. Reeves and Nass demonstrate
convincingly in The Media Equation [10] that interactions with computers are
identical to real social relationships and they argue that a social interface may
be the truly universal interface. Thus our goal in this research is to develop



2 Rémi Barraquand and Patrick Reignier

methods to endow an artificial agent with the ability to acquire social common
sense using day to day interaction with people. Our approach focuses on a key
aspect of social common sense: the ability to build an appropriate mental model
of social situations. We believe that such methods can provide a foundation
for socially polite man-machine interaction, and ultimately for other forms of
cognitive abilities.

Common knowledge is a phenomenon which underwrites much of social life.
In order to communicate or otherwise to collaborate, humans make use of socially
shared conventions, common understanding or background knowledge. While
theory of mutual knowledge has the characteristic to produce a regression at
infinity, Sperber and Wilson [12] developed a weaker but empirically more ad-
equate concept, the mutual manifestness. In this paper we investigate the role
that a mutual cognitive environment plays in collaborative social interaction and
in the construction of situation models. We believe that building correct social
situation models is a key toward designing context aware systems.

2 Related Work

Designing a context aware application is a complex task. There is no widely
accepted definition of what is a context. For Dey et al. [4], context is “any infor-
mation that characterizes a situation related to the interaction between humans,
applications and the surrounding environment.” Dourish [6], on a more concep-
tual approach, proposes two categories for context models : representational and
interactional. In a representational approach, context and activity are separable.
Context is information about the environment where the activity takes place.
The main question is how context could be encoded and represented. This is
a more “programmer” point of view. In the interactional approach, context is
a relational property between objects or activities. It is a more user centered
approach. Dourish opposes those two points of view. We believe that those two
approaches can be complementary. A software programmer, can use a repre-
sentational context model to specify a first “general” contextual behavior (not
adapted for everyone). The end user then adapt this general contextual model to
its own needs. This adaptation phase has to be done while (or after) using and
interacting with the system. This is the interactional aspect and corresponds to
End User Programmming.

End user programming can be seen as offering alternatives to extensive pro-
gramming for building applications. The question is how the end user can transfer
to the system its relevant knowledge so that it can accomplish the required task.
In [9], the mobile phone behavior is contextually specialized using feed forward
rules. A specific interface allows to easily create new rules based on predefined
concepts, brought by the programmer. The end user can specify how those con-
cepts should be used to fulfill his needs. The evaluations showed that the end
user appreciates to be able to enter its own knowledge in the system as long as
the rules are not too complicated to write. The main problem is that Nokia’s
system is bringing its own predefined concepts which might not correspond to
the user’s concepts and interpretations.



Investigating The Role Of MCE For End-User Programming 3

In [5], the user is doing its task in the environment while the system is
recording all the sensors. Using a dedicated human machine interface, the end-
user can then annotate the recorded data and a context model is constructed
using machine learning approaches. This annotation phase is an interesting way
to transfer knowledge and concepts from the user to the system while letting the
system building its own internal representation. The main drawback is that it
can be rapidly painful and sensor data annotation is done offline (not during the
interaction). Ganneau and al. [7] are directly learning (using bayesian networks)
the situations’ description without a post-annotation phase. The interaction for
knowledge injection is more transparent for the end user.

On-line transparent interaction is more natural and corresponds to the in-
teractional aspect of Dourish but can be ambiguous (see section 3). Off-line
specification using a dedicated interface can allow the end user to specify more
precisely but is painful. We propose a global approach based on both approaches:
transparent user interaction and dedicated off-line interactions to disambiguate
the injected knowledge.

3 Situated End User Programming

In an idealist scenario people should teach machines through a social and collab-
orative process. Learning to act appropriately in social situation is a first step
toward a better interaction. In a previous work [1] we have sought to train an
association between behavior and social situation. However the success of this
approach relies on getting both human and system to share a common under-
standing of social situation.

3.1 Mutual Intelligibility

Salembier et al. [11] review research that point out the importance of the mutual
access to contextual information in collaborative work. The better the mutual
understanding the greater the collaboration. This mutual understanding is not
necessarily achieved by sharing mutual knowledge but rather by the concept of
mutual manifestness. Introduced by Sperber and Wilson this concept is weaker
but empirically more adequate than the theory of mutual knowledge which has
the characteristic to produce regression at infinity.

For Sperber and Wilson “a fact is manifest to an individual at a given time,
if and only if, this individual is able at this time to represent this fact mentally
and to accept his representation as being true or probably true” [12]. Following
this notion, Sperber and Wilson define the one of cognitive environment. A per-
sonal cognitive environment (PCA) is defined as whole facts which are manifest
for a given individual. A shared cognitive environment (SCE) indicates all the
facts which are manifest to several individuals. This simply means that they are
able to perceive or deduce the same facts, and not that they share a belief, a
knowledge, or a representation concerning those facts. The mutual cognitive en-
vironment (MCE) indicates a shared cognitive environment in which the identity
of individuals who have access to this environment is manifest. As they share the



4 Rémi Barraquand and Patrick Reignier

same environment, they can establish an interaction in relation to their common
perception of contextual events. Salembier points out that the notion of cogni-
tive environment does not take into account the activity of individual. He [11]
then proposes the definition of shared context, which reduce mutual cognitive
environment through activity filtering. Thus shared context is a set of contextual
information or events mutually manifest for a set of actors, at a given time in
a certain situation, taking into account their perception and cognitive abilities,
their task, and current activity.

Considering social learning as a collaborative process and context as a key
issue [2] in interaction between human and computer, we argue that mutual
intelligibility is the key toward a social human-computer interaction.

3.2 Situation Models

In the previous section, we emphasize the importance of mutual intelligibility in
social learning and particularly the needs for a MCE between both human and
system. However it is not clear what defined the facts that compose cognitive
environment. Johnson-Laird in [8] introduced situation model as cognitive the-
ory for human mental models. A situation model is a mental representation of a
described or experienced situation in a real or imaginary world [13]. It is com-
monly defined as consisting of entities and of relations between those entities.
While this model, as well as much of the subsequent literature in this area, has
been concerned with spatial reasoning or linguistic understanding, these con-
cepts can be adopted for the construction of software systems and services for
understanding social interaction. In [3], we describe the use of situation mod-
els for observing and understanding activity in order to provide context aware
services. Situations are defined as a set of relations (predicate) between entities
(agents, objects or abstract concepts) where entities are sets of properties.

Using this formalism we define a fact as an entity or a relation that can
be either observed or deduced by an agent. A cognitive environment is then
defined by the set of relations between entities that are manifest by this agent.
Thus the shared context between agents (human or machine) is defined by the
intersection of their situation models taking into account their perception and
cognitive abilities, their task, and current activity. A fact (entity or relation)
has the property to exist and is associated to an abstract representation that we
call concept. Two facts can be instance of the same concept. Concept is for fact
what a class is for object. Observed facts are any instance of concept that can be
observed and represented as an entity or relation. Such entities include time of the
day, weather, agent, object. Observed relation include spatial relation. Inferred
facts are any instance of concept that can be inferred from other facts (observed
or inferred). Inferred entities can include group, agent’s activity, agent’s task.
These facts are not directly observable properties but rather interpretation.

3.3 Socially Guided Environment

The concept of mutual manifestness as part of the relevance theory has been
concerned with human communication. In the previous section, we argued for



Investigating The Role Of MCE For End-User Programming 5

the need of such an ability in human-machine interaction. Considering the main
differences in term of cognition and perception between human and computer,
this theory gives us a clear understanding of why perceiving social context from
a human perspective is a difficult problem. Although this let us to propose our
approach of end-user programming. In Relevance Theory [12] Sperber and Wil-
son present communication as the process of making certain facts more manifest
than others. Thus in our approach both agents are provided with tools allowing
them to alter each other’s cognitive environment. Because of the fundamental
difference between human an machine, we need to introduce the following con-
dition. A fact is manifest for the system if and only if the related concept is also
manifest. Then by definition a concept is manifest if and only if it belongs to the
cognitive environment. A concept is then mutually manifest if and only if it has
been acknowledged by the user. Therefore, the first step toward making a fact
mutually manifest is to teach the system new concepts.

The first tools provides the user with a method to teach the system whatever
perceptual concept he thinks is relevant. This concept is tokenized from the
environment using bounding volumes such as blob or frustum constructed by
user hand gestures. This tool is well adapted to make manifest spatial concept
such as a chair, a desk or an area. At the same time, the system is able to
display different views of its cognitive environment by displaying the relevant
facts it is able to perceive or deduce from the environment. This second tools
presents two benefits: first it provides transparency to the user, then it allows
the user to respond whenever he did not agree. One of this view is provided by
an interactive table. The table provides a window through the system’s mind
which lets the user browse and interact with the contained concepts and facts.
Different actions are then proposed to the user such as teaching a new abstract
concept, adding tags to a already learned concept, adding or removing a concept
from the mutual cognitive environment. Tags are a simple way for the user to
give interpretation to newly extracted concepts (eg. Chair, Desk, Table). The
user can also see the current and previous system’s situation models and related
action, thus enabling the user to tell the system the action it should perform in
a given situation. The interface provide also a tools for the correct assignment of
reward in the case of social reinforcement learning [1]. Finally we integrated an
attentional model to control the manifestness of a fact. The greater the attention
of the user toward a fact the more manifest the fact. That way entity closest to
the user for example will be more manifest than entity outside the environment.

4 Experimental Evaluation

In this section, we demonstrate our preliminary results with a step by step case
study which illustrates a standard scenario in a context aware environment. The
goal is to show how a user and a system can build conjointly a mutual cognitive
environment.

4.1 Experimental Setup
The experiment takes place in the PRIMA SmartRoom, an environment specif-
ically designed to observe (using cameras and microphones) and interact with



6 Rémi Barraquand and Patrick Reignier

users as they go through normal day-life activity such as work, meeting, rest,
etc. The system is capable of tracking the position of persons as they evolve
through the environment and also provides a rough estimate of the personâĂŹs
posture. The system is also equipped with a steerable projector with automatic
image rectification able, given a specific region, to transform a planar surfaces
in a projection area.

4.2 Case Study

One scenario that comes to mind when working with smart environment is the
meeting scenario. In such scenario, smart environments could provide different
services such as projecting content of the meeting at the correct place. In the
following, we will illustrate the different steps that lead to the construction of
a mutual cognitive environment intended to provide our smart meeting system
with the needed concepts to characterize/recognize the relevant situations.

This construction process is organized in two stages. The first step is a usual
top down reflection where the user builds a mental representation of the situa-
tion he wants to explain by selecting relevant assumptions. A possible situation
model could be a “lecturer is close to an audience”. Then a lecturer is a
“person close to a projection area” and so on. The second step is an iterative
process where both human and system interact to make relevant information
mutually manifest. Using different modalities the system acknowledges the user
of the different facts and related concepts that are manifest in the environ-
ment. The user on its side, introduces the system with missing concept. For
this experiment the environment already knows some basic concepts, provided
by software components, such as the entity-concept person, audience, region
and the relational-concept close to and sit on. The following concepts are “mu-
tually manifest” however chair and lecturer are not. We could only expect the
environment to interpret a correct situation model once chair and lecturer will
be mutually manifest. Then, the steerable projector will project accordingly the
content of the meeting at the correct place in the environment.

When the user enters the room, the only facts belonging to the MCE is
the user itself. The system is able to perceive the user position and the user
knows it, thus this fact is mutually manifest. The first action performed by the
user in the environment is to defined the concept of projection area which is
then integrated to the MCE. This step is done by performing a hand gesture
surrounding this area and tagging the extracted region on the interactive table
as projection area). Then the user pursues by extracting the different sitting
areas (see Figure 1) to which he will associate the tag chair.

This far, the system is able to observe new facts from its environment. For
example any person sitting on the extracted chair or sofa will now be manifest to
the system as the related concepts, person, chair and sit on are known. The last
missing concept is the one of lecturer which is a deduced-like concept. In order
to do that, the user interacts with an interface displayed on an interactive table.
The interface shows the different concepts mutually manifest as well as observed
and deduced facts. Abstract concepts are defined from other set of concepts



Investigating The Role Of MCE For End-User Programming 7

Fig. 1. Teaching concepts (left) and learning abstract concept (right).
in relation, thus user has to construct a diagram relating sub-concepts together.
This operation is achieved by different drag&drop operation. In our example, the
diagram containing a person close to a projection area is labeled as lecturer
(see right part of Figure 1).

During the real meeting presentation (see Figure 2) the user can, at any
time, teach the system news action according to its interpretation of the current
situation. The right part of Figure 2 presents the current interpretation of the
situation by the system (remark, relation are not present). System can be taught
to trigger the steerable projector service, and so the topic of the meeting will be
displayed onto the correct projection area.

Fig. 2. Presentation meeting (left) and interpretation of the presentation meet-
ing by the system.

5 Conclusions

In an attempt to design context aware systems able to acquire social common
sense from day to day interaction with non-expert user, a key challenge is to
provide systems with methods to perceive social situation from a human per-
spective. We cannot expect developer to handle all possible social situations a
system can encounter in its working life. An alternative inspired by end user
programing offers better perspectives.

Our proposed approach provides transparent interaction and learning tools
to build a mutual cognitive environment between the user and the system. We



8 Rémi Barraquand and Patrick Reignier

argue that mutual cognitive environment plays a significant role in the construc-
tion of situation models for social situation. Because system and user do not
have the same perceptive and cognitive capabilities we propose a method where
user will interactively (when the needs comes) teach to the system the concept
that he thinks is relevant. Concepts are learnt by segmenting the environment
using simple hand gestures and using an interactive table as a cognitive window
through the system mind. The preliminary results are very encouraging and
validate our approach.

References

1. R. Barraquand and J. L. Crowley. Learning polite behavior with situation models.
In HRI ’08: Proceedings of the 3rd ACM/IEEE international conference on Human
robot interaction, pages 209–216, New York, NY, USA, 2008. ACM.

2. J. Coutaz, J. L. Crowley, S. Dobson, and D. Garlan. Context is key. Commun.
ACM, 48(3):49–53, 2005.

3. J. L. Crowley, P. Reignier, and R. Barraquand. Situation models: A tool for ob-
serving and understanding activity. In Workshop People Detection and Tracking,
held in IEEE International Conference on Robotics and Automation, Kobe, Japan,
2009.

4. A. K. Dey, G. D. Abowd, and D. Salber. A conceptual framework and a toolkit
for supporting the rapid prototyping of context-aware applications. Hum.-Comput.
Interact., 16(2):97–166, 2001.

5. A. K. Dey, R. Hamid, C. Beckmann, I. Li, and D. Hsu. a CAPpella: programming
by demonstration of context-aware applications. In Proceedings of the SIGCHI
conference on Human factors in computing systems, pages 33–40, Vienna, Austria,
2004. ACM.

6. P. Dourish. What we talk about when we talk about context. Personal Ubiquitous
Comput., 8(1):19–30, February 2004.

7. V. Ganneau, G. Calvary, and R. Demumieux. Learning key contexts of use in the
wild for driving plastic user interfaces engineering. In Proceedings of the 2nd Con-
ference on Human-Centered Software Engineering and 7th International Workshop
on Task Models and Diagrams, pages 271–278, Pisa, Italy, 2008. Springer-Verlag.

8. P. N. Johnson-Laird. Mental models: towards a cognitive science of language, infer-
ence, and consciousness. Harvard University Press, Cambridge, MA, USA, 1983.

9. P. P. Korpip, E. Malm, T. Rantakokko, V. Kyllonen, J. Kela, J. Mantyjarvi,
J. Hakkil, and I. Kansala. Customizing user interaction in smart phones. Per-
vasive Computing, IEEE, 5(3):82–90, 2006.

10. B. Reeves and C. Nass. The Media Equation: How People Treat Computers, Tele-
vision, and New Media Like Real People and Places. Cambridge, [1st] edition,
1996.

11. P. Salembier and M. Zouinar. Intelligibilité mutuelle et contexte partagé. Inspira-
tions théoriques et réductions technologiques . @CTIVITES, 1(2), 2004.

12. D. Sperber and D. Wilson. Relevance: Communication and Cognition. Blackwell
Publishers, December 1995.

13. R. A. Zwaan and G. A. Radvansky. Situation models in language comprehension
and memory. Psychological Bulletin, 123:162–185, 1998.


	Investigating The Role Of Mutual Cognitive Environment For End-User Programming
	Rémi Barraquand and Patrick Reignier
	Introduction
	Related Work
	Situated End User Programming
	Mutual Intelligibility
	Situation Models
	Socially Guided Environment

	Experimental Evaluation
	Experimental Setup
	Case Study

	Conclusions



