
MSRS: Critique on its Usability via a Path
Planning Algorithm Implementation

George Markou and Ioannis Refanidis

Department of Applied Informatics, University of Macedonia
Thessaloniki, Greece

{gmarkou, yrefanid}@uom.gr

Abstract In recent years an expanding number of robotics software platforms
have emerged, with Microsoft expressing its interest in the field by releasing its
own in 2006. This fact has created a highly competitive environment, as the ma-
jority of the products are mostly incompatible to each other, with every platform
trying to establish itself as the field’s standard. Thus, the question that arises is
whether a platform is suited for educational purposes or creating a complete robot-
ics intelligence package. This paper provides a study on the learnability, usability
and features of Microsoft Robotics Studio, by creating and integrating into it a
version of the Lifelong Planning A* algorithm (LPA*) algorithm.

1 Introduction

In the last few years there has been an increasing interest in the unification of arti-
ficial intelligence and robotics platforms. This has led to the creation and use of an
expanding number of robotics software platforms, with a significant amount of
undergraduate classes making use of the new technologies by creating rather ad-
vanced robotics projects within one or two semester courses [1, 23, 26]. In 2006
Microsoft entered the robotics field with its own robotics platform, named Micro-
soft Robotics Studio, competing against already widespread platforms such as the
Player Project.

In this paper we implement a path planning algorithm in a simulated robotics
environment, of which will be able to change its topology and the number of ob-
stacles it contains during the agent’s movement in it. The robotics platform that
will be used is Microsoft’s Robotics Studio, due to the fact that its introduction
has caused extensive discussion and controversy as to whether or not it is suited
for academic research, or educational and industrial purposes [3, 24, 25]. We will
address this mixture of skepticism and enthusiasm by giving Microsoft’s Robotics

George Markou and Ioannis Refanidis 312

Studio’s features, ease of use and learnability a thorough critique, through the im-
plementation of the aforementioned algorithm.

Due to the nature of the simulated environment in which the agent will move,
the path planning algorithm that we will implement will have to be able to create a
new plan or adapt an existing one every time the environment’s topology changes.
Koenig et al. [7] suggested that in systems where an agent has to constantly adapt
its plans due to changes in its knowledge of the world, an incremental search
method could be very beneficial as it can solve problems potentially faster than
solving each search problem from scratch. They combined such a method with a
heuristic one, which finds shortest paths for path-planning problems faster than
uninformed search methods. This led to the creation of the algorithm we will im-
plement, Lifelong Planning A* (LPA*) [8], which produces a plan, having a qual-
ity which remains consistently as good as one achieved by planning from scratch.

The remainder of the paper is organized as follows: In Section 2 we review
works related to our own research, while in Section 3 we compare Microsoft’s
Robotics Studio to other prominent robotics platforms. Section 4 focuses on the
theoretical aspects of the LPA* algorithm. In Section 5 we discuss the domain that
was created in Robotics Studio, both in regard to the simulated maze and to the
robot that was used. Section 6 presents the experiments we implemented, and Sec-
tion 7 concludes the paper and poses directions for future work.

2 Related Work

For Microsoft Robotics Studio (MSRS) to become the standard robotics develop-
ment platform, it has to achieve mainly two different goals: First, partnerships
within the robotic industry, as well as with the academia. Secondly, the program
itself needs to be able to offer advantages in comparison with other platforms. The
first goal has been fulfilled to a point, as several companies, universities and re-
search institutes opted to support and use MSRS, such as Kuka, Robosoft,
fischertechnik and Parallax, Inc. [13]. Additionally, it is available currently for
free download and use to anyone using it for noncommercial purposes.

As to the second goal, in [6] the author concluded that MSRS offers a wide
range of technological solutions to problems common in the robotic field, by pro-
viding features such as visual programming or its combined system of concur-
rency control with efficient distributed message passing. However, he admits that
there are still evident limitations to the program, like its integration with low level
processors. The former opinion is shared by Tsai et al in [23] who used MSRS in
an effort to design a service oriented computer course for high schools. They con-
cluded that there are several disadvantages in the structure of the program, mainly
that the visual programming language that is used in MSRS requires detailed
knowledge of an imperative programming language, and that the loop structures
which are used in it are implemented by “Goto”, instead of by structure construct.

MSRS – Critique on its Usability 313

Also, they pointed out that some of the service oriented features that Microsoft
had promised to provide were not available.

Others, however, are far more positive towards MSRS. Workman and Elzer in
[26] used the program in an upper-level undergraduate robotics elective to docu-
ment its usefulness in such an academic environment. They found that MSRS pro-
vided a great link between the language syntax already known to students and un-
familiar robotics semantics and highly recommended its use, adding that they were
quite satisfied with the available features of the program and the support it pro-
vided for different hardware. Tick in [22] goes even further to suggest that the in-
troduction of MSRS in the robotic market shows the future direction for pro-
gramming for Autonomous Mobile Research Robots and could possibly determine
the evolution of these systems as its own features will force other platforms to de-
velop their competitive products so as to offer similar capabilities.

In conclusion, based on the related bibliography up-to-date it still remains un-
clear whether MSRS will evolve to be the industry’s standard, as other Micro-
soft’s programs have achieved in the past. On the other hand, it is quite definitive
that it has a lot of useful features to offer, especially in the educational field, as
well as that it is already at least a simple starting point for anyone who wants to
become involved with a field as complex as robotics.

3 Robotics Platforms Overview

Before we present the domain we created in MSRS we briefly discuss the similari-
ties and differences of it in comparison to some of the most prevalent robotics
platforms. Although MSRS is available as a free download for researchers or hob-
byists, it is not open source, and it is also not free of charge if intended for com-
mercial use, whereas several platforms like the Player Project are both. Moreover,
MSRS is the only platform in our comparison that can only be used in one operat-
ing system, while most are compatible with at least two, typically both Windows
and Linux operating systems. The Player Project and the Orocos Project do not na-
tively support Windows, but the former can run on Linux, Solaris, Mac OSX and
*BSD, whereas the latter is aimed at Linux systems, but has also been ported to
Mac OSX. One other major difference of Microsoft’s robotics platform in contrast
to its antagonists is that it does not provide a complete robotics intelligence system
so that the robots it supports can be made autonomous, but relies on the program-
mers to implement such behaviours.

Its advantages over the competition, however, are also significant. It is one of
the few major robotics platforms - along with Gostai’s and Cyberbotics’ collabo-
rative platform Urbi for Webots - to provide a visual programming environment,
and its architecture is based on distributed services, with these services being able
to be constructed in reusable blocks. Furthermore, the platform enjoys the finan-
cial and technological support of one of the largest corporations in the world. In

George Markou and Ioannis Refanidis 314

Table 1 there is a comparison of some of the available characteristics of six of the
most widely used robotics platforms today.

Table 1. Features of several of the most prominent robotics platforms [2, 4, 20].

 MSRS 1.5 MobileRobots Skilligent Orocos Player Project Urbi/ Webots

Open Source No No No Yes Yes Parts of Urbi

Free of Charge Express
Edition

 No No Yes Yes No

Windows/ Linux Yes/ No Yes/ Yes Yes/ Yes No/ Yes No/ Yes Yes/ Yes

Other OS No No No No Yes Yes

Distributed Services Yes No Yes No Limited Yes

Drag-and-Drop IDE Yes No No No No Yes

Object Recognition No No Yes No No No

Localization No Yes Yes No No No

Learning/ Social

Interaction

No No Yes No No No

Simulation Envi-
ronment

Yes Yes No No Yes Yes

Reusable Service
Blocks

Yes Yes Yes Yes No Yes

Real-Time No No No Yes No No

4 Lifelong Planning A*

It is very common for artificial intelligence systems to try and solve path-planning
problems in one shot, without considering that the domain in which they operate
might change, thus forcing them to adapt the plan that they have already calcu-
lated. Solving the new path-planning problem independently might suffice if the
domain is sufficiently small and the changes in it are infrequent, but this is not
usually the case.

Koenig et al in [8] developed the Lifelong Planning algorithm to be able to re-
peatedly find a shortest path between two given vertexes faster than executing a
complete recalculation of it, in cases where this would be considered a waste of
computational resources and time. It combines properties of a heuristic algorithm,
namely A* [5], and an incremental one, DynamicSWSF-FP [16]. The first search
LPA* executes is identical to a search by a version of A* that breaks ties in favour
of vertices with smaller g-values. The rest of its searches, which take place when a
change in the domain happens, however, are significantly faster. This is achieved
by using techniques which allow the algorithm to recognize the parts of the search
tree which remain unchanged in the new one.

MSRS – Critique on its Usability 315

Properties of A* are used to focus the search on parts of the tree that are more
likely to be part of the shortest path and determine which start distances should not
be computed at all, while DynamicSWSF-FP is used to decide whether certain dis-
tances remain the same and should not be recomputed. The combination of these
techniques can be very efficient in reducing the necessary time to recalculate a
new path if the differences between the old and the new domain are not signifi-
cant, and the changes were close to the goal. Finally, it is noteworthy that our im-
plementation does not follow the original LPA* algorithm. Instead we opted to
implement the backwards version presented in [9] which continuously calculates a
new shortest path from the goal vertex to the agent’s current position, and not, as
it originally was, from the start vertex to the goal.

5 Maze Domain

The entire simulation domain was created using Microsoft Robotics Studio 1.5
Refresh, which was the current version of the program when we started working
on this paper. Subsequently, as Microsoft released a new version of the platform
Microsoft Robotics Developer Studio (MRDS) 2008 we migrated our project to
the newest version of the program. The platform allows the creation of new user-
defined entities, which can be associated with a mesh, making the entity appear
more realistic. As a three-dimensional mesh can be created and imported into the
MSRS’ simulations environment from most 3D graphical editing programs [15],
the resulting simulation can reflect almost any real situation.

Although creating a particularly realistic environment is not suited for a novice
user as it can be a very complex procedure, several lifelike environments exist as
built-in samples in Microsoft’s Visual Simulation Environment in MRDS 2008.
They have been developed by SimplySim, a French company that provides profes-
sional quality real time 3D simulations, and depict environments ranging from ur-
ban sceneries and apartments to a forest [19].

The environment for our experiments is a much simpler one, based on the
“MazeSimulator” project, a program which allows users to create labyrinths based
on a bitmap image. It was created by Trevor Taylor [21], who in turn used ele-
ments from previous work done by Ben Axelrod. The maze environment we simu-
lated is explained in further detail in Section 5.1.

5.1 Simulated Maze

We created a gridworld of size 7×7, containing nodes which can randomly alter-
nate their status between blocked and unblocked. This scenario is an abstraction of
the Robocup Rescue Simulator Competition [18], where the roads in a city being
hit by an earthquake change their status from free to blocked due to collapsing
buildings. The maze is safely explorable, that is the robot can safely reach the goal
node from any node of the domain.

George Markou and Ioannis Refanidis 316

To create the obstacles in the maze, and make the environment dynamic, we
opted for a solution that removed the obstacles from the simulation, updated their
mass appropriately, and then re-inserted them in the Simulation Engine. This im-
plementation, though not the obvious approach, was the simplest possible since
the platform does not provide through its libraries a method of dynamically chang-
ing the mass of an object. The resulting simulated environment is shown in Fig. 1.

Fig. 1. Initial state of the simulated domain.

5.2 Robot

Microsoft Robotics Studio 1.5 Refresh supported - with built-in services - a wide
variety of robots, ranging from simple and affordable hobbyist robots, such as the
iRobot Create, to sophisticated humanoid robots capable of performing fighting
and acrobatics, like the Kondo KHR-1. The list also includes the Lego Mind-
storms NXT, MobileRobots’ Pioneer 3DX, the Boe-Bot Robot from Parallax and
fischertechnik’s ROBO Interface [14]. All the aforementioned robots are also sup-
ported in MRDS 2008, with the exception of the Parallax Boe-Bot. The robot used
in our experiments was a Pioneer 3DX, with a mounted sick laser range finder on
top of it, as at the time it was one of the most widely used in various MSRS’ tuto-
rials and projects .

We have defined the movement of the robot to consist of three parts. First, the
robot moves in a straight line for a distance equal to the length of a node. Then, it
decides, based on the plan created from LPA*, whether or not is required to make
a turn, and finally it executes the turn, rotating in angles which are multiple of 90
degrees. Using the laser range finder, the robot builds a tri-color map of the envi-
ronment, in which white color symbolizes free space that the robot has explored.
Black color is drawn on the points on the map that the laser hit an obstacle, and
the rest of the map – the part of the environment that the robot has not explored, is
shown in grey color. Each time the robot moves through a specific location, the
part of the map that corresponds to that region will be overwritten by the new data
that the robot collects. In essence, we build a simple occupancy grid map, with
each cell of it containing a value that represents the possibility that it is occupied.

MSRS – Critique on its Usability 317

6 Experiments

We created three different experiments, all with the same initial maze settings, but
each one changing in a different way after the robot had reached a certain node of
the domain. In two of the experiments the changes were known beforehand, whe-
reas in the last one they were random. In each one, however, the changes were mi-
nimal, blocking / unblocking a maximum of two nodes.

We implemented LPA* in MSRS without having to study the program in great
depth or learn a new programming language, since the support for multiple lan-
guages gave us the opportunity to work in one related to our previous knowledge,
in our case C#. An inexperienced user however, has the option to use a graphical
“drag-and-drop” programming language provided by Microsoft, which is designed
on a dataflow-based model. Microsoft’s Visual Programming Language (VPL) al-
lows users to create their program by simply “orchestrating activities”, that is,
connecting them to other activity blocks. An activity is a block with inputs and
outputs that can be represent pre-built services, data-flow control, a function, or
even a composition of multiple activities.

Initially, it was our intention to make use of the visual programming environ-
ment that Microsoft developed to implement our project, so as to additionally
document the strengths and weakness of the new programming language as well
as MSRS. However, the task proved to be extremely difficult, if not impossible,
due to obvious deficiencies of VPL: First of all its diagrams tend to become ex-
ceedingly large as the program’s complexity increases. Moreover, VPL has lim-
ited support for arbitrary user-defined data types and does not support a generic
object which, naturally, is an important restriction to a programmer's tools. What
is more, the only type of control flow and collection of items that have built-in
support in VPL are “if statements” and lists respectively; that is, recursion and ar-
rays are not natively supported at the moment.

Thus, expert programmers will likely prefer to write in an imperative pro-
gramming language, although they can still find VPL useful as a tool, especially if
they are not familiar with MSRS’ environment, as it can easily be used for creat-
ing the skeleton of a basic program by wiring activities to each other and auto-
matically generating the consequent C# code through it. The opinion we formed
through our experience though, is that VPL is best suited for novice users who on-
ly have a basic understanding of programming concepts such as variables, and
might enjoy the easiness of not writing any code.

One element of the platform that is especially helpful to the programming
process is the Concurrency and Coordination Runtime (CCR), a programming
model that facilitates the development of programs that handle asynchronous be-
havior. Instead of writing complex multithreaded code to coordinate the available
sensors and motors functioning at the same time on a robot, the CCR handles the
required messaging and orchestration efficiently as its function is to “manage
asynchronous operations, exploit parallel hardware and deal with concurrency and

George Markou and Ioannis Refanidis 318

partial failure” [12]. Furthermore, it has been proven to be not only useful as a part
of MSRS, but in non-robotics development processes [11, 17].

As aforementioned, we implemented LPA* so that it can work backwards. The
reason behind this choice was that in this way we were able to calculate a new
shortest path for the part of the maze we were interested in, i.e., from the goal
node to the robot. Had we used the original version of LPA*, the algorithm would
calculate an entirely new shortest path from the original node to the finish. The al-
gorithm was applied successfully into the rest of the MSRS domain we created
and performed as one would expect having read the theoretical properties of LPA*
in [7, 8, 9].

The simulation environment was aesthetically appealing and served our func-
tional needs. Based on the robot’s interaction with it and in particular while the
robot followed the course through the maze depicted in Fig. 2 (b), the laser range
finder built the occupancy grid map that is shown in Fig. 2 (a).

Fig. 2.a (Left) Occupancy grid map of the maze’s final state. 2.b (Center) Ground plan of the
maze. The robot’s course is shown in blue. 2.c (Right) Final state of the simulated domain.

7 Conclusions and Future Work

In this paper we used Microsoft Robotics Studio to implement a realistic environ-
ment in which an agent follows a shortest path course from a given node to a goal
one using the LPA* algorithm. It was our intention to critique whether or not
MSRS is a suitable program for use in academic, educational, or even industrial
environments. Our experience indicates that while it may be fairly time-
consuming for a person to familiarize himself with the program, the process is
made significantly easier by the facts that multiple programming languages are
supported and by some of the platform’s features, such as the Concurrency and
Coordination Runtime. In that sense, our findings are in accordance with those
from Workman and Elzer [26] mentioned in Section 2.

Moreover, it is not necessary to delve into all of the aspects of the program to
create a simple functional program, especially if the project’s basis is formed
through orchestrating pre-built services in VPL. Such knowledge may be needed

MSRS – Critique on its Usability 319

though if more sophisticated programs are to be implemented. Our critique of Mi-
crosoft’s Visual Language is partly different from that of Tsai et al [23] as we
concluded that VPL requires only minimal knowledge of an imperative program-
ming language, is not as strong as one, and if anything its use is greater for a nov-
ice programmer than for an expert. Such a programmer will probably find it easier
to use one of the multiple imperative programming languages that are supported
by the platform.

In general, it was evident that the program has extensive features and capabili-
ties that could potentially establish it as the field’s standard, especially considering
the vast support a company like Microsoft can provide for it. Initially, while we
were implementing our experiments in MSRS 1.5 Refresh we encountered several
minor or major difficulties, with the most important being the program’s unex-
pected termination depending on the machine it was executed on. However, in
general these problems can be attributed to the relatively small life cycle of the
product, as after the migration of our project to MRDS 2008 most of them, includ-
ing the termination of the program, seemed to have been resolved. Such problems
could possibly discourage some researchers or educators from relying solely on
MSRS for their needs, and as such it is a matter of utter importance for Microsoft
to keep improving the platform as it did with MRDS 2008, so that it can become
fully stable and functional.

Future work can focus on inducing more than one changes to the maze domain,
and coordinating the MSRS services that are involved in the program so that they
communicate with each other every time such a change occurs. Finally, to evalu-
ate the ease of use and learnability of the platform in an academic environment in
a more efficient, semi-quantitative way and in greater detail, we could base our as-
sessment on an experiment along the following lines: Develop a structured ques-
tionnaire and ask two different groups of students to fill them out after each of
them has implemented a similar robotics project in MSRS and another robotic
platform such as the ones mentioned in Section 3, to establish the advantages and
disadvantages of each one as accurately as possible.

References

1. Blank D, Kumar D, Marshall J & Meeden L (2007) Advanced robotics projects for under-
graduate students. AAAI Spring Symposium: Robots and Robot Venues: Resources for AI
Education: 10-15

2. Bruyninckx H (2001) Open robot control software: the OROCOS project. Proceedings IEEE
International Conference on Robotics and Automation (3): 2523-2528

3. Bruyninckx H (2007) Microsoft Robotics Studio: Expected impact, Challenges & Alterna-
tives. Panel presentation at the IEEE International Conference on Robotics and Automation

4. Gerkey B (2005) The Player Robot Device Interface - Player utilities. http://playerstage.
sourceforge.net/doc/Player-2.0.0/player/group__utils.html. Accessed 15 January 2009

5. Hart P E, Nilsson N J, Raphael B (1968) A Formal Basis for the Heuristic Determination of
Minimum Cost Paths. IEEE Transactions on Systems Science & Cybernetics, 4(2):100-107

George Markou and Ioannis Refanidis 320

6. Jackson J (2007) Microsoft Robotics Studio: A Technical Introduction. IEEE Robotics & Au-
tomation Magazine 14(4):82-87

7. Koenig S, Likhachev M & Furcy D (2004) Lifelong Planning A*. Artificial Intelligence, 155
(1-2):93-146

8. Koenig S, Likhachev M, Liu Y & Furcy D (2004) Incremental Heuristic Search in Artificial
Intelligence. AI Magazine, 25(2):99-112

9. Likhachev M & Koenig S (2005) A Generalized Framework for Lifelong Planning A*. Pro-
ceedings International Conference on Automated Planning and Scheduling: 99-108

10. Michael N, Fink J & Kumar V (2008) Experimental Testbed for Large Multirobot Teams.
IEEE Robots and Automation Magazine, 15(1):53-61

11. Microsoft Corporation (2008) Microsoft CCR and DSS Toolkit 2008: Tyco Case Study.
http://go.microsoft.com/fwlink/?LinkId=130995. Accessed 13 January 2009

12. Microsoft Corporation (2008) Microsoft Robotics Developer Studio: CCR Introduction.
http://msdn.microsoft.com/en-us/library/bb648752.aspx. Accessed 12 January 2009

13. Microsoft Corporation (2008) Microsoft Robotics Studio Partners. http://msdn.micrsoft.com
/en-us/robotics/bb383566.aspx. Accessed 15 October 2008

14. Morgan S (2008) Programming Microsoft Robotics Studio, Microsoft Press
15. Morgan S (2008) Robotics: Simulating the World with Microsoft Robotics Studio.

http://msdn.microsoft.com/en-us/magazine/cc546547.aspx. Accessed 13 January 2009
16. Ramalingam G & Reps T (1996) An incremental algorithm for a generalization of the short-

est-path problem. Journal of Algorithms, 21:267-305
17. Richter J (2006) Concurrent Affairs: Concurrency and Coordination Runtime. http://msdn.

microsoft.com/en-us/magazine/cc163556.aspx. Accessed 13 January 2009
18. RoboCupRescue (2006) Rescue Simulation Leagues. http://www.robocuprescue.org

/simleagues.html. Accessed 25 October 2008
19. SimplySim (2008) Generic Environment. http://www.simplysim.net/index.php?scr=scrAc-

cueil&idcategorie=1. Accessed 12 January 2009
20. Somby M (2008) Software Platforms for Service Robotics http://linuxdevices.com

/articles/AT9631072539.html. Accessed 18 October 2008
21. Taylor T (2008) MSRS Maze Simulator. http://www.soft-tech.com.au/MSRS/MazeSimulator

/MazeSimulator.htm. Accessed 23 September 2008
22. Tick J (2006) Convergence of Programming Development Tools for Autonomous Mobile

Research Robots. Proceedings Serbian-Hungarian Joint Symposium on Intelligent Systems:
375-382

23. Tsai W T, Chen Y, Sun X, et al. (2007) Designing a Service-Oriented Computing Course for
High Schools. Proceedings IEEE International Conference on e-Business Engineering: 686-
693

24. Turner D (2006) Microsoft Moves into Robotics. http://www.technologyreview.com
/computing/17419/page2/. Accessed 21 October 2008

25. Ulanoff L (2006) Rivals Skeptical of Microsoft's New Robot Software. http://www.pcmag.
com/article2/0,1895,1979617,00.asp. Accessed 21 October 2008

26. Workman K & Elzer S (2009) Utilizing Microsoft robotics studio in undergraduate robotics.
Journal of Computing Sciences in Colleges 24(3):65-71

