
A fast parallel algorithm for frequent itemsets
mining

Dora Souliou, Aris Pagourtzis, and Panayiotis Tsanakas ⋆

School of Electrical and Computer Engineering
National Technical University of Athens

Heroon Politechniou 9, 15780 Zografou, Greece
{dsouliou, panag}@cslab.ece.ntua.gr, pagour@cs.ntua.gr

Abstract. Mining frequent itemsets from large databases is an important
computational task with a lot of applications. The most known among them
is the market-basket problem which assumes that we have a large number
of items and we want to know which items are bought together. A recent
application is that of web pages (baskets) and linked pages (items). Pages
with many common references may be about the same topic. In this paper
we present a parallel algorithm for mining frequent itemsets. We provide
experimental evidence that our algorithm scales quite well and we discuss
the merits of parallelization for this problem.

Keywords: parallel data mining, association rules, frequent itemsets, partial
support tree, set-enumeration tree.

1 Introduction

The market-basket problem is described as follows: a database D of transactions
is given, each of which consists of several distinct items. The goal is to determine
association rules of the form A ⇒ B, where A and B are sets of items (itemsets).

In order to determine validity of a rule A ⇒ B, two quantities are taken into ac-
count: the confidence of the rule, which is the fraction freq(A∪B)/freq(A), where
freq(I) is the number of transactions that contain itemset I, and the support of
the rule, which is equal to freq(A ∪ B). The support of the rule is usually called
frequency. One is usually interested in rules the frequency of which is above a thresh-
old t and the confidence of which is above another threshold c. Once we have found
which itemsets have frequency larger than t it is only a matter of simple calculations
to find rules whose confidence exceeds c. Therefore, a fundamental ingredient of dis-
covering association rules is the generation of all itemsets the frequency of which
exceeds threshold t; from now on, we will call such itemsets t-frequent or simply
frequent.

Several sequential methods for computing frequent itemsets have been proposed
in the literature [3], [8], [11]. Sequential algorithms however, can not cope with
very large databases. In that case parallelization techniques seem to be necessary
[4], [14], [13], [9]. In this paper we implement a new parallel algorithm named PMP
(Parallel Multiple Pointer) which achieves a satisfactory speedup and is particularly
adequate for certain types of data sets.

The paper is organized as follows. In section 2 we give a brief description of the
sequential algorithm on which our parallel algorithm is based. In section 3 we present
the parallel algorithm. In section 4 we give experimental results that demonstrate
the efficiency on certain datasets. Conclusions and directions for future work are
discussed in the last section.
⋆ This research is supported by the PENED 2003 Project (EPAN), co-funded by the

European Social Fund (75%) and National Resources (25%).

214 Dora Souliou, Aris Pagourtzis, and Panayiotis Tsanakas

2 The Sequential Algorithm

The main difficulties in computing frequent itemsets are related to two factors: the
number of transactions and the number of items. When the number of transactions
increases each scan of the database becomes time consuming. A large number of
items on the other hand, implies many possible itemsets and this means delays on
computations and increased requirements on memory space. Some known algorithms
[11], [8] in the area gave an answer to the first problem by using structures in which
the database is stored in a more compact form. For the second problem techniques
have been developed for reducing the number of itemsets that need to be examined
e.g the well known A-priori Algorithm [3].
The sequential algorithm that we use as a basis for our parallel algorithm makes use
of a structure called Partial Support Tree (or P -tree for short), introduced in [8], in
which the whole database is stored in one scan. It is a set enumeration tree [12] that
contains itemsets in its nodes. These itemsets represent either whole transactions
of database D or common prefixes of transactions of D. An integer is stored in each
tree node which represents the partial support of the corresponding itemset I, that
is, the number of transactions that contain I as a prefix. The construction of the
P -tree was described in [8]; a more detailed description can be found in [7].

a

ac bc bd

bcd

b c d

ab ad cd

abd acd

abcd

Fig. 1. An example of T -tree.

The sequential algorithm that we use for parallelization uses a second tree struc-
ture, namely the T -tree on the nodes of which candidate frequent itemsets are stored.
This structure was introduced in [6] and algorithms that use it are presented in [10].
Here we propose a modification of this structure as follows: each node of the tree
in the initial structure had two pointers. The first one points to the right sibling
and the second one to the lexicographically smaller child. In the modified T -tree
we use more than one pointers to the children. Figure 1 shows a T -tree for items
a,b,c and d. For example, the node with label “d” would have one pointer to the
node “ad” in the initial structure. In the proposed structure it may have up to two
pointers more: one that points to the node “bd” and one that points to the node
“cd”. The number of pointers depends on the desired tradeoff between memory
space and running time.

We give here some details of how the algorithm calculates the itemset frequen-
cies. The algorithm traverses the P -tree and for each node visited, all subsets of
this node with k items are generated (k is the current level of the T -tree). For each
such itemset the nodes of the T -tree are visited in order to find the itemset. If it
is found, the frequency of the node that contains the itemset is increased by the
partial support of the current node of the P -tree. Suppose for example that we visit
the node “abef” of the P -tree with partial support 12 and that the current level of
the T -tree is three. The subsets with 3 items of “abef” are “abe”, “abf”, “aef”, and

A fast parallel algorithm for frequent itemsets mining 215

“bef”. In order to find “abe” we visit the following nodes of the T -tree “e”, “be”,
“abe”. If “abe” is found, we increase its frequency by 12.

3 The Parallel Algorithm (PMP)

Algorithm PMP (* Parallel Multiple Pointer *)

distribute the database D to the processors in a round-robin manner;
let dj denote the part of D assigned to processor pj ;
in each processor pj in parallel do

build local P -tree from local database dj ;

(* 1st level construction *)
for each node I of the local P -tree

compute all subsets of I with 1 item;
for each I ∈ L1 frequency({I})++; (*L1 is the first level of T -tree *)

(* Global synchronized computation *)
for i := 1 to nitems do (* nitems = number of items *)

total frequency({i}):= parallel sumnprocs
j=1 local frequencyj({i}); (* nprocs =

number of processors *)

(* Local computation continues *)
for i := 1 to nitems do

if total frequency({i}) ≥ t then append {i} to L1; (* all processors obtain
the same list L1 *)

k:=2;
while Lk−1 not empty and k ≤ nitems do

(* k-th level construction *)

set Lk to be the empty list;
for each itemset I ∈ Lk−1 do

for each item xi > last item of I do I ′ := I ∪ xi ;
insert I ′ into Ck;
update pointers for I ′;

for each node J of the local P -tree
compute all subsets s of J with k items
for each s go down to the level k of T -tree and

if s is found then frequency({s})++;
for all itemsets Ik ∈ Ck do

get local frequencyj({Ik}) from local P -tree;

(* Global synchronized computation *)
for all itemsets Ik ∈ Ck do

total frequency(Ik):= parallel sumnprocs
j=1 (local frequencyj(Ik));

(* Local computation continues *)
for all itemsets Ik ∈ Ck do

if total frequency({Ik}) ≤ t
then delete Ik from Lk and update pointers;

k := k + 1;
(* end of while-loop *)

Fig. 2. The Parallel Algorithm

In this section we give a detailed description of the new parallel algorithm. Our
approach follows the ideas of a parallel version of A-priori, called Count Distribution,
which was described by Agrawal and Shafer [4]; the difference is, of course, that

216 Dora Souliou, Aris Pagourtzis, and Panayiotis Tsanakas

PMP makes use of two tree structures P -tree for storing the database and T -tree
for storing the frequent itemsets.

In the beginning, the root process distributes the database transactions to the
processors in a round-robin fashion; then, each of the processors creates its own
local P -tree based on the transactions that it has received. Next, each processor
traverses each local P -tree and for each node visited produces all subsets with 1
item. For each such item the algorithm traverses the T -tree in order to find it and
increase its frequency. When all the nodes of the P -tree have been visited the local
frequencies have been calculated. The calculation of total frequencies of singletons
takes place as follows. Each processor sends the local frequencies and an appropriate
parallel procedure (MPI All reduce function) sums total frequencies. This function
is used to make calculations in an efficient way. The result is distributed to all pro-
cessors so that each one ends up with the same list L1 of singletons. Following each
processor visits the nodes of L1 and removes all infrequent singletons. In this step
each processor has the same list of frequent singletons. During k-level computation
(for each k ≥ 2), all processors first generate the same list of candidate itemsets Ck

from the common list Lk−1. Then the same procedure as that followed for the first
level allows each processor to obtain the total frequencies for all itemsets of Ck, and
finally to derive list Lk by removing infrequent itemsets of Ck.

A detailed description of the algorithm is given in Figure 2.

4 Numerical Results

Our experimental platform is an 8-node Pentium III dual-SMP cluster intercon-
nected with 100 Mbps FastEthernet. Each node has two Pentium III CPUs at 800
MHz, 256 MB of RAM, 16 KB of L1 I Cache, 16 KB L1 D Cache, 256 KB of
L2 cache, and runs Linux with 2.4.26 kernel. We use MPI implementation MPICH
v.1.2.6, compiled with the Intel C++ compiler v.8.1. The experiments presented
below study the behavior of the algorithm in terms of running time and parallel
efficiency.

We have implemented our parallel algorithm (PMP) using synthetic datasets
generated by the IBM Quest generator, described in [3]. We have generated our
datasets using the following parameters:

– D: the number of transactions
– N : the number of items
– T : the average transaction length

We have used four synthetic datasets in our experiments, with number of trans-
actions varying from 100K to 500K and number of items between 100 and 200; For
the datasets with 100 items the average transaction length that we used was 10
(T = 10 10 items per transaction) while for the itemsets with 200 items the aver-
age transaction length was 20. We have chosen relatively small minimum frequency
threshold values varying from 0.1% to 1%.

In Figures 3 and 4 we observe the time performance of the algorithm for number
of transactions 100, 200K, 300K and 500, number of items 100 and threshold values
0.1%, 0.5% and 1%.

We observe that in most cases PMP algorithm is a time efficient algorithm.
For the dataset D100KN100T10 PMP gives satisfactory results for every number of
processors and every threshold value. For the dataset D200KN100T10 the results
show that the algorithm achieves a good time performance with the exception of
one processor and threshold values 200 and 1000. For the datasets with 300K or
500K transactions and 100 items the algorithm scales well enough with the same

A fast parallel algorithm for frequent itemsets mining 217

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 2 4 6 8 10 12 14 16

tim
e

(s
ec

)

processes

D100K.N100.T10 dataset

threshold 1000
threshold 500
threshold 100

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 2 4 6 8 10 12 14 16

tim
e

(s
ec

)

processes

D200K.N100.T10 dataset

threshold 2000
threshold 1000
threshold 200

Fig. 3. Time performance for datasets D100K.N100.T10 and D200K.N100.T10

exception which now expands to two processors. This drawback is due to the ineffi-
cient memory space which slows down the computations. The same remarks could
be made in Figure 5. The two tree structures are space consuming and that is the
main reason for not getting satisfactory results in cases of one or two processors.
On the other hand the PMP algorithm behaves equally well when the number of
processors increases and that renders the parallelization meaningful. This is more
obvious in Figure 6, and in Figure 7 where we can see speedups even above 90%.
Our technique is efficient when the P -tree fits into the local memory of each pro-
cessor. If it is not possible due to the limited number of processors our technique
would require special customization in order to reduce disk accesses.

5 Conclusions

In this work we have developed and implemented the Parallel Multiple Pointer
algorithm and investigated the efficiency of this parallelization technique. The use of
P -tree and T -tree has facilitated the process of computing frequencies. This process
is further accelerated by the use of parallelization. In particular, each processor
handles a part of the database and creates a small local P -tree that can be kept in
memory, thus providing a practicable solution when dealing with extremely large
datasets.

218 Dora Souliou, Aris Pagourtzis, and Panayiotis Tsanakas

 0

 10

 20

 30

 40

 50

 60

 70

 0 2 4 6 8 10 12 14 16

tim
e

(s
ec

)

processes

D300K.N100.T10 dataset

threshold 3000
threshold 1500
threshold 300

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 2 4 6 8 10 12 14 16

tim
e

(s
ec

)

processes

D500K.N100.T10 dataset

threshold 5000
threshold 2500
threshold 500

Fig. 4. Time performance for datasets D300K.N100.T10 and D500K.N100.T10

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 2 4 6 8 10 12 14 16

tim
e

(s
ec

)

processes

Datasets N200 T20

100K records
200K records
300K records
500K records

Fig. 5. Time performance for datasets with 200 items and average transaction length 20

We have implemented the algorithm using message passing, with the help of
the Message Passing Interface (MPI). Experiments show that the above described
parallel strategy is generally competitive. However the time efficiency sometimes

A fast parallel algorithm for frequent itemsets mining 219

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 2 4 6 8 10 12 14 16

sp
ee

du
p

processes

speedup for D100K.N100.T10 dataset

threshold 1000
threshold 500
threshold 100

Fig. 6. Speedup obtained by PMP for dataset D100K N100 T10.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 2 4 6 8 10 12 14 16

sp
ee

du
p

processes

speedup for datasets N200.T20

D100K threshold 1000
D200K threshold 2000
D300K threshold 3000

Fig. 7. Speedup obtained by PMP for datasets with 100 items.

causes problems in memory space. An answer to this problem could be the reduction
on the number of pointers used to construct the T -tree. This could cause delays on
frequency computations but it is necessary when the datasets used are extremely
large and the needs in memory space are increased. An interesting research direction
is therefore to fine tune the number of pointers used in the T -tree structure in order
to balance the needs in space and time.

References

1. S. Ahmed, F. Coenen, and P.H. Leng: A Tree Partitioning Method for Memory Man-
agement in Association Rule Mining. In Proc. of Data Warehousing and Knowledge
Discovery, 6th International Conference (DaWaK 2004), Lecture Notes in Computer
Science 3181, pp. 331–340, Springer-Verlag 2004.

2. R. Agrawal, T. Imielinski, and A. Swami. Mining Association Rules between Sets
of Items in Large Databases. In Proc. of the 1993 ACM SIGMOD Conference on
Management of Data, Washington DC, pp. 207–216 1993.

3. R. Agrawal and R. Srikant. Fast Algorithms for mining association rules. In Proc.
VLDB’94, pp. 487–499 1994.

220 Dora Souliou, Aris Pagourtzis, and Panayiotis Tsanakas

4. R. Agrawal and J.C. Shafer. Parallel Mining of Association Rules. IEEE Transactions
on Knowledge and Data Engineering 8(6), pp. 962–969, 1996.

5. R. J. Bayardo, Jr. and R. Agrawal. Mining the Most Interesting Rules. In Proc. of
the Fifth ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, pp. 145–154, 1999.

6. F. Coenen, G. Goulbourne, and P. Leng. Computing Association Rules using Partial
Totals. In L. De Raedt and A. Siebes eds, Principles of Data Mining and Knowl-
edge Discovery (Proceedings of the 5th European Conference, PKDD 2001, Freiburg),
Lecture Notes in AI 2168, Springer-Verlag, Berlin, Heidelberg: pp. 54–66 2001.

7. F. Coenen, G. Goulbourne, and P. Leng. Tree Structures for Mining Association Rules.
Data Mining and Knowledge Discovery, pp. 25–51, 8 2004

8. G. Goulbourne, F. Coenen, and P. Leng. Algorithms for Computing Association Rules
using a Partial-Support Tree. Journal of Knowledge-Based Systems pp. 141–149, 13
2000.

9. F. Coenen, P. Leng, and S. Ahmed. T-Trees, Vertical Partitioning and Distributed
Association Rule Mining. In Proc. of the 3rd IEEE International Conference on Data
Mining pp. 513–516, ICDM 2003.

10. F. Coenen, P. Leng, A. Pagourtzis, W. Rytter, D. Souliou. Improved Methods for
Extracting Frequent Itemsets from Interim-Support Trees. In Proc. of AI 2005.

11. J. Han, J. Pei, Y.Yin, and R. Mao. Mining Frequent Patterns without Candidate Gen-
eration: A Frequent-Pattern Tree Approach. Data Mining and Knowledge Discovery,
pp. 53–87, 8 2004.

12. R. Raymon. Search Through Systematic Search Enumeration. In Proc. of the 3rd
Internaltional Conference on Principles of Knowledge Representation and Reasoning,
pp. 539–550 1992.

13. D. Souliou, A. Pagourtzis, N. Drosinos, P. Tsanakas. Computing Frequent Itemsets
in Parallel Using Partial Support Trees. in Proceedings of 12th European PVM/MPI
Conference (Euro PVM/MPI 2005), Sorrento (Naples), Italy, Lecture Notes in Com-
puter Science 3666, pp. 28-37, Springer-Verlag 2005

14. Osmar R. Zaine Mohammad El-Hajj Paul Lu. Fast Parallel Association Rule Mining
without Candidate Generation. In Proc. of ICDM 2001.

