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Abstract: Clustering is a data mining activity that aims to differentiate groups inside a
given set of objects, with respect to a set of relevant attributes of the analyzed
objects. Generally, existing clustering methods, such as k-means algorithm,
start with a known set of objects, measured against a known set of attributes.
But there are numerous applications where the attribute set characterizing the
objects evolves. We propose an incremental, k-means based clustering method,
Core Based Incremental Clustering (CBIC), that is capable to re-partition the
objects set, when the attribute set increases. The method starts from the
partitioning into clusters that was established by applying k-means or CBIC
before the attribute set changed. The result is reached more efficiently than
running k-means again from the scratch on the feature-extended object set.
Experiments proving the method’s efficiency are also reported.
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1. INTRODUCTION

Unsupervised classification, or clustering, as it is more often referred as,
is a data mining activity that aims to differentiate groups (classes or clusters)
inside a given set of objects. The inferring process is carried out with respect
to a set of relevant characteristics or attributes of the analyzed objects. The
resulting groups are to be built so that objects within a cluster to have high
similarity with each other and low similarity with objects in other groups.
Similarity and dissimilarity between objects are calculated using metric or
semi-metric functions, applied to the attribute values characterizing the
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objects. A large collection of clustering algorithms is available in the
literature. [6] and [7] contain comprehensive overviews of existing
techniques.

A well-known class of clustering methods is the one of the partitioning
methods, with representatives such as the k-means algorithm or the &-
medoids algorithm. Essentially, given a set of n objects and a number &, k<n,
such a method divides the object set into & distinct and non-empty partitions.
The partitioning process is iterative and heuristic; it stops when a “good”
partitioning is achieved. A partitioning is “good”, as we said, when the intra-
cluster similarities are high and inter-cluster similarities are low.

Generally, these methods start with a known set of objects, measured
against a known set of attributes. But there are numerous applications where
the object set is dynamic, or the attribute set characterizing the objects
evolves. Obviously, for obtaining in these conditions a partitioning of the
object set, the clustering algorithm can be applied over and over again,
beginning from the scratch, every time the objects or attributes change. But
this can be inefficient. What we want is to propose an incremental, k-means
based clustering method, named Core Based Incremental Clustering (CBIC),
that is capable to efficiently re-partition the object set, when the attribute set
increases. The method starts from the partitioning into clusters that was
established by applying k-means or CBIC before the attribute set changed.
The result is reached more efficiently than running k-means again from the
scratch on the feature-extended object set.

2. THEORETICAL MODEL

Let {0,,0,,...,0,} be the set of objects to be classified. Each object is
measured with respect to a set of m initial attributes and is therefore
described by an m-dimensional vector O, =(0,,...,0,,),0, €R ,
1<i<n, 1<k<m. Usually, the attributes associated to the objects are
standardized, in order to ensure an equal weight to all of them ([7]).

The measure used for discriminating objects can be any metric function,
d. We used the Euclidian distance:

d(o,,O,-)=dE(0,,0,r>=,fz«)ﬂ -0,)%.
[=1

Let {K,K,,...,K ,} be the set of clusters discovered in data by applying
the k-means algorithm. Each cluster is a set of objects,
K, ={0/,0§,..,0/ }, 1<j<p.

The centroid (clu’ster mean) of the cluster X, is denoted by f,, where
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The measured set of attributes is afterwards extended with s (s > 1) new
attributes, numbered as (m+1), (m+2),..., (m+s). After extension, the
objects' vectors become O, =(0,,... O,,,,,O, milsee> Oimys )y 1SS n.

We want to analyze the problem of recalculatmg the objects’ grouping
into clusters, after attribute set extension and starting from the current
partitioning. We aim to obtain a performance gain with respect to the
partitioning from scratch process.

We start from the fact that, at the end of the initial clustering process, all
objects are closer to the centroid of their cluster than to any other centroid.

So, for any cluster j and any object O/ € K ;, inequality (1) below holds.
d/;'(Ol'j’fj) S d]j(Oir’fr),vjﬁr) 1 S j’r S p’r $ j (])

We denote by K ,1 £ j < pthe set containing the same objects as K,
after the extension. By f 1 < j < p we denote the mean (center) of the set
K These sets K;, 1<j <p, will not necessarily represent clusters after the
attrlbute set extension. The newly arrived attributes can change the objects
arrangement into clusters, formed so that the intra-cluster similarity to be
high and inter-cluster similarity to be low. But there is a considerable chance,
when adding one or few attributes to objects, and the attributes have equal
weights and normal data distribution, that the old arrangement in clusters to
be close to the actual one. The actual clusters could be obtained by applying
the k-means classification algorithm on the set of extended objects. But we
try to avoid this process and replace it with one less expensive but not less
accurate. With these being said, we agree, however, to continue to refer the
sets K / as clusters.

We therefore take as starting point the previous partitioning into clusters
and study in which conditions an extended object Of' is still correctly
placed in its cluster K .. - For that, we express the dlstance of O/ to the
center of its cluster, f ;» compared to the distance to the center f of any
other cluster X, .

Theorem 1. When inequality (2) holds for an extended object O’ and its
cluster K
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then the object O "is closer to the center fj than to any other center fr',
I<j,r<p, r#.

Proof. We prove below this statement.

nj
m+s z Ou

d* 0/, f)-d* 0!, f)=d*©], )+ Y. | *—-0,

I=m+1 j
n, 2
m+s ZOH
~d*(0].f,)= X | F—-0y
l=m+1|  Pr
Using the inequality (1), we have:
n 2 n 2
) ) m+s Ok’ m+s Okl
d* (0!, f)-d* (0], ;)< Y| -0, | - 2| F—-0,| &
I=m+1 nj I=m+1 n,
m+s Ok/ OI(I zokl Ok[ If the
dz(olj"ﬁ)_dZ(Olj"ﬁ)s Z k=1 k=1 k=1 4 k=L -2-0,
| N n, n, n,

inequality (2) holds for every new attribute of O ', then the inequality
above becomes:
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Because all distances are non-negative numbers, it follows that:
d(O;,f)<dO; , f)Vri<r<pr#j.

We have to notice that the inequality (2) imposes only intra-cluster
conditions. An object is compared against its own cluster in order to decide
its new affiliation to that cluster.

3. CORE BASED INCREMENTAL CLUSTERING

We will use the property enounced in the previous paragraph in order to
identify inside each cluster K; ,1<j < p, those objects that have a
considerable chance to remain stable in their cluster, and not to move in
other cluster as a result of the attribute set extension. We will say that these
objects form the core of their cluster.

Definition 1.

() We denote by StrongCore, = {O’ |0/ € K ,O/' satisfies
inequalities set (2)} the set of all objects in K satlsfymg mequallty (2) for
each new attribute [, m+1 <] <m+s;

(b) Let sat(O/ ) be the set of all new attributes /, m+1 </ <m+s for

which  object O/ " satisfies  inequality (2). We denote by

o ) D | sat(0])]
WeakCore, = 0/ |0/ e K,,|sat(O))| 2 kL% the set of all
n

objects in K} satisfying inequality (2) for at least so many new attributes

that all objects in K , are satisfying (2) for, in the average.
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(c) Core; = StrongCore; iif StrongCore; #C; otherwise, Core, =
WeakCore,. OCore;= K, —Core, is the set of out-of-core objects in cluster
K ',;

(d) We denote by CORE the set {Core, I < j < p} of all clusters cores
and by OCORE the set {OCore, 1<j <p}.

For each new attribute [, m+1 </ <m-+s, and each cluster K; there is at
least one object that satisfies the inequality (2) in respect to the attribute /.
Namely, the object that has the greatest value for attribute [/ between all
objects in K;. certainly satisfies the relation (the maximum value in a set is
greater or equal than the mean of the values in the set). But it is not sure that
there is in cluster K;. any object that satisfies relation (2) for all new
attributes m+1,...,m+s. If there are such objects (StrongCore; #), we know
that, according to Theorem 1, they are closer to the cluster center f than to
any other cluster center f 1<y <p, r#. Then, Core, will be 1n1t1ahzed with
StrongCore; and will be the seed for cluster j in the incremental algorithm.
But if StrongCore; = &, than we will choose as seed for cluster j other
objects, the most stable ones between all objects in K .. ;- These objects
(WeakCore)) can be less stable than would be the objects in StrongCore,.
This is not, however, a certain fact: the objects in the “weaker” set
WeakCore; can be as good as those in StrongCore,. This comes from the fact
that Theorem 1 enounces a sufficient condition for the objects in K to be
closer to f than to any other f but not a necessary condition too.

The cluster cores, chosen as we described, will serve as seed in the
incremental clustering process. All objects in Core;, will surely remain
together in the same group if clusters do not change. This will not be the
case for all core objects, but for most of them, as we will see in the results
section.

We give next the Core Based Incremental Clustering algorithm. We
mention that the algorithm stops when the clusters from two consecutive
iterations remain unchanged or the number of steps performed exceeds the
maximum allowed number of iterations.

Algorithm Core Based Incremental Clustering is
Input: -theset X ={0,,...,0, } of m-dimensional objects,
-theset X = {O], O } of (m+s)-dimensional extended objects
to be clustered, 0 has the same first m components as O,
- the metric d;; between objects in a multi-dimensional space,
- p, the number of desired clusters,
-K ={K,...,K,} the previous partitioning of objects in X,
- noMaxIter the maximum number of iterations allowed.
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Output:- the re-partitioning K ={K,,..., K;,} for the objects in X
Begin
For all clusters K;eK do
Calculate Core, = (StrongCore#J) ? StrongCore; : WeakCore,
K, =Core,
Calculate f; as the mean of objects in Core,
EndFor
While ( K} changes between two consecutive steps) and
(there were not performed noMaxlter iterations) do
For all clusters Kj do o
K, ={0/1d(0, f,)<d(O, f,),Vr,1<sr<p,1<i<n}
EndFor
For all clusters K‘/. do .
f, = the mean of objects in K
EndFor
EndWhile
End.

The algorithm starts by calculating the old clusters' cores. The cores will
be the initial clusters for the iterative process. Next, the algorithm proceeds
in the same manner as the classical k-means method does. We mention that
the computation of the core of a cluster C depends only on the current cluster
(does not depend on other clusters).

4. EXPERIMENTAL EVALUATION

In this section we present some experimental results obtained by applying
the CBIC algorithm described in section 3.

For this purpose, we used a programming interface for non-hierarchical
clustering described in ([1]). We have to mention that using this interface we
can simply develop non-hierarchical clustering applications for different
kind of data (objects to be clustered). As it is shown in our experiments, the
objects to be clustered are very different (patients, wine instances).

As a case study, for experimenting our theoretical results described in
section 2 and for evaluating the performance of the CBIC algorithm, we
consider some experiments that are briefly described in the following
subsections. We have to mention that all data were taken from the website at
“http://www.cormactech.com/neunet”.
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4.1 Quality Measures

As a quality measure we take the movement degree of the core objects
and of the extra-core objects. In other words, we measure how the objects in
either Core; € CORE, or OCore; € OCORE, remain together in clusters after
the algorithm ends.

As expected, more stable the core objects are and more they remain
together with respect to the initial sets Core;, better was the decision to
choose them as seed for the incremental clustering process. Also, as the
experiments will show, the movement degree was always smaller for the
core objects than for the extra-core objects.

We express the core stability factor as:

| Core, |

>

o noof clusters where the objects in Core ; ended
CSF(CORE) =-

p
.| Core, |
=1

C))

The worst case is when each object in Core; ends in a different final
cluster, and this happens for every core in CORE. The best case is when
every Core; remains compact and it is found in a single final cluster. So, the
limits between which CSF' varies are given below, where the higher the
value of CSF is, better was the cores choice:

p

5 <CSF(CORE)<1 %)
Z| Core, |
/=1 '

Accordingly, the out-of-core stability factor, OCSF(OCORE), is defined
similar to CSF(CORE), replacing the sets Core; with OCore;.

For comparing the informational relevance of the attributes we used the
information gain (IG) measure ([9]).

4.2 Experiment 1. Cancer

The objects to be clustered in this experiment are patients: each patient is
identified by 9 attributes [3]. The attributes have been used to represent
instances. Each instance has one of 2 possible classes: benign or malignant.
In this experiment there are 457 patients (objects).



A New Incremental Core-Based Clustering Method 277

4.3 Experiment 2. Dermatology

The objects to be clustered in this experiment are also patients: each
patient is identified by 34 attributes, 33 of which are linear valued and one of
them is nominal. There are 366 objects (patients).

The aim of the clustering process is to determine the type of Eryhemato-
Squamous Disease [4].

44  Experiment 3. Wine

These data are the results of a chemical analysis of wines grown in the
same region in Italy but derived from three different cultivars. The analysis
determined the quantities of 13 constituents found in each of the three types
of wines [5].

The objects to be clustered in this experiment are wine instances: each is
identified by 13 attributes. There are 178 objects (wine instances).

4.5 Results

In this section we present comparatively the results obtained after
applying the CBIC algorithm for the experiments described in the above
subsections. We mention that the results are calculated in average, for six
executions.

Table 1. Comparative results

Experiment Cancer Dermatology | Wine
No of objects 457 366 178
No of attributes (m+s) 9 34 13

No of new attributes (s) 4 3 4

No of k-means iterations for (m+s) attributes | 6.2857 11.57 7

No of k-means iterations for m attributes 6 11.85 9.37
No of CBIC iterations for (m+s) attributes 7 6.14 6.8
CSF(CORE) 0.9 0.8406 0.5244
OCSF(OCORE) 0.5 0.7008 0.4194

From Table 1 we observe that using the CBIC algorithm the number of
iterations for finding the solution is, in the average, smaller, and also the
cores' stability factor, CSF(CORE), is high. We mention that for every
running of each experiment, CSF(CORE)> OCSF(OCORE). So, every time,
the stability of the objects chosen to be part or cores was greater than the
stability of out-of-core objects.

In Table 2 we present, for each experiment, the attributes in decreasing
order of their information gain (/G).
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Table 2. The decreasing order of attributes in respect to the information gain measure

Experiment Order of attributes IG of new attributes /
1G of old attributes (%)
Cancer 236754819 64,7%

Dermatology 222123134302813267179291016 11 7,6%
251562742032852433112219181433

Wine 71012136121194538 57%

From Table 2 it results that the importance of the added attributes
influences the number of iterations performed by the CBIC algorithm for
finding the solution. For example, in the “cancer” experiment where the
information brought by the added attributes was close to that of the initial
ones, the number of iterations performed by CBIC is also close to the
number of iterations performed for all the attributes.

5. CONCLUSIONS AND FUTURE WORK

Further works can be done in the following directions: to apply the
incremental algorithm on precise problems, from where the need for such an
incremental algorithm originated; to study how the theoretical results
described for non-hierarchical clustering could be applied/generalized for
other clustering techniques.
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