
A UML Profile Oriented to the Requirements
Modeling in Intelligent Tutoring Systems

Projects

Gilleanes Thorwald Araujo Guedes and Rosa Maria Vicari

Instituto de Informática
Programa de Pós-Graduação em Computação (PPGC)

Universidade Federal do Rio Grande do Sul (UFRGS) - Porto Alegre - RS - Brasil
gtaguedes@inf.ufrgs.br,rosa@inf.ufrgs.br

http://www.inf.ufrgs.br/pos

Abstract. This paper describes a proposal for the creation of a UML
profile oriented to the intelligent tutoring systems project. In this paper
we shall describe the proposed profile as well as its application into the
modeling of the AMEA intelligent tutoring system.

Key words: UML Profiles, Stereotypes, Actors, Use-Cases, Agents, AMEA.

1 Introduction

In the area of Artificial Intelligence, the employment of intelligent agents as aux-
iliary aids to software applied to the most diverse dominions is being spread out.
This practice has shown to be a good alternative for the development of complex
systems, fostering a great increase of agent-supported software development in
the several areas, one of those the intelligent tutoring systems, in which agents
are also employed as pedagogical agents.

However, the development of this kind of system has presented new challenges
to the software engineering area and this led to the surfacing of a new sub-area,
blending together concepts brought over from both the software engineering
and artificial intelligence areas, which is known as the AOSE - Agent-Oriented
Software Engineering, whose goal is that of proposing methods and languages
for projecting and modeling agent-supported software.

Despite many AOSE methods having been created for multi-agent systems
(MAS) projects, Vicari [1] states these are not totally adequate for the modeling
of Intelligent Tutoring Systems. Likewise, some attempts to adapt and extend
UML (Unified Modeling Language) to the multi-agent systems projects were
made; nonetheless, those attempts we have studied did not concern themselves
into extending and applying some of the UML resources, such as the use-case
diagram, which is mainly employed for requirements collecting and analyzing, an
essential phase for the achievement of a good system project. Thus, we developed
a UML profile for the project of Intelligent Tutoring Systems, for which end we
started by adapting the use-case diagram.



2 Authors Suppressed Due to Excessive Length

2 UML, Metamodels and Profiles

According to [2], the UML is a visual language for specifying, constructing, and
documenting the artifacts of systems. It is a general-purpose modeling language
that can be applied to all application domains.

The UML specification is defined using a meta-modeling approach (i.e., a
meta-model is used to specify the model that comprises UML) that adapts
formal specification techniques. When meta-modeling, we initially establish a
distinction between meta-models and models. A model typically contains model
elements. These are created by instantiating model elements from a meta-model,
i.e., meta-model elements. The typical role of a meta-model is that of defining
the semantics for the way model elements within a model get instantiated.

A Profile is a kind of Package that extends a reference meta-model. The
primary extension construct is the Stereotype, which is defined as part of the
Profiles. A profile introduces several constraints, or restrictions, on ordinary
meta-modeling through the use of the meta-classes defined in this package.

3 UML-Derived Languages

Some attempts have already been tried to adapt UML for the project of multi-
agent systems, though nothing specific for the project of intelligent tutor sys-
tems. One of the first attempts was the AUML language [3]. Besides that, other
languages, like AML [4], AORML [5], and MAS-ML [6] were also proposed.

However, neither of the above focus the matter of requirements collecting
and analyzing nor on its modeling by means of the UML use cases diagram and
no attempt was found in those languages to extend the metaclasses employed in
that diagram for applying them on the multi-agent systems project.

4 UML Profile for the ITS Project

Considering that UML is a standard modeling language broadly accepted and
understood in the software engineering area, that multi-agent systems own their
proper characteristics, and that very few of works applying UML into a multi-
agent systems project did care to focus the matter of requirements collecting and
analyzing, we decided on creating a UML profile in which we extend the meta-
classes employed by the use-case diagram, thus creating stereotypes prepared to
identify the particular functionalities of this kind of system, as can be seen in
the following illustration.

To develop this profile, we began by using the original metaclass, Actor.
According to [7], the Actor metaclass represents a type of role played by an
entity that interacts with the subject, but which is external to the subject.
An actor does not necessarily represent a specific physical entity but merely a
particular facet (i.e., ”role”) of some entity that is relevant to the specification
of its associated use cases.



Title Suppressed Due to Excessive Length 3

Fig. 1. UML Profile for the Project of Intelligent Tutoring Systems

However, most of the times, the software agents are not external to the soft-
ware, rather they customarily are inserted in the system environment and, as
they are independent, proactive, and able to interact with the software accord-
ing to their goals, these should be represented as actors. So, as states [8], it
is necessary to adapt this concept, considering that agents can be internal to
the system, that is, an agent can be a part of the subject and, therefore, if we
are to represent agents (their roles) as actors, said actors should be internally
represented within the system’s borders, for they belong to the software.

The representation of agents/roles as UML actors can also be seen in [9],
in which agents represent active objects and are modeled within the system as
rectangle-headed actors. However [8] only suggests that the concept of actor
should be adapted and [9] did not created a UML profile for agents. In our work
we explicitly derived new metaclasses from the original metaclasses endeavoring
for the former to allow an adequate requirements modeling in MAS.

However, according to [2], it is not possible to take away any of the constraints
that were applied to a metamodel such as UML when using a profile. Thus,
instead of extending the Actor metaclass, we created a new metaclass derived
from the same metaclass as the Actor metaclass had been, as can be seen in
figure 1, creating the Agent/Role-Actor Metaclass. In this new metaclass we
copied all the characteristics of the Actor metaclass, including the same symbol,
suppressing only the constraint that an actor needs must be external to the
system. And, from this new metaclass we derived the Reactive Agent/Role and
Cognitive Agent/Role metaclasses.

As can be observed, we applied the stereotype ”stereotype” in both meta-
classes, which means that these metaclasses will be applied as stereotypes on
agent/role actors while attributing them special characteristics, for said agent/role
actors shall be utilized within specific domains to represent cognitive and reac-
tive agents/roles. We opted for creating two stereotypes so as to establish a
difference between reactive and cognitive agents, considering that either group
presents different characteristics.

According to [7], a use case is the specification of a set of actions performed
by a system. Each use case specifies some behavior that the subject can perform



4 Authors Suppressed Due to Excessive Length

in collaboration with one or more actors. Use cases can be used both for speci-
fication of the (external) requirements on a subject and for the specification of
the functionality offered by a subject. Moreover, the use cases also state the re-
quirements the specified subject poses on its environment by defining how they
should interact with the subject so that it will be able to perform its services.

Thus, with the objective of adapting the use cases concept to the MAS mod-
eling, we derived a new metaclass departing from the same metaclass as the
UseCase metaclass, called ”InternalUseCase” and then we created the same re-
lationships with the Classifier metaclass for this new metaclass as those belonging
to the UseCase metaclass. We made it that way because we intended to represent
goals, plans, actions and perceptions as use cases, but the semantics of the Use-
Case Metaclass says that use cases represent external requirements, therefore,
to adapt this concept to the MAS modeling we created a similar metaclass, all
the while we modified its semantics to represent internal requirements.

Naturally, all Internal use cases are internal to the system and can be neither
used nor seen by human users. From the InternalUseCase metaclass, we extended
some metaclasses to attribute special characteristics to internal use cases; these
extended metaclasses will be employed as stereotypes. Thusly, we created the
metaclasses, Perception and Action, to model internal use cases that contained
the necessary steps for an agent to perceive or do something, a procedure also
suggested by [8] to be applied in normal use cases, though as stated before in
[7], these refer to the external requirements, not to the internal ones.

A third metaclass was derived from the metaclass, InternalUseCase, to rep-
resent Goals. A internal use case employing the stereotype, Goal, shall contain
a description of a desire to be attained by an agent and the possible conditions
for that desire to become an intention. Besides, we evolved the first proposal of
this profile presented in [10] when we included the concept of softgoal, deriving
the SoftGoal metaclass from the Goal metaclass. The concept of softgoal is de-
scribed in [11] and it is used to represent cloudy goals, which do not present a
clear definition and/or criteria for deciding whether they are satisfied or not.

A somewhat similar proposal for representing goals as use cases can be seen
in [9], but, besides using internal use cases, we went a little further beyond the
proposal presented by [9], when we considered that, just like a goal represents
a desire that will not necessarily become an intention, the steps for its execu-
tion should be detailed in other or others internal use cases; in the situation of
a internal use case employing the stereotype, Goal, we shall only detail those
perceptions and conditions necessary for that goal to become an intention. Con-
sidering a goal might eventually have more than a plan and that this or these
plans will only be accomplished within certain conditions, we decided on deriving
still another metaclass, Plan, from the metaclass, Extend.

According to [7] a metaclass, Extend, represents a relationship from an ex-
tending use case to an extended use case that specifies how and when the behav-
ior defined in the extending use case can be inserted into the behavior defined
in the extended use case. If the condition of the extension is true at the time the
first extension point is reached during the execution of the extended use case,



Title Suppressed Due to Excessive Length 5

then all of the appropriate behavior fragments of the extending use case will also
be executed. If the condition is false, the extension will not occur. Because a plan
only will be triggered after some particular condition be satisfied, we decided on
extending the metaclass, Plan, from the metaclass, Extend, and associated the
former to the metaclass, Goal, by means of a composite association.

Finally, we derived the meta-class, Plan Extension Point from the meta-
class, Extension Point. According to [7] an extension point identifies a point in
the behavior of a use case where that behavior can be extended by the behavior
of some other (extending) use case, as specified by an extend relationship. We
derived this last meta-class only to set up a difference between Plan Extension
Points and normal Extension Points; nonetheless, this also can serve to render
explicit the condition for a plan to be executed.

5 The AMEA Project

The AME-A [12] architecture - Ambiente Multi-Agente de Ensino-Aprendizagem
or “Teaching-Learning Multi-agent Environment” is composed by a hybrid so-
ciety of agents that cooperate to aid into the students learning process. The
environment interacts with human agents that can be both the teacher or the
students and owns several reactive and cognitive agents.

The teacher can create a learning activity or evaluate the students with the
help of the Teacher’s Tools reactive agent. The student, on his turn, can choose
between execute an unmonitored learning session or a monitored learning session.
In the first option, the student only interacts with the Unsupervised Learning
reactive agent that will only present him/her the contents to be learned.

The monitored learning activity is set as the main focus for the system, in
which it aims to maximize the student learning by means of the aid of five cog-
nitive agents, to wit: Student Modeling (SM), Methodology and Teaching Plan
(MTP), Learning Orientation (LO), Learning Analysis (LA) and Knowledge Ap-
plication Orienting (KAO). The first models the student profile in a dynamic
way, while the second chooses the methodology and learning plan that are more
adequated to the student profile every time it changes or whenever the student
performance is lower than the expected level; the LO agent selects the contents
to be taught and the way how these will be presented according to the chosen
methodology; the LA agent checks on the student performance throughout the
session and the KAO agent applies a general evaluation after the session ends.

Since the teacher and the student are human agents that interacts with the
system but are external to it, we represent them as normal actors, out of the sys-
tem boundaries and we associate to the actor that represents the teacher to the
funcionalities represented by normal use cases, “Create learning activity” and
“Evaluate students”. Notice that in these funcionalities there is also an interac-
tion with the Teacher Tools agent, who, being a reactive agent, was represented
as an agent/role actor with the stereotype “Reactive Agent/Role” and placed
inside the system boundaries, because it is inserted in the software.



6 Authors Suppressed Due to Excessive Length

Now the actor student was associated to the funcionalities “Execute an un-
monitored learning session” and “Execute a monitored learning session”, equally
represented as normal use cases. In the first funcionality there is also a interac-
tion with the reactive agent Unsupervised Learning, which, in the same way as
the previous agent was represented as an agent/role actor with the estereotype
“Reactive Agent/Role”.

The funcionality “Execute monitored learning session” represents the more
important activity of the system and it is the one that presents more complexity,
involving the five cognitive agents of the software, which, because are agents, are
represented as Agent/Role Actors inside of the system, containing the “Cognitive
Agent/Role” stereotype, since they are cognitive agents.

Fig. 2. Normal Actors modeling external users, normal Use Cases modeling function-
alities, and stereotyped Agent/Role Actors modeling agents

These funcionalities were represented as normal use cases, since they repre-
sent services that the external users can ask from the system. Figure 2 ilustrates
this excerpt of the modeling. This figure presents only a part of the use cases
diagram. Due to the lack of space and for a matter of visibility, we suppressed
the representation of the cognitive agents goals, plans, perceptions and, actions,
detailing separately the requirements for each cognitive agent. To sustain the
connection with this excerpt of the modeling, we shall mantain the association
of the cognitive agents with the use case “Execute monitored learning activity”.

The SM agent has for its goal modeling the student in a dynamic way. This
agent has two perceptions. First it must perceive that the learning session be-
ginning and, in this case, trigger the “apply questionary” plan to determine the
student profile. And it needs perceive when the student behavior changes, in
which case it has to trigger the plan to remodel the student profile. Figure 3
ilustrates the modeling of these requirements for the SM agent.

In this figure we associated to the SM agent an internal use case (IUC)
with the Goal stereotype representing the goal that this agent has to model the
student profile. This goal has two inclusion associations with two IUCs that rep-
resent the perceptions the agent needs to own to determine wether is necessary
to trigger some of the plans associated to the goal. An inclusion association de-



Title Suppressed Due to Excessive Length 7

termines that the behavior of the use case therein included should mandatorily
be executed by the use case it includes. So, to reach its goal, the SM agent has to
execute these perceptions. So that, we use an IUC with the stereotype Percep-
tion to represent the perception of learning session beginning and another IUC
with the same stereotype to represent the perception of the student behavior.

Fig. 3. Internal use cases with Goal, Plan, and Perception stereotypes

Notice that, in the IUC that represents the goal, there are two Plan extension
points, both representing the points in the goal behavior to where the plans
associated to it can be extended, besides establishing the conditions for the
plans to be executed. In such way, if the agent perceives the learning session is
beginning, the plan to apply a questionnaire to the student will be triggered,
represented by an IUC containing the Plan stereotype; and, if the agent notices a
change in the student behavior, the plan to remodel the student will be triggered,
equally represented by an IUC containing the Plan stereotype. Further observe
that the two IUCs that represent the plans are associated to the IUC Goal by
means of extension associations, that is, these IUCs will only be executed after
the conditions detailed by the Plan extension points are satisfied.”

The following agent, MTP, has for its goal to choose the methodology and
teaching plan which is more adequated to the student, to do so, it has to perceive
when the student model changes, this includes the perception of when the student
is modeled for the first time, when there is no model yet. This goal han an
associated plan, “Change Learning Methodology and Teaching Plan” which will
be triggered when the studel model changes or when the student’s performance
is low. The execution of this plan includes the sending of a message to the LO
agent informing that the methodology was modified.

In figure 4, to model these requirements we associated an IUC including the
Goal stereotype with the agent to represent its goal. After that, we associated,
by means of inclusions, two IUCs with the Perception stereotype to represent the
perceptions of student model change and student performance. After that, we
created an extension association to connect the IUC with the Plan stereotype,
which will represent the plan for methodology and teaching plan changes to the
Goal IUC. This plan will be triggered only when the student model changes or



8 Authors Suppressed Due to Excessive Length

when the student performace is low, as demonstraded by the Plan extension
points in the Goal IUC. Finally, if the plan is executed, it is need to comunicate
to the LO agent the chage of methodology; since this is done by means of a
communication between agents, we identified this as an action and we associated
it to the plan by means of an IUC with the Action stereotype.

Fig. 4. Methodology and Teaching Plan agent requirements

The LO agent has for its goal to present learning contents for the student and
for its perception the choice of the methodology and teaching plan. When the
methodology and the teaching plan are perceiveds by the LO agent, it executes
the plan “Select material for learning”. These requirements are modeled on figure
5, where we represent the goal, the perception and the plan as internal use cases
containing respectively the stereotypes Goal, Perception and Plan. As the plan
will only be triggered when the choice of a methodology is perceived, there is an
inclusion association between the goal and the perception, obligating the agent
to verify if it occurs. There is also an extension association between the goal and
the plan, since the plan only will be triggered if the condition is satisfied.

Fig. 5. Learning Orientation agent requirements

Figure 6 presents the modeling related to the requirements of LA agent, which
has for its goal to check the knowledge acquired by the student, represented by
an IUC containing the Goal stereotype. To execute this goal, the agent must



Title Suppressed Due to Excessive Length 9

perceiving the student’s performance; this perception is represented by an IUC
containing the Perception stereotype. Besides, the LA agent must inform this
performance to the MTP agent, which is represented as an IUC containing the
Action stereotype. If the student performance is considerated low, then the plan
“Boosting student” is triggered, equally represented as an IUC with the Plan
stereotype. This plan has for action to send motivation messages to the student;
we identified this as an IUC containing the Action stereotype and we connected
this to plan by means of an inclusion association.

Fig. 6. Learning Analysis agent requirements

The last agent involved in the process, the KAO agent, has for its goal to
evaluate the student after the session ends. Thus, it needs to perceive the learning
session ends so as to know when to trigger the plan “Apply evaluation”. Here
we applied the same stereotypes used in the previous examples in internal use
cases, as demonstrated in figure 7.

Fig. 7. Knowledge Application Orienting agent requirements

There are structural and behavioral questions that need to be best detailed,
since the presented profile focus only the system requirements. All the same,
even on project level, it is needed to represent information like beliefs, desires



10 Authors Suppressed Due to Excessive Length

and intentions by means of class diagrams and the processes represented by the
IUCs must be detailed through behavioral diagrams. Up to now we have been
directly using these diagrams in [10], though we might instead extend other UML
metaclasses so as to best adequate them to the ITS Project or we can apply some
of the UML derived languages to the MAS project previously described.

6 Conclusions

Throughout this paper we have presented a UML profile developed to the in-
telligent tutoring systems project oriented to the requirements collection and
analysis. We demonstrated the applicability of said profile by means of AMEA
System modeling and also that the stereotypes we have created can be used to
model cognitive and reactive agents, and actions, perceptions, goals, and plans
as well. However, we intend to apply this profile on some other projects for In-
telligent Turoring Systems, possibly of a more complex sort, so as to find out
whether this profile is really adequate for projecting this type of systems and to
pinpoint any weakness needing some improvement.

Although this profile has been developed for the Intelligent Tutoring Systems
modelling,we believe it might be applied to other MultiAgent System projects
oriented to other dominions. We also believe this profile can be adapted to most
UML already existing extensions created for the MultiAgent Systems project.

References

1. Vicari, R.M., Gluz, J.C.: An Intelligent Tutoring System (ITS) View on AOSE.
International Journal of Agent-Oriented Software Engineering. (2007)

2. OMG - Object Management Group. Unified Modeling Language: Infrastructure
Specification - Version 2.1.1. OMG (2007). http://www.omg.org

3. AUML Official Website (2007). http://www.auml.org
4. Trencansky, I., Cervenka, R. Agent Modeling Language (AML): A comprehensive

approach to modeling MAS. Informatica, 29(4):391–400. (2005).
5. Wagner, G. A UML Profile for External AOR Models. Third International Workshop

on Agent-Oriented Software Engineering. (2002).
6. Silva, V. et alii. MAS-ML: A Multi-Agent System Modeling Language. Interna-

tional Journal of Agent-Oriented Software Engineering, Special Issue on Modeling
Languages for Agent Systems, Inderscience Publishers, vol.2, no.4. (2008).

7. OMG - Object Management Group. Unified Modeling Language: Superstructure
Specification - Version 2.1.1. OMG (2007). http://www.omg.org

8. Bauer, B., Odell, J.: UML 2.0 and Agents: How to Build Agent-based Systems with
the new UML Standard. Journal of Engineering Applications of AI. (2005)

9. Flake, S., Geiger, C., Küster, J.: Towards UML-based Analysis and Design of Multi-
Agent Systems. Proceedings of ENAIS’2001, Dubai, March (2001).

10. Guedes, G.: A UML Profile Oriented to the Requirements Collecting and Analyzing
for the MultiAgent Systems Project. Proceedings of SEKE2010, Redwood (2010).

11. Bresciani P. et alii: Tropos: An Agent-Oriented Software Development Methodol-
ogy. Autonomous Agents and Multi-Agent Systems. v.8, n.3, 203-236 (2004).

12. D’Amico, C. B., Viccari, R.: Adapting Teaching Strategies in a Learning Environ-
ment on WWW. WebNet (1998).


