
Knowledge Conceptualization and Software Agent based
Approach for OWL Modeling Issues

S. Zhao1, P. Wongthongtham2, E. Chang3 and T. Dillon4

Abstract In this paper, we address the issues of using OWL to model the knowledge captured
in relational databases. Some types of knowledge in databases cannot be modeled directly using
OWL constructs. Two alternative approaches are proposed with examples of two types of
knowledge. Firstly the data value range constraint and secondly the calculation knowledge rep-
resentation. The first approach to the problem is to conceptualize the data range as a new class
and the second solution to the problem is proposed, based on utilizing software agent technol-
ogy. Examples with OWL code and implementation code are given to demonstrate the problems
and solutions.

1 Introduction

With the increasing trend of collaborations amongst organizations and business needs
for sharing and publishing their products information, information and knowledge
held in vast number of databases are demanded to be shared and integrated without
organizational and application boundaries. However, databases are enterprise and ap-
plication dependant in that their design and development are subjected to a particular
business problem domain of an organization. This has prevented the databases from
being shared and integrated in an open environment.

Ontology-based technologies provide a feasible approach to this problem. Ontol-
ogy-based technologies promote knowledge sharing and integration by formally and
explicitly defining the meanings and associations of information and data. An ontol-
ogy is defined as “a formal, explicit specification of shared conceptualization” [1-3].
Ontologies allow specially designed software agents to automatically process and in-
tegrate information from distributed sources. Many approaches have been proposed to
transform the knowledge embedded in databases, particularly in relational databases,
into ontologies [4-9]. The transformation process involves database reverse engineer-

1 2 3 4.Shuxin Zhao, Dr. Pornpit Wongthongtham, Prof. Elizabeth Chang, Prof. Tharam Dillon

 Digital Ecosystems & Business Intelligence Institute, Curtin University of Technology, Australia.

 email: {s.zhao, p.wonthongtham, e.chang, tharam.dillon}@curtin.edu.au

S.Zhao, P. Wongthongtham, E.Chang and T.Dillon

ing for acquiring the implicit knowledge from databases and involves mapping the ex-
tracted knowledge onto an ontology language. OWL [10], particularly OWL DL, as
the WWW consortium recommendation for Semantic Web, has gained the popularity
as the target ontology language. Hereafter, we refer OWL in this paper to OWL DL,
as it’s the most practical one among the three sub-languages for Semantic Web.

However, there is a critical issue of using OWL, to fully and accurately represent
the knowledge captured in relational databases. Although there are many similarities
between an ontology and a conceptual data model of a database, such as UML or EER
model, there are many practical issues when mapping the knowledge captured in a
conceptual model onto an OWL ontology. For example, there are three common types
of relationships between concepts we model in an UML model, namely, generaliza-
tion/specialization, aggregation and composition and association. While generaliza-
tion/specialization can be modeled straightforwardly using OWL hierarchical mecha-
nism i.e. Class and Subclass, Property and Subproperty, the aggregation/composition
relationship cannot be represented directly using OWL elements. There are also other
types of knowledge captured by relational databases that we found hard to represent
using OWL constructs such as the value range restrictions on an attribute, and the
functional dependency among several attributes of one or more tables which captures
some sort of relationships between attributes rather than concepts.

In this paper, we present two alternative solutions to tackle this OWL modeling is-
sue, namely, conceptualization approach and software agent based approach. Two
specific examples are used to demonstrate each of the approaches respectively: firstly
the problems of modeling the data value range constraint; secondly, the problem of
modeling mathematic calculation knowledge, whose operands are derived from at-
tributes of one or more concepts, which represents relationships between these attrib-
utes. Our motivation is to reveal some ideas of extending the expressiveness of OWL
in the mean time to retain computational completeness of the ontology model, thus to
make OWL more adaptable to various domain knowledge representations.

The rest of this paper is organized as follows: Section 2 reviews related work on
these issues; Section 3 describes the problems in details with examples; followed by
Section 4 demonstrating the solutions to the problems with code example; last in Sec-
tion 5, we conclude the paper and indicate future work.

2 Related Work

OWL provides powerful mechanisms to enhance reasoning about the Classes and re-
lationships amongst Classes but not for representing and reasoning relationships be-
tween Properties. The OWL modeling issue originates from its design pursuit of the
trade-off between expressiveness and scalability of a language. Most important kinds
of knowledge are supported in OWL, particularly for sub-assumption and classifica-
tion, while the computational completeness and decidability must also be retained [11,
12]. As a consequence, the OWL is designed to be maximum expressive without be-
ing undecidable. This has resulted in the expressiveness limitations amongst other
OWL weakness which are identified in [13]. One of W3C’s solutions to this problem
is to introduce Rules (RIF) [14] which aims to provide greater expressiveness in con-

362

Knowledge conceptualization & software agent based approach for OWL modeling issues

junction with RDF/OWL, typically, to provide a richer language for representing de-
pendencies between Properties rather than Classes. RIF Core Design working draft
has been released in Oct 2007. One plausible drawback to this Rule-based solution is
that the knowledge needs to be encoded by more than one or two languages in order
to represent the full domain.

Besides of the above, there is not much work that has been reported on addressing
the issues of the knowledge representation with OWL. Stojanovic et al. [5] mentioned
that some database related dynamic knowledge embedded in SQL stored procedures,
triggers and built-in functions cannot be mapped to RDF.

3 Problem Description with Examples

In this section, we describe the two specific types of knowledge that cannot be mod-
eled directly using OWL constructs in order to demonstrate the idea of tackling the
above mentioned modeling issues. Solutions to the problems are given in the follow-
ing section.

3.1 Data Value Range Modeling Problem in OWL

The first type of knowledge that we mentioned in the introduction section that cannot
be modeled directly using constructs, which are specified in OWL DL, is the con-
straint on data value range. Data value range constraint is very common to various
domains. For example, a company recruitment statement contains a minimum age
and a maximum age requirement and a bank product requests a minimum and a
maximum amount of deposit over a period such as monthly. This refers to data value
range in database development. This kind of data constraint can be obtained from da-
tabase schema, application source code through validation and SQL queries. It, how-
ever, cannot be directly represented using any constructs specified in OWL DL. One
example of the recruitment requirement for the employee’s age constraint in a com-
pany, named ABC, can be expressed as the formula:

ABCEmployee (18 < age < 65)

In OWL DL, if we define a Class namely Employee, with a DatatypeProperty
namely age shown as in the OWL definition below:

 <owl:Class rdf:ID="Employee"/>
 <owl:DataTypeProperty rdfID="age">

 <rdfs:domain rdfresource="#Employee" />
 <rdfs:range rdfresource="&xsd;integer" />

 <owl:DatatypeProperty>

We may further add constraints such as the cardinality on the age property, but no
any other elements defined in OWL for property restrictions, such as allValueFrom
and the set operator like unionOf and intersectionOf, can be used to model the simple

363

S.Zhao, P. Wongthongtham, E.Chang and T.Dillon

value range constraint. We therefore need other means to represent this kind of
knowledge in OWL ontologies.

3.2 Calculation Knowledge Representation Problem in OWL

The second type of knowledge cannot be modeled directly using OWL constructs is
the general calculation knowledge. An arithmetic calculation consists of operands and
arithmetic operators such as addition, subtraction, multiplication and division. Oper-
ands in a calculation are often derived from columns of tables in a database or from
properties of Classes in an ontology. The result of a calculation, in the mean time, is
assigned to a column or a property. This represents associations amongst properties
rather than classes. It may also represent the dynamic knowledge which is generated
at run time in a given application. This type of knowledge is usually defined in SQL
queries such as stored procedures or application source code when validating new
data entry to ensure data consistency. One example of this type of knowledge is the
calculation of total cost including GST tax of a purchase. The cost is calculated based
on three properties: the “quantity” of the product in the purchase, the “price” of the
product excluding GST tax and current “GST tax rate”. It can be expressed as the fol-
lowing formulas:

 SubTotal = itemQuantity * singleUnitPrice
 Tax = SubTotal * GSTRate
 TotalCost = SubTotal + Tax

In OWL, there is no constructs defined for modeling this type of associations

among properties from one or more Classes.

4 Approach

For the modeling problems stated in the previous section, we propose two alternative
approaches to tackle the issues. They are described and demonstrated with sample
code in this section.

4.1 Conceptualization of Data Value Range Constraint in OWL

As OWL does not provide any constructs for restricting value range on
DatatypePropertie, we cannot represent this constraint directly in the way that we
specify it in a programming language or in a database management system. However,
we can model the value range constraint by conceptualizing it into a new Class. The
conceptualization actually explicitly reflects the semantics of the data restriction be-
cause the general concept Age of human being is different from the concept minimum
age and maximum age in a company recruitment requirement. We demonstrate the so-
lution to the first problem defined in section 3.1 as in List 1.

364

Knowledge conceptualization & software agent based approach for OWL modeling issues

In the OWL ontology List 1, the constraint on employee’s age is conceptualized as
a new Class “EmploymentAge”. It has two DatatypeProperties: “minAge” and
“maxAge”. There is one individual created for ABC company recruitment require-
ment called “ABCEmploymentAge” whose “minAge” is 18 and “maxAge” is 65. The
property “age” of the Class “Employee” can therefore be defined as an ObjectProp-
erty whose range is of the class “EmployeeAge”. If there are individuals of ABC
company employee, their age must be between 18 and 65. One key point to this solu-
tion is that this conceptualization must be transformed or mapped in implementation.
Likewise, other types of knowledge can also be conceptualized in this way.

<owl:Class rdf:ID="EmploymentAge"/>

 <owl:DatatypeProperty rdf:ID="maxAge">
 <rdfs:domain rdf:resource="#EmploymentAge"/>
 <rdfs:range rdf:resource="&xsd#int"/>
 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:ID="minAge">
 <rdfs:range rdf:resource="&xsd#XMLSchema#int"/>
 <rdfs:domain rdf:resource="#EmploymentAge"/>
 </owl:DatatypeProperty>

 <EmploymentAge rdf:ID="ABCEmploymentAge">
 <maxAge rdf:datatype="&xsd#int">18</maxAge>
 <minAge rdf:datatype="&xsd#int">65</minAge>
 </EmploymentAge>

 <owl:Class rdf:ID="Employee"/>

 <owl:ObjectProperty rdf:ID="employmentAge">
 <rdfs:domain rdf:resource="#Employee"/>
 <rdfs:range rdf:resource="#EmploymentAge"/>
 </owl:ObjectProperty>

List 1 conceptualization of data value range constraint in OWL

4.2 Software Agent-Based Knowledge Representation Approach

The second approach is to utilize software agent technology. Software agent technol-
ogy has been in extensive discussion for many years but it is perhaps recently that it
has been attracting much attention of exploitation in the emergence of the Semantic
Web. Basically software agents are components in an application that are character-
ized by among other things autonomy, pro-activity and an ability to communicate
[15]. Autonomy means that agents can independently carry out complex and long
term tasks. Pro-activity means that agents can take initiative to perform a given task
without human intervention. Ability to communicate means agents can interact with
other agents or other components to assist to achieve their goals.

In this paper we implement software agents using JADE (Java Agent Development
framework), an agent-oriented middleware [16, 17]. The reason we use JADE is sim-
ply because it facilitates development of complete agent-based applications and it is
written in well known object-oriented language, Java. More details of JADE can be
found on its website (http://jade.tilab.com).

365

S.Zhao, P. Wongthongtham, E.Chang and T.Dillon

Basically in this paper, we utilize JADE agent technology to help define the knowl-
edge of calculation. A JADE agent is identified under FIPA specifications [18] by an
agent identifier. A task can be defined for an agent to carry out. Agent action defines
the operations to be performed. Agent communication according to FIPA specifica-
tions [18] is the most fundamental feature of software agents. Format of messages is
compliant with that defined by FIPA-ACL message structure.

For the calculation knowledge described in section 3.2, we can define it in the fol-
lowing formula.

Total Cost = Price * Quantity * (1 + GST Rate / 100)

Ontologies are typically specific to a given domain. For the above formula we
specify to a product trading domain which would not be the same as in a payroll sys-
tem. Thus product concept could have properties of name, barcode, etc. Agents then
have some shared understanding with the product concept and its properties. There
may be two products named the same. In order to unequivocally identify a product, it
may be necessary to specify barcode.

According to the FIPA specifications [18], when agents communicate, product in-
formation representation is embedded inside ACL messages. Because JADE agents
are Java-based, the information can be represented using objects.

In order to exploit agent and ontology technology to support and allow agents to
discourse and reason about facts and knowledge related to a given domain, we specify
the approach into 3 steps.

• Define concepts in an ontology. In the purchase example, it includes Product and
Purchase concepts.
• Develop proper Java classes for the above two concepts in the ontology.
• Define the calculation formula by hard-coding it.
In order to illustrate defined concepts of Product and Purchase in an ontology, we

model Product and Purchase knowledge representation shown in Figure 1. Figure 1
(A) shows Product concept and Figure 1 (B) shows Purchase concept. Ontology class
Product has datatype properties of name and barcode both related to a string type.
Ontology class Purchase has object properties of item related to the ontology class
Product. The ontology class Purchase also has datatype properties of price related to
a float type and quantity and tax_rate related to an integer type.

Figure 1 Product and Purchase concepts in ontology modelling

We reuse schema classes available in JADE PredicateSchema, AgentAction-

Schema, and ConceptSchema included in the jade.content.schema package to define
the structure of each type of predicate, agent action, and concept respectively [17]. In
the example, we can model the domain including one concept (Product), one predi-

366

Knowledge conceptualization & software agent based approach for OWL modeling issues

cate (Purchase – to apply to a product) and one agent action (Calculate – to calculate
total cost including tax).

Since the ontology is shared among agents, TradeOntology class is placed in an ad-
hoc package, ontology. The ontology defined in Java is shown in List 2.

package TradingPackage;

import jade.content.onto.*;
import jade.content.schema.*;
import jade.util.leap.HashMap;
import jade.content.lang.Codec;
import jade.core.CaseInsensitiveString;

public class TradeOntology extends jade.content.onto.Ontology {
 //NAME
 public static final String ONTOLOGY_NAME = "Trade";
 // The singleton instance of this ontology
 private static ReflectiveIntrospector introspect = new Reflec-

tiveIntrospector();
 private static Ontology theInstance = new TradeOntology();
 public static Ontology getInstance() {
 return theInstance;
 }

 // VOCABULARY
 public static final String PURCHASE_ITEM="Item";
 public static final String PURCHASE_QUANTITY="Quantity";
 public static final String PURCHASE_TAX_RATE="Tax_Rate";
 public static final String PURCHASE_PRICE="Price";
 public static final String PURCHASE="Purchase";
 public static final String CALCULATOR="Calculator";
 public static final String CALCULATE="Calculate";
 public static final String PRODUCT_NAME="Name";
 public static final String PRODUCT_BARCODE="Barcode";
 public static final String PRODUCT="Product";

 /* Constructor */
 private TradeOntology(){
 super(ONTOLOGY_NAME, BasicOntology.getInstance());
 try {

 // adding Concept(s)
 ConceptSchema productSchema = new ConceptSchema(PRODUCT);
 add(productSchema, TradingPackage.Product.class);

 // adding AgentAction(s)
 AgentActionSchema calculateSchema = new AgentAction-

Schema(CALCULATE);
 add(calculateSchema, TradingPackage.Calculate.class);

 // adding AID(s)
 ConceptSchema calculatorSchema = new ConceptSchema(CALCULATOR);
 add(calculatorSchema, TradingPackage.Calculator.class);

 // adding Predicate(s)
 PredicateSchema purchaseSchema = new PredicateSchema(PURCHASE);
 add(purchaseSchema, TradingPackage.Purchase.class);

 // adding properties
 productSchema.add(PRODUCT_BARCODE, (Term-

Schema)getSchema(BasicOntology.STRING), ObjectSchema. MANDATORY);
 productSchema.add(PRODUCT_NAME, (Term-

Schema)getSchema(BasicOntology.STRING), ObjectSchema.OPTIONAL);
 purchaseSchema.add(PURCHASE_PRICE, (Term-

Schema)getSchema(BasicOntology.FLOAT), ObjectSchema.MANDATORY);

367

S.Zhao, P. Wongthongtham, E.Chang and T.Dillon

 purchaseSchema.add(PURCHASE_TAX_RATE, (Term-
Schema)getSchema(BasicOntology.INTEGER), ObjectSchema.MANDATORY);

 purchaseSchema.add(PURCHASE_QUANTITY, (Term-
Schema)getSchema(BasicOntology.INTEGER), ObjectSchema.MANDATORY);

 purchaseSchema.add(PURCHASE_ITEM, productSchema, ObjectSchema.
MANDATORY);

 }catch (java.lang.Exception e) {e.printStackTrace();}
 } }

List 2 Trade Ontology defined in Java

package TradingPackage;

import jade.content.*;
import jade.util.leap.*;
import jade.core.*;

public class Product

 implements Concept {

// Barcode
 private String barcode;
 public void setBarcode(String
value){

 this.barcode=value; }

public String getBarcode() {

 return this.barcode;
}

// Name
 private String name;
 public void setName(String value) {

 this.name=value;
 }
 public String getName() {

 return this.name;
 }
}

List 3 Product concept defined in Java

package TradingPackage;

import jade.content.*;
import jade.util.leap.*;
import jade.core.*;

public class Purchase imple-

ments Predicate {

// Price
 private float price;
 public void setPrice(float

value) {
 this.price=value;
 }
 public float getPrice() {
 return this.price;
 }

 // Tax_Rate
 private int tax_Rate;
 public void setTax_Rate(int

value) {
 this.tax_Rate=value;
 }

 public int getTax_Rate() {
 return this.tax_Rate;
 }

// Quantity
 private int quantity;
 public void setQuantity(int

value) {
 this.quantity=value;
 }
 public int getQuantity() {
 return this.quantity;
 }

// Item
 private Product item;
 public void setItem(Product

value) {
 this.item=value;
 }
 public Product getItem() {
 return this.item;
 }

}

List 4 Purchase concept defined in Java

The schemas for product, purchase, calculate, and calculator concepts are associ-

ated with product.java, purchase.java, calculate.java, and calculator.java classes re-
spectively. Each property in a schema has a name and a type. For example, in the
product schema, barcode has its type as string. Every product must have barcode as

368

Knowledge conceptualization & software agent based approach for OWL modeling issues

declared as MANDATORY. Similarly, value for properties item, price, quantity, and
tax rate cannot be null because when the purchase is made these values are manda-
tory. Validation is made by throwing an exception if the value of mandatory proper-
ties is null.

The product concept could be defined specifically to particular products e.g. books,
CDs for more specific trading. Properties of the product concept i.e. name and bar-
code will be inherited to books and CDs. Book and CDs concepts can have their own
specific properties e.g. the CDs concept might have tracks property and books might
have authors property and so on.

Java classes, associated with the product concept and the purchase predicate in the
example, are shown in List 3 and List 4 respectively.

Agent action associates with the agent identifier which is intended to perform ac-
tion for this example to calculate total cost included tax. Calculation can be hard
coded getting value from object of class purchase i.e. price, quality, and tax rate.

For example a product of $200 price, 2 quantity, and 10% tax rate would have ex-
pression as following:

((action (agent-identifier :name calculator) calculate (prod-

uct :name “xxx” :barcode “01211”) purchase (product :name “xxx”
:barcode “01211”) 360)

Alternatively, we can also specify in class purchase as the attribute of TotalCost

shown as in List 5 below.

// Total Cost
 private float TotalCost;
 public float getTotalCost() {
 return this.price * this.quality * (1 + tax_Rate / 100);
}

List 5 The formula defined in Java

One advantage using software agent based approach, in comparison to the concep-

tualization approach, is that it has already been realized in software agent definition
which does not require further implementation code.

5 Conclusion

In this paper we addressed the practical problems associated with knowledge repre-
sentation in OWL. OWL specifications provide many mechanisms for defining re-
strictions and associations among Classes but not for Properties. We have presented
two types of knowledge, which are common to various domains, but cannot be mod-
eled directly using constructs specified in OWL. To tackle this knowledge presenta-
tion gap in OWL, we have proposed two alternative solutions to the problems. One is
to conceptualize the knowledge such as the data value range constraints and the other
is to use other existing technology such as software agents to encode and convey the

369

S.Zhao, P. Wongthongtham, E.Chang and T.Dillon

knowledge. As we gave calculation knowledge example defined in the formula for
experimentation. With the knowledge defined in the ontology the software agents are
able to use calculation knowledge to define a new knowledge (i.e. the total cost). Its
prototype is still under development and need to extend in different fields. We do not
intend to list all OWL modeling problems rather we aim to provide some useful hints
to other likewise knowledge representation issues with OWL that have yet to be re-
solved.

References

1. R. Studer, V. R. Benjamins, and D. Fensel, "Knowledge engineering: Principles and methods,"
Data & Knowledge Engineering, vol. 25, pp. 161-197, 1998.

2. W. Borst, "Construction of Engineering Ontologies," University of Twente, Enschede, 1997.
3. T. R. Gruber, "A Translation Approach to Portable Ontology Specifications," Knowledge Acqui-

sition, vol. 5, pp. 199-220, 1993.
4. V. Kashyap, "Design and creation of ontologies for environmental information retrieval," pre-

sented at the 12th Workshop on Knowledge Acquisition, Modeling and Management, Alberta,
Canada, 1999.

5. L. Stojanovic, N. Stojanovic, and R. Volz, "Migrating data-intensive Web Sites into the Semantic
Web," presented at the 17th ACM symposium on applied computing (SAC),, SAC, 2002.

6. R. Meersman, "Ontologies and Databases: More than a Fleeting Resemblance," presented at
OES/SEO Workshop Rome, Rome, 2001.

7. I. Astrova, "Reverse engineering of relational database to ontologies," presented at First european
Semantic Web symposium, ESWS, Heraklion, Crete, Greece, 2004.

8. M. LI, X.-Y. DU, and S. WANG, "Learning ontology from relational database," presented at the
Fourth International Conference on Machine Learning and Cybernetics, Guangzhou, China, 2005.

9. S. Zhao and E. Chang, "Mediating Databases and the Semantic Web: A methodology for building
domain ontologies from databases and existing ontologies," presented at SWWS'07- The 2007 In-
ternational Conference on Semantic Web and Web Services, Las Vegas, Nevada, USA, 2007.

10. W3C, "Ontology Web Language," vol. 2006, M. K. Smith, C. Welty, and D. L. McGuinness,
Eds.: WC3, 2004.

11. W3C, "OWL Web Ontology Language Use Cases and Requirements," vol. 2007, J. Heflin, Ed.,
2004.

12. N. Shadbolt, W. Hall, and T. Berners-Lee, "The Semantic Web Revisited," IEEE Intelligent Sys-
tems, pp. 96-101, 2006.

13. D. Reynolds, C. Thompson, J. Mukerji, and D. Coleman, "An assessment of RDF/OWL model-
ling," Digital Media Systems Laboratory, HP Laboratories Bristol 28 Oct 2005.

14. W3C-RIF, "Rule Interchange Format Working Group," vol. 2007: W3C, 2007.
15. M. Wooldridge, Introduction to MultiAgent Systems. , 1st ed: John Wiley & Sons., 2002.
16. F. Bellifemine, "JADE Java Agent DEvelopment Framework," Telecom Italia Lab: Torino, Italy.,

2001.
17. F. Bellifemine, G. Caire, and D. Greenwood, Developing Multi-Agent Systems with JADE: John

Wiley & Sons Ltd., 2007.
18. F. Bellifemine, A. Poggi, and G. Rimassa., "JADE: a FIPA2000 compliant agent development

environment," presented at The fifth International Conference on Autonomous Agents, Montreal,
Quebec, Canada, 2001.

370

