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Abstract Top Down Induction of Decision Trees (TDIDT) is the most commonly
used method of constructing a model from a dataset in the form of classification
rules to classify previously unseen data. Alternative algorithms have been devel-
oped such as the Prism algorithm. Prism constructs modular rules which produce
qualitatively better rules than rules induced by TDIDT. However, along with the in-
creasing size of databases, many existing rule learning algorithms have proved to
be computational expensive on large datasets. To tackle the problem of scalability,
parallel classification rule induction algorithms have been introduced. As TDIDT
is the most popular classifier, even though there are strongly competitive alterna-
tive algorithms, most parallel approaches to inducing classification rules are based
on TDIDT. In this paper we describe work on a distributed classifier that induces
classification rules in a parallel manner based on Prism.

1 Introduction

Scaling up data mining algorithms to massive datasets has never been more top-
ical. That is because of the fast and continuous increase in the number and size
of databases. For example in the area of Molecular Dynamics (MD), simulations
are conducted which describe the unfolding and folding of proteins. These sim-
ulations generate massive amounts of data which researchers are just starting to
manage to store [7]. For example one single experiment can generate datasets of
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100s of gigabytes[6]. Researchers in the MD community wish to apply data min-
ing algorithms on MD experimental data such as pattern detection, clustering or
classification[4]. However, most data mining algorithms do not scale well on such
massive datasets and thus researchers are forced to sample the data to which they
want to apply their data mining algorithms. Catlett’s work [2] shows that sampling
of data results in a loss of accuracy in the data mining result. However, Catlett con-
ducted his experiments 16 years ago and referred to data samples that were much
smaller than those nowadays. Frey and Fisher [8] showed that the rate in increase of
accuracy slows down with the increase of the sample size.
However, scaling up is also an issue in applications that are concerned with the

discovery of knowledge from large databases rather than predictive modelling. For
instance researchers are interested in discovering knowledge from gene expression
datasets, for example concerning knowledge about the influence of drugs on the
gene expression levels of cancer patients. A drug might be designed to suppress
tumour promoting genes, so called oncogenes. In some cases the same drug might
also suppress genes that are not directly related to the tumour and thus cause adverse
effects which might be lethal in rare cases. If we would sample here, we might lose
data that may lead to the detection of rules that might identify a risk in applying
a certain drug. Furthermore not only the number of examples but also the number
of attributes which describe each example contributes to the size of the dataset [5].
For example gene expression datasets often comprise thousands or even tens of
thousands of genes which represent attributes in a relational data table.
We present work on a parallel data distributed classifier based on the Prism [3]

algorithm. We expect to be able to induce qualitatively good rules with a high accu-
racy and a sufficient scale up on massive datasets, such as gene expression datasets.

2 Inducing Modular Classification Rules Using Prism

The Prism classification rule induction algorithm promises to induce qualitatively
better rules compared with the traditional TDIDT algorithm. According to Cendrowska,
that is because Prism induces modular rules that have fewer redundancies compared
with TDIDT [3]. Rule sets such as:

IF a = 1 AND b = 1 THEN CLASS = 1
IF c = 1 AND d = 1 THEN CLASS = 2

which have no common variable cannot be induced directly by TDIDT [3]. Using
TDIDTwould produce unnecessarily large and confusing decision trees. Cendrowska
presents the Prism algorithm [3] as an alternative to decision trees. We implemented
a version of Prism that works on continuous datasets like gene expression data [11].
The basic Prism algorithm, for continuous data only, can be summarised as shown
in figure 1, assuming that there are n(> 1)possible classes. The aim is to gener-
ate rules with significantly fewer redundant terms than those derived from decision
trees. Compared with decision trees Prism[1]:
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• Is less vulnerable to clashes
• Has a bias towards leaving a test record unclassified rather than giving it a wrong
classification

• Often produces many fewer terms than the TDIDT algorithm if there are missing
values in the training set.

Fig. 1 The basic Prism algorithm for continuous data comprises five nested loops. The innermost
loop involves sorting of the data for every continuous attribute.

However as shown in the algorithm in figure 1, the computational requirements of
Prism are considerable, as the algorithm comprises five nested loops. The innermost
loop involves sorting (contained in step b) the data for every continuous attribute
[11]. Loosely speaking Prism produces qualitatively strong rules but suffers from
its high computational complexity.
We have removed the innermost loop by pre-sorting the data once at the be-

ginning. We did that by representing the data in the form of sorted attribute lists.
Building of attribute lists is performed by decoupling the data into data structures of
the form

⟨record id, attributevalue, classvalue⟩

for each attribute. Attribute lists were first introduced and successfully used in the
SPRINT (Scalable PaRallelizable INduction of decision Trees) project for the paral-
lelisation of TDIDT[10]. The use of sorted attribute lists enabled us to keep the data
sorted during the whole duration of the Prism algorithm. By doing so we achieved
a speedup factor of 1.8 [11].
The left-hand side of figure 2 illustrates the building of attribute lists. Note that

all lists are sorted and all lists comprise a column with identifiers (id) added so
that data records split over several lists can be reconstructed. As Prism removes
attribute lists that are not covered by the previously induced rule term, our classifier
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Fig. 2 The left hand side shows how sorted attribute lists are built and the right hand side shows
how list records, in this case records with the ids 1 and 3, are removed in Prism.

needs to remove list records in an analogous way. For example if Prism finds a rule
term (salary ≥ 60.4) for class G then Prism would remove the list records with
the id values 1 and 3 as they are not covered by this rule. Note that the resulting list
records are still sorted. This fact eliminates multiple sorting of attribute lists. The use
of attribute lists in Prism enables us to parallelise the algorithm in a shared nothing
environment, where each CPU has its own private memory, by data distribution [11].

3 Speeding up Prism by Parallelisation via a Distributed
Blackboard System

A blackboard system is a software architecture that simulates a group of experts in
front of a blackboard which have expertise in different areas. These experts commu-
nicate by reading new information from the blackboard, deriving new knowledge
from it and writing this new information again on to the blackboard, thus making it
accessible to the other experts. In the software architecture the blackboard is based
on a server/client model. The server functions as a blackboard and the clients as ex-
perts. We are using an implementation of a distributed blackboard system developed
by the Nottingham Trent University [9]. In a similar way to a shared memory ver-
sion of SPRINT [13] we want to parallelise Prism by distributing 1/k chunks of each
attribute list to k different expert machines. We want to synchronise the algorithm
then by using the distributed blackboard system. Thus each expert machine will hold
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a different part of the data and derive new knowledge from it in the form of a locally
best rule term. Then each expert machine will exchange quality information about
all locally best rule terms via the blackboard with the other expert machines.

4 Parallel Prism: Basic Architecture And Algorithm

As described in the previous section, the first step is to build attribute lists and
distribute them to all expert machines. In the context of Parallel Prism (P-Prism),
we refer to the expert machines as Worker Machines as the purpose of parallelising
Prism is to split the workload, determined by the size of the training data, over k
CPUs.

Fig. 3 Architecture of P-Prism using a blackboard server comprising two partitions, a partition for
submitting rule terms to the blackboard (Local Rule Term Partition) and one to advertise global
information (global information partition) to the worker machines. The moderator program on the
blackboard derives the global information.

Figure 3 illustrates the basic architecture of P-Prism using a blackboard server
which comprises two partitions, a partition for submitting rule terms to the black-
board, the “Local Rule Term Partition” and one to advertise Global information to
the worker machines, the “Global Information Partition”. Figure 4 depicts the basic
P-Prism algorithm. Each worker machine M induces independently a rule term tM
for class i which is the best rule term to describe i on the local data on M. The qual-
ity of tM is measured in the form of the probability PM with which tM covers class i
on the local data. Each M submits tM plus its associated PM to the ”Local Rule Term
Partition” on the blackboard. The moderator program on the blackboard collects all
tMs with their associated PMs and searches out the globally best rule term, which is
the one with the highest PM . The moderator program also provides global informa-
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tion to the worker machines by writing it on to the ”Global Information Partition”.
The global information comprises the globally best rule term or identifiers for the
data covered by this rule term. Loosely speaking, global information informs the
worker machines about the global state of the algorithm and thus how they shall
proceed, e.g. deriving a further rule term or starting a new rule.

Fig. 4 Outline of the basic structure of the P-Prism algorithm. The data distribution takes place in
step B and the parallelisation in step D.

Figure 4 outlines the rough structure of the proposed P-Prism algorithm. The data
distribution takes place in step B by distributing the attribute lists. The parallelisa-
tion takes place in steps F to I as here every worker machine derives its local rule
term and waits for the global information to become available on the blackboard.

5 Ongoing Work

So far we have set up a local area network with 4 worker machines and one black-
board server which is configured as described in section 4. The moderator program
has been implemented and is fully functional. The worker machines simulate rule
term induction for a complete rule in order to test the moderator program’s func-
tionality on the blackboard server. The next step is to fully implement the worker
machines in order to test the computational performance of P-Prism.
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5.1 Reduction of the Data Volume Using Attribute Lists

Shafer claims in his paper [10] that attribute lists could be used to buffer data to the
hard disc in order to overcome memory constraints. However, buffering of attribute
lists involves many I/O operations. As the data in attribute lists is even larger than
the raw data, we expect a considerable slowdown of the runtime of Prism if we
use buffering of attribute lists. Thus we are working on a modified version of the
attribute list. As Prism mainly needs the class value distribution in a sorted attribute
list, we want to reduce memory usage by building class distribution lists instead of
attribute lists. Class distribution lists have the following structure:

⟨record id, classvalue⟩

The class distribution list is built out of a sorted attribute list by deleting the
attribute value column, thus the ids and class values in the class distribution list are
sorted according to the attribute values. The total size of these lists is less than that
of the raw data and even less than that of the data in the form of attribute lists. The
rules induced using class distribution lists will lead to rule terms labelled with record
ids instead of the actual attribute values. After all rules are induced, the record ids
can easily be replaced by the actual attribute values.
The amount of memory (S) needed for Prism working on the raw data can be de-

scribed by the formula S= (8∗n+1)∗m bytes, where n is the number of attributes
and m is the number of data records. We assume that eight bytes is the amount of
memory needed to store an attribute value (assuming double precision values) and
one byte to store a class value assuming a character representation. These assump-
tions would perfectly apply to gene expression data as a gene expression value is a
double precision value. The storage needed by Prism to hold all the attribute lists in
memory can be described analogously by the formula S = (8+4+1)∗n∗m bytes.
Again, the eight bytes represent an attribute value and the one byte a class value.
The four byte value corresponds to an integer value for a record id in the attribute
list. Representing the training data with the class distribution list structure instead
of the attribute list structure eliminates the eight byte attribute values and thus only
requires a memory usage of S= (4+1)∗n∗m bytes [11].
However, attribute lists without the actual attribute value cannot be used exactly

as stated above. We need to find a way to deal with repeated attribute values. Figure
5 illustrates the problem of repeated attribute values. The attribute list on the left
hand side would find (X ≤ 2.1) as the rule term for the attribute X regarding class C
with a covering probability of 0.67. The class distribution list on the right hand side
in figure 5 represents our class distribution list with only the ids and the class values.
Using only the class distribution without incorporating information about repeated
attribute values for finding the best rule term would lead to a rule term of the form
(X > id0) for class C with a covering probability of 1. But the value of X at id 0 is
8.7, which leads to the actual rule term (X > 8.7) which has a covering probability
of only 0.5 as data records with ids 3 and 0 are also covered by that term. Thus we
need to mark repeated attribute values in our class distribution list structure.
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Fig. 5 Finding a possible rule term in a class distribution list without having the attribute values
can lead to low wrong rule terms

One possible way to mark repeated attribute values in the class distribution list
is to add another column “indicator” which is a flag that indicates repeated values,
e.g. we could use an integer that is 0 if the list record corresponds to a repeated
attribute value or 1 if not. Thus the class distribution list structure would have to
be altered to ⟨indicator,record id,classvalue⟩. This also leads to an altered formula
for the memory usage which is S = (4+ 1+ 1) ∗ n ∗m. The additional byte here
corresponds to the added indicator. The resulting S would still be smaller than those
for the raw data and the traditional attribute list structure. Concerning memory us-
age a better way is to use signed integers for the record id in the class distribution
list structure. Positive record ids can be used for non-repeated attribute values and
negative ids for repeated ones. The formula for the memory usage here would re-
main the same, but the disadvantage of using signed integers is that we could only
represent 231data records instead of 232 for unsigned integers. Another way to rep-
resent repeated attribute values without using additional memory or signed integers
is using upper case and lower case characters for the class values in order to indicate
repeated attribute list values. For example using lower case letters for non-repeated
values and upper case letters for repeated values.
Table 1 shows the actual memory usage of Prism working with raw data, attribute

lists and our class distribution list calculated using signed integers or upper case and
lower case class values and using S= (4+1)∗n∗m bytes for the memory usage of
the class distribution list. The datasets are gene expression datasets concerning sev-
eral diseases which can be retrieved from http://sdmc.lit.org.sg/GEDatasets/ except
the SAGE-tag and Affymetix dataset. They can be found at the Gene Expression
Omnibus (GEO) [12]. We clearly see that using attribute lists greatly increases the
memory required to store the training data. We also see that the class distribution
list outperforms the representation of data using both raw data and attribute lists in
relation to memory requirements.
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Table 1 Examples of the memory usage of several gene expression datasets in Prism using raw
data S1 = (8 ∗ n+ 1) ∗m; using the attribute list structure S2 = (8+ 4+ 1) ∗ n ∗m and using our
proposed class distribution list structure S3= (4+1)∗n∗m. The datasets are gene expression data,
thus the number of attributes is determined by the number of genes. All values for memory usage
are stated in megabytes.

Dataset Genes(n) Examples(m) S1 S2 S3
ALL/AML Leukaemia 7129 48 2.74 4.45 1.71
Breast cancer outcome 24481 78 15.28 24.82 9.55
CNS embryonal tumour 7129 60 3.42 5.56 2.14
Colon tumour 7129 62 3.42 5.75 2.21
Lung cancer 12533 32 3.21 5.21 2.01
Prostate cancer 12600 102 10.28 16.71 6.43
Prostate cancer outcome 12600 21 2.12 3.44 1.32
Affymetix 12332 1640 161.80 262.92 101.12
SAGE-tag 153204 243 297.83 483.97 186.14

5.2 Synchronisation

Further work will be conducted on the synchronisation of the distributed classifier.
In particular several worker machines will have to wait for further information on
the blackboard after they write their rule term plus its quality in the form of the
covering probability on the backboard. This idle time could be used, for example,
to induce locally terms for a different class value.

6 Conclusions

This paper describes work on scaling up classification rule induction on massive data
sets. We first discussed why classification rule induction needs to be scaled up in
order to be applicable to massive data sets and focused on a particular classification
rule induction algorithm. The algorithm we focused on is the Prism algorithm. It
is an alternative algorithm to decision trees which induces modular rules that are
qualitatively better than rules in the form of decision trees, especially if there is
noisy data or there are clashes in the dataset.
Unfortunately Prism is computationally much more expensive than decision tree

induction algorithms and thus is rarely used. We described the work we did to scale
up the serial version of Prism by applying presorting mechanisms to it, which re-
sulted in a speed up factor of 1.8. We further introduced the idea of scaling up Prism
by distributing the workload in the form of attribute lists over several machines in a
local area network and inducing rules in parallel.
We described the basic algorithm and architecture of the parallel version of Prism

which we call P-Prism. We aim to parallelise Prism by using a distributed black-
board system via which Worker Machines exchange information about their locally
induced rule terms.
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We further outlined how we can reduce the size of the data that needs to be
held in memory by each worker machine by using class distribution lists rather than
attribute lists. We described the problem that repeated attribute values will cause if
we use class distribution lists, proposed 3 different ways to resolve the problem and
concluded that using an upper and lower case representation of the class value is the
best solution.
A further problem we briefly addressed is synchronisation, in particular the idle

time of worker machines caused by waiting for global information. We propose to
use this idle time to induce a rule term for a different class value in the meantime.
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